foundationdb/fdbserver/workloads/RandomMoveKeys.actor.cpp

230 lines
8.2 KiB
C++

/*
* RandomMoveKeys.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "fdbrpc/simulator.h"
#include "fdbclient/StorageServerInterface.h"
#include "fdbclient/ManagementAPI.actor.h"
#include "fdbserver/MoveKeys.actor.h"
#include "fdbclient/NativeAPI.actor.h"
#include "fdbserver/workloads/workloads.actor.h"
#include "fdbserver/ServerDBInfo.h"
#include "fdbserver/QuietDatabase.h"
#include "flow/actorcompiler.h" // This must be the last #include.
struct MoveKeysWorkload : TestWorkload {
bool enabled;
double testDuration, meanDelay;
double maxKeyspace;
DatabaseConfiguration configuration;
MoveKeysWorkload(WorkloadContext const& wcx) : TestWorkload(wcx) {
enabled = !clientId && g_network->isSimulated(); // only do this on the "first" client
meanDelay = getOption(options, LiteralStringRef("meanDelay"), 0.05);
testDuration = getOption(options, LiteralStringRef("testDuration"), 10.0);
maxKeyspace = getOption(options, LiteralStringRef("maxKeyspace"), 0.1);
}
std::string description() const override { return "MoveKeysWorkload"; }
Future<Void> setup(Database const& cx) override { return Void(); }
Future<Void> start(Database const& cx) override { return _start(cx, this); }
ACTOR Future<Void> _start(Database cx, MoveKeysWorkload* self) {
if (self->enabled) {
// Get the database configuration so as to use proper team size
state Transaction tr(cx);
loop {
try {
RangeResult res = wait(tr.getRange(configKeys, 1000));
ASSERT(res.size() < 1000);
for (int i = 0; i < res.size(); i++)
self->configuration.set(res[i].key, res[i].value);
break;
} catch (Error& e) {
wait(tr.onError(e));
}
}
state int oldMode = wait(setDDMode(cx, 0));
TraceEvent("RMKStartModeSetting").log();
wait(timeout(
reportErrors(self->worker(cx, self), "MoveKeysWorkloadWorkerError"), self->testDuration, Void()));
// Always set the DD mode back, even if we die with an error
TraceEvent("RMKDoneMoving").log();
wait(success(setDDMode(cx, oldMode)));
TraceEvent("RMKDoneModeSetting").log();
}
return Void();
}
double getCheckTimeout() const override { return testDuration / 2 + 1; }
Future<bool> check(Database const& cx) override {
return tag(delay(testDuration / 2), true);
} // Give the database time to recover from our damage
void getMetrics(vector<PerfMetric>& m) override {}
KeyRange getRandomKeys() const {
double len = deterministicRandom()->random01() * this->maxKeyspace;
double pos = deterministicRandom()->random01() * (1.0 - len);
return KeyRangeRef(doubleToTestKey(pos), doubleToTestKey(pos + len));
}
vector<StorageServerInterface> getRandomTeam(vector<StorageServerInterface> storageServers, int teamSize) {
if (storageServers.size() < teamSize) {
TraceEvent(SevWarnAlways, "LessThanThreeStorageServers").log();
throw operation_failed();
}
deterministicRandom()->randomShuffle(storageServers);
std::set<StorageServerInterface> t;
std::set<Optional<Standalone<StringRef>>> machines;
while (t.size() < teamSize && storageServers.size()) {
auto s = storageServers.back();
storageServers.pop_back();
if (!machines.count(s.locality.zoneId())) {
machines.insert(s.locality.zoneId());
t.insert(s);
}
}
if (t.size() < teamSize) {
TraceEvent(SevWarnAlways, "LessThanThreeUniqueMachines").log();
throw operation_failed();
}
return vector<StorageServerInterface>(t.begin(), t.end());
}
ACTOR Future<Void> doMoveKeys(Database cx,
MoveKeysWorkload* self,
KeyRange keys,
vector<StorageServerInterface> destinationTeam,
MoveKeysLock lock) {
state TraceInterval relocateShardInterval("RelocateShard");
state FlowLock fl1(1);
state FlowLock fl2(1);
std::string desc;
for (int s = 0; s < destinationTeam.size(); s++)
desc +=
format("%s (%llx),", destinationTeam[s].address().toString().c_str(), destinationTeam[s].id().first());
vector<UID> destinationTeamIDs;
destinationTeamIDs.reserve(destinationTeam.size());
for (int s = 0; s < destinationTeam.size(); s++)
destinationTeamIDs.push_back(destinationTeam[s].id());
TraceEvent(relocateShardInterval.begin())
.detail("KeyBegin", printable(keys.begin))
.detail("KeyEnd", printable(keys.end))
.detail("Priority", 0)
.detail("Source", "RandomMoveKeys")
.detail("DestinationTeam", desc);
try {
state Promise<Void> signal;
state DDEnabledState ddEnabledState;
wait(moveKeys(cx,
keys,
destinationTeamIDs,
destinationTeamIDs,
lock,
signal,
&fl1,
&fl2,
false,
relocateShardInterval.pairID,
&ddEnabledState));
TraceEvent(relocateShardInterval.end()).detail("Result", "Success");
return Void();
} catch (Error& e) {
TraceEvent(relocateShardInterval.end(), self->dbInfo->get().master.id()).error(e, true);
throw;
}
}
static void eliminateDuplicates(vector<StorageServerInterface>& servers) {
// The real data distribution algorithm doesn't want to deal with multiple servers
// with the same address having keys. So if there are two servers with the same address,
// don't use either one (so we don't have to find out which of them, if any, already has keys).
// Also get rid of tss since we don't want to move a shard to a tss.
std::map<NetworkAddress, int> count;
for (int s = 0; s < servers.size(); s++)
count[servers[s].address()]++;
int o = 0;
for (int s = 0; s < servers.size(); s++)
if (count[servers[s].address()] == 1 && !servers[s].isTss())
servers[o++] = servers[s];
servers.resize(o);
}
ACTOR Future<Void> forceMasterFailure(Database cx, MoveKeysWorkload* self) {
ASSERT(g_network->isSimulated());
loop {
if (g_simulator.killZone(self->dbInfo->get().master.locality.zoneId(), ISimulator::Reboot, true))
return Void();
wait(delay(1.0));
}
}
ACTOR Future<Void> worker(Database cx, MoveKeysWorkload* self) {
state KeyRangeMap<vector<StorageServerInterface>> inFlight;
state KeyRangeActorMap inFlightActors;
state double lastTime = now();
ASSERT(self->configuration.storageTeamSize > 0);
if (self->configuration.usableRegions > 1) { // FIXME: add support for generating random teams across DCs
return Void();
}
loop {
try {
state MoveKeysLock lock = wait(takeMoveKeysLock(cx, UID()));
state vector<StorageServerInterface> storageServers = wait(getStorageServers(cx));
eliminateDuplicates(storageServers);
loop {
wait(poisson(&lastTime, self->meanDelay));
KeyRange keys = self->getRandomKeys();
vector<StorageServerInterface> team =
self->getRandomTeam(storageServers, self->configuration.storageTeamSize);
// update both inFlightActors and inFlight key range maps, cancelling deleted RelocateShards
vector<KeyRange> ranges;
inFlightActors.getRangesAffectedByInsertion(keys, ranges);
inFlightActors.cancel(KeyRangeRef(ranges.front().begin, ranges.back().end));
inFlight.insert(keys, team);
for (int r = 0; r < ranges.size(); r++) {
auto& rTeam = inFlight.rangeContaining(ranges[r].begin)->value();
inFlightActors.insert(ranges[r], self->doMoveKeys(cx, self, ranges[r], rTeam, lock));
}
}
} catch (Error& e) {
if (e.code() != error_code_movekeys_conflict && e.code() != error_code_operation_failed)
throw;
wait(delay(FLOW_KNOBS->PREVENT_FAST_SPIN_DELAY));
// Keep trying to get the moveKeysLock
}
}
}
};
WorkloadFactory<MoveKeysWorkload> MoveKeysWorkloadFactory("RandomMoveKeys");