foundationdb/fdbserver/workloads/Throughput.actor.cpp

421 lines
16 KiB
C++

/*
* Throughput.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "fdbrpc/ContinuousSample.h"
#include "fdbclient/NativeAPI.actor.h"
#include "fdbserver/TesterInterface.actor.h"
#include "fdbserver/WorkerInterface.actor.h"
#include "fdbserver/workloads/workloads.actor.h"
#include "flow/ActorCollection.h"
#include "fdbrpc/Smoother.h"
#include "flow/actorcompiler.h" // This must be the last #include.
struct ITransactor : ReferenceCounted<ITransactor> {
struct Stats {
int64_t reads, writes, retries, transactions;
double totalLatency, grvLatency, rowReadLatency, commitLatency;
Stats()
: reads(0), writes(0), retries(0), transactions(0), totalLatency(0), grvLatency(0), rowReadLatency(0),
commitLatency(0) {}
void operator+=(Stats const& s) {
reads += s.reads;
writes += s.writes;
retries += s.retries;
transactions += s.transactions;
totalLatency += s.totalLatency;
grvLatency += s.grvLatency;
rowReadLatency += s.rowReadLatency;
commitLatency += s.commitLatency;
}
};
virtual Future<Void> doTransaction(Database const&, Stats* stats) = 0;
virtual ~ITransactor() {}
};
struct RWTransactor : ITransactor {
int reads, writes;
int minValueBytes, maxValueBytes;
std::string valueString;
int keyCount, keyBytes;
RWTransactor(int reads, int writes, int keyCount, int keyBytes, int minValueBytes, int maxValueBytes)
: reads(reads), writes(writes), minValueBytes(minValueBytes), maxValueBytes(maxValueBytes), keyCount(keyCount),
keyBytes(keyBytes) {
ASSERT(minValueBytes <= maxValueBytes);
valueString = std::string(maxValueBytes, '.');
}
Key randomKey() {
Key result = makeString(keyBytes);
uint8_t* data = mutateString(result);
memset(data, '.', keyBytes);
double d = double(deterministicRandom()->randomInt(0, keyCount)) / keyCount;
emplaceIndex(data, 0, *(int64_t*)&d);
return result;
}
Value randomValue() {
return StringRef((const uint8_t*)valueString.c_str(),
deterministicRandom()->randomInt(minValueBytes, maxValueBytes + 1));
};
Future<Void> doTransaction(Database const& db, Stats* stats) override {
return rwTransaction(db, Reference<RWTransactor>::addRef(this), stats);
}
ACTOR static Future<Optional<Value>> getLatency(Future<Optional<Value>> f, double* t) {
Optional<Value> v = wait(f);
*t += now();
return v;
}
ACTOR static Future<Void> rwTransaction(Database db, Reference<RWTransactor> self, Stats* stats) {
state std::vector<Key> keys;
state std::vector<Value> values;
state Transaction tr(db);
for (int op = 0; op < self->reads || op < self->writes; op++)
keys.push_back(self->randomKey());
values.reserve(self->writes);
for (int op = 0; op < self->writes; op++)
values.push_back(self->randomValue());
loop {
try {
state double t_start = now();
wait(success(tr.getReadVersion()));
state double t_rv = now();
state double rrLatency = -t_rv * self->reads;
state std::vector<Future<Optional<Value>>> reads;
reads.reserve(self->reads);
for (int i = 0; i < self->reads; i++)
reads.push_back(getLatency(tr.get(keys[i]), &rrLatency));
wait(waitForAll(reads));
for (int i = 0; i < self->writes; i++)
tr.set(keys[i], values[i]);
state double t_beforeCommit = now();
wait(tr.commit());
stats->transactions++;
stats->reads += self->reads;
stats->writes += self->writes;
stats->grvLatency += t_rv - t_start;
stats->commitLatency += now() - t_beforeCommit;
stats->rowReadLatency += rrLatency / self->reads;
break;
} catch (Error& e) {
wait(tr.onError(e));
stats->retries++;
}
}
return Void();
}
};
struct ABTransactor : ITransactor {
Reference<ITransactor> a, b;
double alpha; // 0.0 = all a, 1.0 = all b
ABTransactor(double alpha, Reference<ITransactor> a, Reference<ITransactor> b) : a(a), b(b), alpha(alpha) {}
Future<Void> doTransaction(Database const& db, Stats* stats) override {
return deterministicRandom()->random01() >= alpha ? a->doTransaction(db, stats) : b->doTransaction(db, stats);
}
};
struct SweepTransactor : ITransactor {
// Runs a linearly-changing workload that changes from A-type to B-type over
// the specified duration--the timer starts at the first transaction.
Reference<ITransactor> a, b;
double startTime;
double startDelay;
double duration;
SweepTransactor(double duration, double startDelay, Reference<ITransactor> a, Reference<ITransactor> b)
: a(a), b(b), startTime(-1), startDelay(startDelay), duration(duration) {}
Future<Void> doTransaction(Database const& db, Stats* stats) override {
if (startTime == -1)
startTime = now() + startDelay;
double alpha;
double n = now();
if (n < startTime)
alpha = 0;
else if (n > startTime + duration)
alpha = 1;
else
alpha = (n - startTime) / duration;
return deterministicRandom()->random01() >= alpha ? a->doTransaction(db, stats) : b->doTransaction(db, stats);
}
};
struct IMeasurer : ReferenceCounted<IMeasurer> {
// This could be an ITransactor, but then it needs an actor to wait for the transaction to actually finish
virtual Future<Void> start() { return Void(); }
virtual void addTransaction(ITransactor::Stats* stats, double now) = 0;
virtual void getMetrics(std::vector<PerfMetric>& m) = 0;
IMeasurer& operator=(IMeasurer const&) {
return *this;
} // allow copy operator for non-reference counted instances of subclasses
virtual ~IMeasurer() {}
};
struct MeasureSinglePeriod : IMeasurer {
double delay, duration;
double startT;
ContinuousSample<double> totalLatency, grvLatency, rowReadLatency, commitLatency;
ITransactor::Stats stats; // totalled over the period
MeasureSinglePeriod(double delay, double duration)
: delay(delay), duration(duration), totalLatency(2000), grvLatency(2000), rowReadLatency(2000),
commitLatency(2000) {}
Future<Void> start() override {
startT = now();
return Void();
}
void addTransaction(ITransactor::Stats* st, double now) override {
if (!(now >= startT + delay && now < startT + delay + duration))
return;
totalLatency.addSample(st->totalLatency);
grvLatency.addSample(st->grvLatency);
rowReadLatency.addSample(st->rowReadLatency);
if (st->commitLatency > 0) {
commitLatency.addSample(st->commitLatency);
}
stats += *st;
}
void getMetrics(std::vector<PerfMetric>& m) override {
double measureDuration = duration;
m.emplace_back("Transactions/sec", stats.transactions / measureDuration, Averaged::False);
m.emplace_back("Retries/sec", stats.retries / measureDuration, Averaged::False);
m.emplace_back("Operations/sec", (stats.reads + stats.writes) / measureDuration, Averaged::False);
m.emplace_back("Read rows/sec", stats.reads / measureDuration, Averaged::False);
m.emplace_back("Write rows/sec", stats.writes / measureDuration, Averaged::False);
m.emplace_back("Mean Latency (ms)", 1000 * totalLatency.mean(), Averaged::True);
m.emplace_back("Median Latency (ms, averaged)", 1000 * totalLatency.median(), Averaged::True);
m.emplace_back("90% Latency (ms, averaged)", 1000 * totalLatency.percentile(0.90), Averaged::True);
m.emplace_back("98% Latency (ms, averaged)", 1000 * totalLatency.percentile(0.98), Averaged::True);
m.emplace_back("Mean Row Read Latency (ms)", 1000 * rowReadLatency.mean(), Averaged::True);
m.emplace_back("Median Row Read Latency (ms, averaged)", 1000 * rowReadLatency.median(), Averaged::True);
m.emplace_back("Mean GRV Latency (ms)", 1000 * grvLatency.mean(), Averaged::True);
m.emplace_back("Median GRV Latency (ms, averaged)", 1000 * grvLatency.median(), Averaged::True);
m.emplace_back("Mean Commit Latency (ms)", 1000 * commitLatency.mean(), Averaged::True);
m.emplace_back("Median Commit Latency (ms, averaged)", 1000 * commitLatency.median(), Averaged::True);
}
};
struct MeasurePeriodically : IMeasurer {
double period;
std::set<std::string> includeMetrics;
MeasureSinglePeriod msp, msp0;
std::vector<PerfMetric> accumulatedMetrics;
MeasurePeriodically(double period, std::set<std::string> includeMetrics)
: period(period), includeMetrics(includeMetrics), msp(0, period), msp0(0, period) {}
Future<Void> start() override {
msp.start();
return periodicActor(this);
}
void addTransaction(ITransactor::Stats* st, double now) override { msp.addTransaction(st, now); }
void getMetrics(std::vector<PerfMetric>& m) override {
m.insert(m.end(), accumulatedMetrics.begin(), accumulatedMetrics.end());
}
void nextPeriod(double t) {
// output stats
std::string prefix = format("T=%04.0fs:", t);
std::vector<PerfMetric> m;
msp.getMetrics(m);
for (auto i = m.begin(); i != m.end(); ++i)
if (includeMetrics.count(i->name())) {
accumulatedMetrics.push_back(i->withPrefix(prefix));
}
// reset stats
msp = msp0;
msp.start();
}
ACTOR static Future<Void> periodicActor(MeasurePeriodically* self) {
state double startT = now();
state double elapsed = 0;
loop {
elapsed += self->period;
wait(delayUntil(startT + elapsed));
self->nextPeriod(elapsed);
}
}
};
struct MeasureMulti : IMeasurer {
std::vector<Reference<IMeasurer>> ms;
Future<Void> start() override {
std::vector<Future<Void>> s;
for (auto m = ms.begin(); m != ms.end(); ++m)
s.push_back((*m)->start());
return waitForAll(s);
}
void addTransaction(ITransactor::Stats* stats, double now) override {
for (auto m = ms.begin(); m != ms.end(); ++m)
(*m)->addTransaction(stats, now);
}
void getMetrics(std::vector<PerfMetric>& metrics) override {
for (auto m = ms.begin(); m != ms.end(); ++m)
(*m)->getMetrics(metrics);
}
};
struct ThroughputWorkload : TestWorkload {
static constexpr auto NAME = "Throughput";
double targetLatency, testDuration, Pgain, Igain;
Reference<ITransactor> op;
Reference<IMeasurer> measurer;
int activeActors;
double totalLatencyIntegral, totalTransactionsIntegral, startT;
ThroughputWorkload(WorkloadContext const& wcx)
: TestWorkload(wcx), activeActors(0), totalLatencyIntegral(0), totalTransactionsIntegral(0) {
auto multi = makeReference<MeasureMulti>();
measurer = multi;
targetLatency = getOption(options, "targetLatency"_sr, 0.05);
int keyCount = getOption(options, "nodeCount"_sr, (uint64_t)100000);
int keyBytes = std::max(getOption(options, "keyBytes"_sr, 16), 16);
int maxValueBytes = getOption(options, "valueBytes"_sr, 100);
int minValueBytes = getOption(options, "minValueBytes"_sr, maxValueBytes);
double sweepDuration = getOption(options, "sweepDuration"_sr, 0);
double sweepDelay = getOption(options, "sweepDelay"_sr, 0);
auto AType = Reference<ITransactor>(new RWTransactor(getOption(options, "readsPerTransactionA"_sr, 10),
getOption(options, "writesPerTransactionA"_sr, 0),
keyCount,
keyBytes,
minValueBytes,
maxValueBytes));
auto BType = Reference<ITransactor>(new RWTransactor(getOption(options, "readsPerTransactionB"_sr, 5),
getOption(options, "writesPerTransactionB"_sr, 5),
keyCount,
keyBytes,
minValueBytes,
maxValueBytes));
if (sweepDuration > 0) {
op = Reference<ITransactor>(new SweepTransactor(sweepDuration, sweepDelay, AType, BType));
} else {
op = Reference<ITransactor>(new ABTransactor(getOption(options, "alpha"_sr, 0.1), AType, BType));
}
double measureDelay = getOption(options, "measureDelay"_sr, 50.0);
double measureDuration = getOption(options, "measureDuration"_sr, 10.0);
multi->ms.push_back(Reference<IMeasurer>(new MeasureSinglePeriod(measureDelay, measureDuration)));
double measurePeriod = getOption(options, "measurePeriod"_sr, 0.0);
std::vector<std::string> periodicMetrics =
getOption(options, "measurePeriodicMetrics"_sr, std::vector<std::string>());
if (measurePeriod) {
ASSERT(periodicMetrics.size() != 0);
multi->ms.push_back(Reference<IMeasurer>(new MeasurePeriodically(
measurePeriod, std::set<std::string>(periodicMetrics.begin(), periodicMetrics.end()))));
}
Pgain = getOption(options, "ProportionalGain"_sr, 0.1);
Igain = getOption(options, "IntegralGain"_sr, 0.005);
testDuration = measureDelay + measureDuration;
// testDuration = getOption( options, "testDuration"_sr, measureDelay + measureDuration );
}
Future<Void> setup(Database const& cx) override {
return Void(); // No setup for now - use a separate workload to do setup
}
Future<Void> start(Database const& cx) override {
startT = now();
PromiseStream<Future<Void>> add;
Future<Void> ac = actorCollection(add.getFuture(), &activeActors);
Future<Void> r = timeout(measurer->start() && ac, testDuration, Void());
ASSERT(!ac.isReady()); // ... because else the following line would create an unbreakable reference cycle
add.send(throughputActor(cx, this, add));
return r;
}
Future<bool> check(Database const& cx) override { return true; }
ACTOR static Future<Void> throughputActor(Database db, ThroughputWorkload* self, PromiseStream<Future<Void>> add) {
state double before = now();
state ITransactor::Stats stats;
wait(self->op->doTransaction(db, &stats));
state double after = now();
wait(delay(0.0));
stats.totalLatency = after - before;
self->measurer->addTransaction(&stats, after);
self->totalLatencyIntegral += after - before;
self->totalTransactionsIntegral += 1;
double error = after - before - self->targetLatency;
// Ideally ierror would be integral [avg. transaction latency - targetLatency] dt.
// Actually we calculate integral[ transaction latency - targetLatency ] dtransaction and change units.
double ierror = (self->totalLatencyIntegral - self->totalTransactionsIntegral * self->targetLatency) /
self->totalTransactionsIntegral * (after - self->startT);
double desiredSuccessors = 1 - (error * self->Pgain + ierror * self->Igain) / self->targetLatency;
// if (deterministicRandom()->random01() < .001) TraceEvent("ThroughputControl").detail("Error",
// error).detail("IError", ierror).detail("DesiredSuccessors", desiredSuccessors).detail("ActiveActors",
// self->activeActors);
desiredSuccessors = std::min(desiredSuccessors, 2.0);
// SOMEDAY: How can we prevent the number of actors on different clients from diverging?
int successors = deterministicRandom()->random01() + desiredSuccessors;
if (successors < 1 && self->activeActors <= 1)
successors = 1;
if (successors > 1 && self->activeActors >= 200000)
successors = 1;
for (int s = 0; s < successors; s++)
add.send(throughputActor(db, self, add));
return Void();
}
void getMetrics(std::vector<PerfMetric>& m) override { measurer->getMetrics(m); }
};
WorkloadFactory<ThroughputWorkload> ThroughputWorkloadFactory;