125 lines
4.6 KiB
C++
125 lines
4.6 KiB
C++
/*
|
|
* ReadAfterWrite.actor.cpp
|
|
*
|
|
* This source file is part of the FoundationDB open source project
|
|
*
|
|
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <vector>
|
|
|
|
#include "fdbclient/NativeAPI.actor.h"
|
|
#include "fdbserver/workloads/workloads.actor.h"
|
|
#include "flow/genericactors.actor.h"
|
|
#include "flow/actorcompiler.h" // This must be the last #include.
|
|
|
|
static constexpr int SAMPLE_SIZE = 10000;
|
|
|
|
// If the log->storage propagation delay is longer than 1 second, then it's likely that our read
|
|
// will see a `future_version` error from the storage server. We need to retry the read until
|
|
// a value is returned, or a different error is thrown.
|
|
ACTOR Future<double> latencyOfRead(Transaction* tr, Key k) {
|
|
state double start = timer();
|
|
loop {
|
|
try {
|
|
wait(success(tr->get(k)));
|
|
break;
|
|
} catch (Error& e) {
|
|
if (e.code() == error_code_future_version) {
|
|
continue;
|
|
}
|
|
throw;
|
|
}
|
|
}
|
|
return timer() - start;
|
|
}
|
|
|
|
// Measure the latency of a storage server making a committed value available for reading.
|
|
struct ReadAfterWriteWorkload : KVWorkload {
|
|
static constexpr auto NAME = "ReadAfterWrite";
|
|
|
|
double testDuration;
|
|
ContinuousSample<double> propagationLatency;
|
|
|
|
ReadAfterWriteWorkload(WorkloadContext const& wcx) : KVWorkload(wcx), propagationLatency(SAMPLE_SIZE) {
|
|
testDuration = getOption(options, "testDuration"_sr, 10.0);
|
|
}
|
|
|
|
Future<Void> setup(Database const& cx) override { return Void(); }
|
|
|
|
ACTOR static Future<Void> benchmark(Database cx, ReadAfterWriteWorkload* self) {
|
|
loop {
|
|
state Key key = self->getRandomKey();
|
|
state Transaction writeTr(cx);
|
|
state Transaction baselineReadTr(cx);
|
|
state Transaction afterWriteTr(cx);
|
|
|
|
try {
|
|
state Version readVersion = wait(writeTr.getReadVersion());
|
|
|
|
// We do a read in this writeTransaction only to enforce that `readVersion` is already on a storage
|
|
// server after we commit. Its existence or non-existence is irrelevant. We write back the exact same
|
|
// value (or clear the key, if empty) so that the database state is not mutated. This means this
|
|
// workload can be paired with any other workload, and it won't affect any results.
|
|
Optional<Value> value = wait(writeTr.get(key));
|
|
if (value.present()) {
|
|
writeTr.set(key, value.get());
|
|
} else {
|
|
writeTr.clear(key);
|
|
}
|
|
|
|
wait(writeTr.commit());
|
|
|
|
Version commitVersion = writeTr.getCommittedVersion();
|
|
|
|
baselineReadTr.setVersion(readVersion);
|
|
afterWriteTr.setVersion(commitVersion);
|
|
|
|
state double baselineLatency = 0;
|
|
state double afterWriteLatency = 0;
|
|
|
|
wait(store(baselineLatency, latencyOfRead(&baselineReadTr, key)) &&
|
|
store(afterWriteLatency, latencyOfRead(&afterWriteTr, key)));
|
|
|
|
// By reading the same key at two different versions, we should be able to measure the latency of the
|
|
// network, the storage server overhead, and the propagation delay, and then with our baseline read,
|
|
// subtract out the network and the storage server overhead, leaving only the propagation delay.
|
|
self->propagationLatency.addSample(std::max<double>(afterWriteLatency - baselineLatency, 0));
|
|
} catch (Error& e) {
|
|
wait(writeTr.onError(e));
|
|
}
|
|
}
|
|
}
|
|
|
|
Future<Void> start(Database const& cx) override { return _start(cx, this); }
|
|
ACTOR Future<Void> _start(Database cx, ReadAfterWriteWorkload* self) {
|
|
state Future<Void> lifetime = benchmark(cx, self);
|
|
wait(delay(self->testDuration));
|
|
return Void();
|
|
}
|
|
|
|
Future<bool> check(Database const& cx) override { return true; }
|
|
|
|
void getMetrics(std::vector<PerfMetric>& m) override {
|
|
m.emplace_back("Mean Latency (ms)", 1000 * propagationLatency.mean(), Averaged::True);
|
|
m.emplace_back("Median Latency (ms, averaged)", 1000 * propagationLatency.median(), Averaged::True);
|
|
m.emplace_back("90% Latency (ms, averaged)", 1000 * propagationLatency.percentile(0.90), Averaged::True);
|
|
m.emplace_back("99% Latency (ms, averaged)", 1000 * propagationLatency.percentile(0.99), Averaged::True);
|
|
m.emplace_back("Max Latency (ms, averaged)", 1000 * propagationLatency.max(), Averaged::True);
|
|
}
|
|
};
|
|
|
|
WorkloadFactory<ReadAfterWriteWorkload> ReadAfterWriteWorkloadFactory;
|