foundationdb/bindings/c/test/unit/unit_tests.cpp

2893 lines
89 KiB
C++

/*
* unit_tests.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Unit tests for the FoundationDB C API.
#include "fdb_c_options.g.h"
#define FDB_API_VERSION 720
#include <foundationdb/fdb_c.h>
#include <assert.h>
#include <string.h>
#include <condition_variable>
#include <iostream>
#include <map>
#include <mutex>
#include <optional>
#include <stdexcept>
#include <thread>
#include <tuple>
#include <vector>
#include <random>
#include <chrono>
#define DOCTEST_CONFIG_IMPLEMENT
#include "doctest.h"
#include "fdbclient/rapidjson/document.h"
#include "fdbclient/Tuple.h"
#include "flow/config.h"
#include "flow/DeterministicRandom.h"
#include "flow/IRandom.h"
#include "fdb_api.hpp"
void fdb_check(fdb_error_t e) {
if (e) {
std::cerr << fdb_get_error(e) << std::endl;
std::abort();
}
}
FDBDatabase* fdb_open_database(const char* clusterFile) {
FDBDatabase* db;
fdb_check(fdb_create_database(clusterFile, &db));
return db;
}
static FDBDatabase* db = nullptr;
static std::string prefix;
static std::string clusterFilePath = "";
std::string key(const std::string& key) {
return prefix + key;
}
// Blocks until the given future is ready, returning an error code if there was
// an issue.
fdb_error_t wait_future(fdb::Future& f) {
fdb_check(f.block_until_ready());
return f.get_error();
}
// Given a string s, returns the "lowest" string greater than any string that
// starts with s. Taken from
// https://github.com/apple/foundationdb/blob/e7d72f458c6a985fdfa677ae021f357d6f49945b/flow/flow.cpp#L223.
std::string strinc_str(const std::string& s) {
int index = -1;
for (index = s.size() - 1; index >= 0; --index) {
if ((uint8_t)s[index] != 255) {
break;
}
}
assert(index >= 0);
std::string r = s.substr(0, index + 1);
char* p = r.data();
p[r.size() - 1]++;
return r;
}
TEST_CASE("strinc_str") {
CHECK(strinc_str("a").compare("b") == 0);
CHECK(strinc_str("y").compare("z") == 0);
CHECK(strinc_str("!").compare("\"") == 0);
CHECK(strinc_str("*").compare("+") == 0);
CHECK(strinc_str("fdb").compare("fdc") == 0);
CHECK(strinc_str("foundation database 6").compare("foundation database 7") == 0);
char terminated[] = { 'a', 'b', '\xff' };
CHECK(strinc_str(std::string(terminated, 3)).compare("ac") == 0);
}
// Helper function to add `prefix` to all keys in the given map. Returns a new
// map.
std::map<std::string, std::string> create_data(std::map<std::string, std::string>&& map) {
std::map<std::string, std::string> out;
for (const auto& [key, val] : map) {
out[prefix + key] = val;
}
return out;
}
// Clears all data in the database, then inserts the given key value pairs.
void insert_data(FDBDatabase* db, const std::map<std::string, std::string>& data) {
fdb::Transaction tr(db);
auto end_key = strinc_str(prefix);
while (1) {
tr.clear_range(prefix, end_key);
for (const auto& [key, val] : data) {
tr.set(key, val);
}
fdb::EmptyFuture f1 = tr.commit();
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
break;
}
}
// Get the value associated with `key_name` from the database. Accepts a list
// of transaction options to apply (values for options not supported). Returns
// an optional which will be populated with the result if one was found.
std::optional<std::string> get_value(std::string_view key,
fdb_bool_t snapshot,
std::vector<FDBTransactionOption> options) {
fdb::Transaction tr(db);
while (1) {
for (auto& option : options) {
fdb_check(tr.set_option(option, nullptr, 0));
}
fdb::ValueFuture f1 = tr.get(key, snapshot);
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
int out_present;
char* val;
int vallen;
fdb_check(f1.get(&out_present, (const uint8_t**)&val, &vallen));
return out_present ? std::make_optional(std::string(val, vallen)) : std::nullopt;
}
}
struct GetRangeResult {
// List of key-value pairs in the range read.
std::vector<std::pair<std::string, std::string>> kvs;
// True if values remain in the key range requested.
bool more;
// Set to a non-zero value if an error occurred during the transaction.
fdb_error_t err;
};
struct GetMappedRangeResult {
std::vector<std::tuple<std::string, // key
std::string, // value
std::string, // begin
std::string, // end
std::vector<std::pair<std::string, std::string>>, // range results
fdb_bool_t>>
mkvs;
// True if values remain in the key range requested.
bool more;
// Set to a non-zero value if an error occurred during the transaction.
fdb_error_t err;
};
// Helper function to get a range of kv pairs. Returns a GetRangeResult struct
// containing the results of the range read. Caller is responsible for checking
// error on failure and retrying if necessary.
GetRangeResult get_range(fdb::Transaction& tr,
const uint8_t* begin_key_name,
int begin_key_name_length,
fdb_bool_t begin_or_equal,
int begin_offset,
const uint8_t* end_key_name,
int end_key_name_length,
fdb_bool_t end_or_equal,
int end_offset,
int limit,
int target_bytes,
FDBStreamingMode mode,
int iteration,
fdb_bool_t snapshot,
fdb_bool_t reverse) {
fdb::KeyValueArrayFuture f1 = tr.get_range(begin_key_name,
begin_key_name_length,
begin_or_equal,
begin_offset,
end_key_name,
end_key_name_length,
end_or_equal,
end_offset,
limit,
target_bytes,
mode,
iteration,
snapshot,
reverse);
fdb_error_t err = wait_future(f1);
if (err) {
return GetRangeResult{ {}, false, err };
}
const FDBKeyValue* out_kv;
int out_count;
fdb_bool_t out_more;
fdb_check(f1.get(&out_kv, &out_count, &out_more));
std::vector<std::pair<std::string, std::string>> results;
for (int i = 0; i < out_count; ++i) {
std::string key((const char*)out_kv[i].key, out_kv[i].key_length);
std::string value((const char*)out_kv[i].value, out_kv[i].value_length);
results.emplace_back(key, value);
}
return GetRangeResult{ results, out_more != 0, 0 };
}
static inline std::string extractString(FDBKey key) {
return std::string((const char*)key.key, key.key_length);
}
GetMappedRangeResult get_mapped_range(fdb::Transaction& tr,
const uint8_t* begin_key_name,
int begin_key_name_length,
fdb_bool_t begin_or_equal,
int begin_offset,
const uint8_t* end_key_name,
int end_key_name_length,
fdb_bool_t end_or_equal,
int end_offset,
const uint8_t* mapper_name,
int mapper_name_length,
int limit,
int target_bytes,
FDBStreamingMode mode,
int iteration,
int matchIndex,
fdb_bool_t snapshot,
fdb_bool_t reverse) {
fdb::MappedKeyValueArrayFuture f1 = tr.get_mapped_range(begin_key_name,
begin_key_name_length,
begin_or_equal,
begin_offset,
end_key_name,
end_key_name_length,
end_or_equal,
end_offset,
mapper_name,
mapper_name_length,
limit,
target_bytes,
mode,
iteration,
matchIndex,
snapshot,
reverse);
fdb_error_t err = wait_future(f1);
if (err) {
return GetMappedRangeResult{ {}, false, err };
}
const FDBMappedKeyValue* out_mkv;
int out_count;
fdb_bool_t out_more;
fdb_check(f1.get(&out_mkv, &out_count, &out_more));
GetMappedRangeResult result;
result.more = (out_more != 0);
result.err = 0;
// std::cout << "out_count:" << out_count << " out_more:" << out_more << " out_mkv:" << (void*)out_mkv <<
// std::endl;
for (int i = 0; i < out_count; ++i) {
FDBMappedKeyValue mkv = out_mkv[i];
auto key = extractString(mkv.key);
auto value = extractString(mkv.value);
auto begin = extractString(mkv.getRange.begin.key);
auto end = extractString(mkv.getRange.end.key);
bool boundaryAndExist = mkv.boundaryAndExist;
// std::cout << "key:" << key << " value:" << value << " begin:" << begin << " end:" << end << std::endl;
std::vector<std::pair<std::string, std::string>> range_results;
for (int i = 0; i < mkv.getRange.m_size; ++i) {
const auto& kv = mkv.getRange.data[i];
std::string k((const char*)kv.key, kv.key_length);
std::string v((const char*)kv.value, kv.value_length);
range_results.emplace_back(k, v);
// std::cout << "[" << i << "]" << k << " -> " << v << std::endl;
}
result.mkvs.emplace_back(key, value, begin, end, range_results, boundaryAndExist);
}
return result;
}
// Clears all data in the database.
void clear_data(FDBDatabase* db) {
insert_data(db, {});
}
struct FdbEvent {
void wait() {
std::unique_lock<std::mutex> l(mutex);
cv.wait(l, [this]() { return this->complete; });
}
void set() {
std::unique_lock<std::mutex> l(mutex);
complete = true;
cv.notify_all();
}
private:
std::mutex mutex;
std::condition_variable cv;
bool complete = false;
};
TEST_CASE("fdb_future_set_callback") {
fdb::Transaction tr(db);
while (1) {
fdb::ValueFuture f1 = tr.get("foo", /*snapshot*/ true);
struct Context {
FdbEvent event;
};
Context context;
fdb_check(f1.set_callback(
+[](FDBFuture*, void* param) {
auto* context = static_cast<Context*>(param);
context->event.set();
},
&context));
fdb_error_t err = wait_future(f1);
context.event.wait(); // Wait until callback is called
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
break;
}
}
TEST_CASE("fdb_future_cancel after future completion") {
fdb::Transaction tr(db);
while (1) {
fdb::ValueFuture f1 = tr.get("foo", false);
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
// Should have no effect
f1.cancel();
int out_present;
char* val;
int vallen;
fdb_check(f1.get(&out_present, (const uint8_t**)&val, &vallen));
break;
}
}
TEST_CASE("fdb_future_is_ready") {
fdb::Transaction tr(db);
while (1) {
fdb::ValueFuture f1 = tr.get("foo", false);
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
CHECK(f1.is_ready());
break;
}
}
TEST_CASE("fdb_future_release_memory") {
fdb::Transaction tr(db);
while (1) {
fdb::ValueFuture f1 = tr.get("foo", false);
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
// "After [fdb_future_release_memory] has been called the same number of
// times as fdb_future_get_*(), further calls to fdb_future_get_*() will
// return a future_released error".
int out_present;
char* val;
int vallen;
fdb_check(f1.get(&out_present, (const uint8_t**)&val, &vallen));
fdb_check(f1.get(&out_present, (const uint8_t**)&val, &vallen));
f1.release_memory();
fdb_check(f1.get(&out_present, (const uint8_t**)&val, &vallen));
f1.release_memory();
f1.release_memory();
err = f1.get(&out_present, (const uint8_t**)&val, &vallen);
CHECK(err == 1102); // future_released
break;
}
}
TEST_CASE("fdb_future_get_int64") {
fdb::Transaction tr(db);
while (1) {
fdb::Int64Future f1 = tr.get_read_version();
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
int64_t rv;
fdb_check(f1.get(&rv));
CHECK(rv > 0);
break;
}
}
TEST_CASE("fdb_future_get_key") {
insert_data(db, create_data({ { "a", "1" }, { "baz", "2" }, { "bar", "3" } }));
fdb::Transaction tr(db);
while (1) {
fdb::KeyFuture f1 = tr.get_key(FDB_KEYSEL_FIRST_GREATER_THAN((const uint8_t*)key("a").c_str(), key("a").size()),
/* snapshot */ false);
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
const uint8_t* key;
int keylen;
fdb_check(f1.get(&key, &keylen));
std::string dbKey((const char*)key, keylen);
CHECK(dbKey.compare(prefix + "bar") == 0);
break;
}
}
TEST_CASE("fdb_future_get_value") {
insert_data(db, create_data({ { "foo", "bar" } }));
fdb::Transaction tr(db);
while (1) {
fdb::ValueFuture f1 = tr.get(key("foo"), /* snapshot */ false);
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
int out_present;
char* val;
int vallen;
fdb_check(f1.get(&out_present, (const uint8_t**)&val, &vallen));
CHECK(out_present);
std::string dbValue(val, vallen);
CHECK(dbValue.compare("bar") == 0);
break;
}
}
TEST_CASE("fdb_future_get_string_array") {
insert_data(db, create_data({ { "foo", "bar" } }));
fdb::Transaction tr(db);
while (1) {
fdb::StringArrayFuture f1 = tr.get_addresses_for_key(key("foo"));
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
const char** strings;
int count;
fdb_check(f1.get(&strings, &count));
CHECK(count > 0);
for (int i = 0; i < count; ++i) {
CHECK(strlen(strings[i]) > 0);
}
break;
}
}
TEST_CASE("fdb_future_get_keyvalue_array") {
std::map<std::string, std::string> data = create_data({ { "a", "1" }, { "b", "2" }, { "c", "3" }, { "d", "4" } });
insert_data(db, data);
fdb::Transaction tr(db);
while (1) {
fdb::KeyValueArrayFuture f1 =
tr.get_range(FDB_KEYSEL_FIRST_GREATER_OR_EQUAL((const uint8_t*)key("a").c_str(), key("a").size()),
FDB_KEYSEL_LAST_LESS_OR_EQUAL((const uint8_t*)key("c").c_str(), key("c").size()) + 1,
/* limit */ 0,
/* target_bytes */ 0,
/* FDBStreamingMode */ FDB_STREAMING_MODE_WANT_ALL,
/* iteration */ 0,
/* snapshot */ false,
/* reverse */ 0);
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
FDBKeyValue const* out_kv;
int out_count;
int out_more;
fdb_check(f1.get(&out_kv, &out_count, &out_more));
CHECK(out_count > 0);
CHECK(out_count <= 3);
if (out_count < 3) {
CHECK(out_more);
}
for (int i = 0; i < out_count; ++i) {
FDBKeyValue kv = *out_kv++;
std::string key((const char*)kv.key, kv.key_length);
std::string value((const char*)kv.value, kv.value_length);
CHECK(data[key].compare(value) == 0);
}
break;
}
}
TEST_CASE("cannot read system key") {
fdb::Transaction tr(db);
fdb::ValueFuture f1 = tr.get("\xff/coordinators", /* snapshot */ false);
fdb_error_t err = wait_future(f1);
CHECK(err == 2004); // key_outside_legal_range
}
TEST_CASE("read system key") {
auto value = get_value("\xff/coordinators", /* snapshot */ false, { FDB_TR_OPTION_READ_SYSTEM_KEYS });
REQUIRE(value.has_value());
}
TEST_CASE("cannot write system key") {
fdb::Transaction tr(db);
tr.set("\xff\x02", "bar");
fdb::EmptyFuture f1 = tr.commit();
fdb_error_t err = wait_future(f1);
CHECK(err == 2004); // key_outside_legal_range
}
TEST_CASE("write system key") {
fdb::Transaction tr(db);
std::string syskey("\xff\x02");
while (1) {
fdb_check(tr.set_option(FDB_TR_OPTION_ACCESS_SYSTEM_KEYS, nullptr, 0));
tr.set(syskey, "bar");
fdb::EmptyFuture f1 = tr.commit();
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
break;
}
auto value = get_value(syskey, /* snapshot */ false, { FDB_TR_OPTION_READ_SYSTEM_KEYS });
REQUIRE(value.has_value());
CHECK(value->compare("bar") == 0);
}
TEST_CASE("fdb_transaction read_your_writes") {
fdb::Transaction tr(db);
clear_data(db);
while (1) {
tr.set("foo", "bar");
fdb::ValueFuture f1 = tr.get("foo", /*snapshot*/ false);
// Read before committing, should read the initial write.
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
int out_present;
char* val;
int vallen;
fdb_check(f1.get(&out_present, (const uint8_t**)&val, &vallen));
CHECK(out_present);
std::string value(val, vallen);
CHECK(value.compare("bar") == 0);
break;
}
}
TEST_CASE("fdb_transaction_set_option read_your_writes_disable") {
clear_data(db);
fdb::Transaction tr(db);
while (1) {
fdb_check(tr.set_option(FDB_TR_OPTION_READ_YOUR_WRITES_DISABLE, nullptr, 0));
tr.set("foo", "bar");
fdb::ValueFuture f1 = tr.get("foo", /*snapshot*/ false);
// Read before committing, shouldn't read the initial write because
// read_your_writes is disabled.
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
int out_present;
char* val;
int vallen;
fdb_check(f1.get(&out_present, (const uint8_t**)&val, &vallen));
CHECK(!out_present);
break;
}
}
TEST_CASE("fdb_transaction_set_option snapshot_read_your_writes_enable") {
clear_data(db);
fdb::Transaction tr(db);
while (1) {
// Enable read your writes for snapshot reads.
fdb_check(tr.set_option(FDB_TR_OPTION_SNAPSHOT_RYW_ENABLE, nullptr, 0));
tr.set("foo", "bar");
fdb::ValueFuture f1 = tr.get("foo", /*snapshot*/ true);
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
int out_present;
char* val;
int vallen;
fdb_check(f1.get(&out_present, (const uint8_t**)&val, &vallen));
CHECK(out_present);
std::string value(val, vallen);
CHECK(value.compare("bar") == 0);
break;
}
}
TEST_CASE("fdb_transaction_set_option snapshot_read_your_writes_disable") {
clear_data(db);
fdb::Transaction tr(db);
while (1) {
// Disable read your writes for snapshot reads.
fdb_check(tr.set_option(FDB_TR_OPTION_SNAPSHOT_RYW_DISABLE, nullptr, 0));
tr.set("foo", "bar");
fdb::ValueFuture f1 = tr.get("foo", /*snapshot*/ true);
fdb::ValueFuture f2 = tr.get("foo", /*snapshot*/ false);
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f3 = tr.on_error(err);
fdb_check(wait_future(f3));
continue;
}
int out_present;
char* val;
int vallen;
fdb_check(f1.get(&out_present, (const uint8_t**)&val, &vallen));
CHECK(!out_present);
// Non-snapshot reads should still read writes in the transaction.
err = wait_future(f2);
if (err) {
fdb::EmptyFuture f3 = tr.on_error(err);
fdb_check(wait_future(f3));
continue;
}
fdb_check(f2.get(&out_present, (const uint8_t**)&val, &vallen));
CHECK(out_present);
std::string value(val, vallen);
CHECK(value.compare("bar") == 0);
break;
}
}
TEST_CASE("fdb_transaction_set_option timeout") {
fdb::Transaction tr(db);
// Set smallest possible timeout, retry until a timeout occurs.
int64_t timeout = 1;
fdb_check(tr.set_option(FDB_TR_OPTION_TIMEOUT, (const uint8_t*)&timeout, sizeof(timeout)));
fdb_error_t err = 0;
while (!err) {
fdb::ValueFuture f1 = tr.get("foo", /* snapshot */ false);
err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
err = wait_future(f2);
}
}
CHECK(err == 1031); // transaction_timed_out
}
TEST_CASE("FDB_DB_OPTION_TRANSACTION_TIMEOUT") {
// Set smallest possible timeout, retry until a timeout occurs.
int64_t timeout = 1;
fdb_check(
fdb_database_set_option(db, FDB_DB_OPTION_TRANSACTION_TIMEOUT, (const uint8_t*)&timeout, sizeof(timeout)));
fdb::Transaction tr(db);
fdb_error_t err = 0;
while (!err) {
fdb::ValueFuture f1 = tr.get("foo", /* snapshot */ false);
err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
err = wait_future(f2);
}
}
CHECK(err == 1031); // transaction_timed_out
// Reset transaction timeout (disable timeout).
timeout = 0;
fdb_check(
fdb_database_set_option(db, FDB_DB_OPTION_TRANSACTION_TIMEOUT, (const uint8_t*)&timeout, sizeof(timeout)));
}
TEST_CASE("fdb_transaction_set_option size_limit too small") {
fdb::Transaction tr(db);
// Size limit must be at least 32 to be valid, so test a smaller size.
int64_t size_limit = 31;
fdb_check(tr.set_option(FDB_TR_OPTION_SIZE_LIMIT, (const uint8_t*)&size_limit, sizeof(size_limit)));
tr.set("foo", "bar");
fdb::EmptyFuture f1 = tr.commit();
CHECK(wait_future(f1) == 2006); // invalid_option_value
}
TEST_CASE("fdb_transaction_set_option size_limit too large") {
fdb::Transaction tr(db);
// Size limit must be less than or equal to 10,000,000.
int64_t size_limit = 10000001;
fdb_check(tr.set_option(FDB_TR_OPTION_SIZE_LIMIT, (const uint8_t*)&size_limit, sizeof(size_limit)));
tr.set("foo", "bar");
fdb::EmptyFuture f1 = tr.commit();
CHECK(wait_future(f1) == 2006); // invalid_option_value
}
TEST_CASE("fdb_transaction_set_option size_limit") {
fdb::Transaction tr(db);
int64_t size_limit = 32;
fdb_check(tr.set_option(FDB_TR_OPTION_SIZE_LIMIT, (const uint8_t*)&size_limit, sizeof(size_limit)));
tr.set("foo", "foundation database is amazing");
fdb::EmptyFuture f1 = tr.commit();
CHECK(wait_future(f1) == 2101); // transaction_too_large
}
// Setting the transaction size limit as a database option causes issues when
// outside the bounds of acceptable values. TODO: Needs investigating...
// TEST_CASE("FDB_DB_OPTION_TRANSACTION_SIZE_LIMIT too small") {
// // Size limit must be at least 32 to be valid, so test a smaller size.
// int64_t size_limit = 31;
// fdb_check(fdb_database_set_option(db, FDB_DB_OPTION_TRANSACTION_SIZE_LIMIT,
// (const uint8_t *)&size_limit,
// sizeof(size_limit)));
//
// fdb::Transaction tr(db);
// tr.set((const uint8_t *)"foo", 3, (const uint8_t *)"bar", 3);
// fdb::EmptyFuture f1 = tr.commit();
//
// CHECK(wait_future(f1) == 2006); // invalid_option_value
//
// // Set size limit back to default.
// size_limit = 10000000;
// fdb_check(fdb_database_set_option(db, FDB_DB_OPTION_TRANSACTION_SIZE_LIMIT,
// (const uint8_t *)&size_limit,
// sizeof(size_limit)));
// }
// TEST_CASE("FDB_DB_OPTION_TRANSACTION_SIZE_LIMIT too large") {
// // Size limit must be less than or equal to 10,000,000.
// int64_t size_limit = 10000001;
// fdb_check(fdb_database_set_option(db, FDB_DB_OPTION_TRANSACTION_SIZE_LIMIT,
// (const uint8_t *)&size_limit,
// sizeof(size_limit)));
//
// fdb::Transaction tr(db);
// tr.set((const uint8_t *)"foo", 3, (const uint8_t *)"bar", 3);
// fdb::EmptyFuture f1 = tr.commit();
//
// CHECK(wait_future(f1) == 2006); // invalid_option_value
//
// // Set size limit back to default.
// size_limit = 10000000;
// fdb_check(fdb_database_set_option(db, FDB_DB_OPTION_TRANSACTION_SIZE_LIMIT,
// (const uint8_t *)&size_limit,
// sizeof(size_limit)));
// }
TEST_CASE("FDB_DB_OPTION_TRANSACTION_SIZE_LIMIT") {
int64_t size_limit = 32;
fdb_check(fdb_database_set_option(
db, FDB_DB_OPTION_TRANSACTION_SIZE_LIMIT, (const uint8_t*)&size_limit, sizeof(size_limit)));
fdb::Transaction tr(db);
tr.set("foo", "foundation database is amazing");
fdb::EmptyFuture f1 = tr.commit();
CHECK(wait_future(f1) == 2101); // transaction_too_large
// Set size limit back to default.
size_limit = 10000000;
fdb_check(fdb_database_set_option(
db, FDB_DB_OPTION_TRANSACTION_SIZE_LIMIT, (const uint8_t*)&size_limit, sizeof(size_limit)));
}
TEST_CASE("fdb_transaction_set_read_version old_version") {
fdb::Transaction tr(db);
tr.set_read_version(1);
fdb::ValueFuture f1 = tr.get("foo", /*snapshot*/ true);
fdb_error_t err = wait_future(f1);
CHECK(err == 1007); // transaction_too_old
}
TEST_CASE("fdb_transaction_set_read_version future_version") {
fdb::Transaction tr(db);
tr.set_read_version(1UL << 62);
fdb::ValueFuture f1 = tr.get("foo", /*snapshot*/ true);
fdb_error_t err = wait_future(f1);
CHECK(err == 1009); // future_version
}
const std::string EMPTY = Tuple().pack().toString();
const KeyRef RECORD = "RECORD"_sr;
const KeyRef INDEX = "INDEX"_sr;
static Key primaryKey(const int i) {
return Key(format("primary-key-of-record-%08d", i));
}
static Key indexKey(const int i) {
return Key(format("index-key-of-record-%08d", i));
}
static Value dataOfRecord(const int i) {
return Value(format("data-of-record-%08d", i));
}
static std::string indexEntryKey(const int i) {
return Tuple().append(StringRef(prefix)).append(INDEX).append(indexKey(i)).append(primaryKey(i)).pack().toString();
}
static std::string recordKey(const int i, const int split) {
return Tuple().append(prefix).append(RECORD).append(primaryKey(i)).append(split).pack().toString();
}
static std::string recordValue(const int i, const int split) {
return Tuple().append(dataOfRecord(i)).append(split).pack().toString();
}
const static int SPLIT_SIZE = 3;
std::map<std::string, std::string> fillInRecords(int n) {
// Note: The user requested `prefix` should be added as the first element of the tuple that forms the key, rather
// than the prefix of the key. So we don't use key() or create_data() in this test.
std::map<std::string, std::string> data;
for (int i = 0; i < n; i++) {
data[indexEntryKey(i)] = EMPTY;
for (int split = 0; split < SPLIT_SIZE; split++) {
data[recordKey(i, split)] = recordValue(i, split);
}
}
insert_data(db, data);
return data;
}
GetMappedRangeResult getMappedIndexEntries(int beginId,
int endId,
fdb::Transaction& tr,
std::string mapper,
int matchIndex) {
std::string indexEntryKeyBegin = indexEntryKey(beginId);
std::string indexEntryKeyEnd = indexEntryKey(endId);
return get_mapped_range(
tr,
FDB_KEYSEL_FIRST_GREATER_OR_EQUAL((const uint8_t*)indexEntryKeyBegin.c_str(), indexEntryKeyBegin.size()),
FDB_KEYSEL_FIRST_GREATER_OR_EQUAL((const uint8_t*)indexEntryKeyEnd.c_str(), indexEntryKeyEnd.size()),
(const uint8_t*)mapper.c_str(),
mapper.size(),
/* limit */ 0,
/* target_bytes */ 0,
/* FDBStreamingMode */ FDB_STREAMING_MODE_WANT_ALL,
/* iteration */ 0,
/* matchIndex */ matchIndex,
/* snapshot */ false,
/* reverse */ 0);
}
GetMappedRangeResult getMappedIndexEntries(int beginId,
int endId,
fdb::Transaction& tr,
int matchIndex,
bool allMissing) {
std::string mapper = Tuple()
.append(prefix)
.append(RECORD)
.append(allMissing ? "{K[2]}"_sr : "{K[3]}"_sr)
.append("{...}"_sr)
.pack()
.toString();
return getMappedIndexEntries(beginId, endId, tr, mapper, matchIndex);
}
TEST_CASE("fdb_transaction_get_mapped_range") {
const int TOTAL_RECORDS = 20;
fillInRecords(TOTAL_RECORDS);
fdb::Transaction tr(db);
// RYW should be enabled.
while (1) {
int beginId = 1;
int endId = 19;
const double r = deterministicRandom()->random01();
int matchIndex = MATCH_INDEX_ALL;
if (r < 0.25) {
matchIndex = MATCH_INDEX_NONE;
} else if (r < 0.5) {
matchIndex = MATCH_INDEX_MATCHED_ONLY;
} else if (r < 0.75) {
matchIndex = MATCH_INDEX_UNMATCHED_ONLY;
}
auto result = getMappedIndexEntries(beginId, endId, tr, matchIndex, false);
if (result.err) {
fdb::EmptyFuture f1 = tr.on_error(result.err);
fdb_check(wait_future(f1));
continue;
}
int expectSize = endId - beginId;
CHECK(result.mkvs.size() == expectSize);
CHECK(!result.more);
int id = beginId;
bool boundary;
for (int i = 0; i < expectSize; i++, id++) {
boundary = i == 0 || i == expectSize - 1;
const auto& [key, value, begin, end, range_results, boundaryAndExist] = result.mkvs[i];
if (matchIndex == MATCH_INDEX_ALL || i == 0 || i == expectSize - 1) {
CHECK(indexEntryKey(id).compare(key) == 0);
} else if (matchIndex == MATCH_INDEX_MATCHED_ONLY) {
CHECK(indexEntryKey(id).compare(key) == 0);
} else if (matchIndex == MATCH_INDEX_UNMATCHED_ONLY) {
CHECK(EMPTY.compare(key) == 0);
} else {
CHECK(EMPTY.compare(key) == 0);
}
bool empty = range_results.empty();
CHECK(boundaryAndExist == (boundary && !empty));
CHECK(EMPTY.compare(value) == 0);
CHECK(range_results.size() == SPLIT_SIZE);
for (int split = 0; split < SPLIT_SIZE; split++) {
auto& [k, v] = range_results[split];
CHECK(recordKey(id, split).compare(k) == 0);
CHECK(recordValue(id, split).compare(v) == 0);
}
}
break;
}
}
TEST_CASE("fdb_transaction_get_mapped_range_missing_all_secondary") {
const int TOTAL_RECORDS = 20;
fillInRecords(TOTAL_RECORDS);
fdb::Transaction tr(db);
// RYW should be enabled.
while (1) {
int beginId = 1;
int endId = 19;
const double r = deterministicRandom()->random01();
int matchIndex = MATCH_INDEX_ALL;
if (r < 0.25) {
matchIndex = MATCH_INDEX_NONE;
} else if (r < 0.5) {
matchIndex = MATCH_INDEX_MATCHED_ONLY;
} else if (r < 0.75) {
matchIndex = MATCH_INDEX_UNMATCHED_ONLY;
}
auto result = getMappedIndexEntries(beginId, endId, tr, matchIndex, true);
if (result.err) {
fdb::EmptyFuture f1 = tr.on_error(result.err);
fdb_check(wait_future(f1));
continue;
}
int expectSize = endId - beginId;
CHECK(result.mkvs.size() == expectSize);
CHECK(!result.more);
int id = beginId;
bool boundary;
for (int i = 0; i < expectSize; i++, id++) {
boundary = i == 0 || i == expectSize - 1;
const auto& [key, value, begin, end, range_results, boundaryAndExist] = result.mkvs[i];
if (matchIndex == MATCH_INDEX_ALL || i == 0 || i == expectSize - 1) {
CHECK(indexEntryKey(id).compare(key) == 0);
} else if (matchIndex == MATCH_INDEX_MATCHED_ONLY) {
CHECK(EMPTY.compare(key) == 0);
} else if (matchIndex == MATCH_INDEX_UNMATCHED_ONLY) {
CHECK(indexEntryKey(id).compare(key) == 0);
} else {
CHECK(EMPTY.compare(key) == 0);
}
bool empty = range_results.empty();
CHECK(boundaryAndExist == (boundary && !empty));
CHECK(EMPTY.compare(value) == 0);
}
break;
}
}
TEST_CASE("fdb_transaction_get_mapped_range_restricted_to_serializable") {
std::string mapper = Tuple().append(prefix).append(RECORD).append("{K[3]}"_sr).pack().toString();
fdb::Transaction tr(db);
auto result = get_mapped_range(
tr,
FDB_KEYSEL_FIRST_GREATER_OR_EQUAL((const uint8_t*)indexEntryKey(0).c_str(), indexEntryKey(0).size()),
FDB_KEYSEL_FIRST_GREATER_THAN((const uint8_t*)indexEntryKey(1).c_str(), indexEntryKey(1).size()),
(const uint8_t*)mapper.c_str(),
mapper.size(),
/* limit */ 0,
/* target_bytes */ 0,
/* FDBStreamingMode */ FDB_STREAMING_MODE_WANT_ALL,
/* iteration */ 0,
/* matchIndex */ MATCH_INDEX_ALL,
/* snapshot */ true, // Set snapshot to true
/* reverse */ 0);
ASSERT(result.err == error_code_unsupported_operation);
}
TEST_CASE("fdb_transaction_get_mapped_range_restricted_to_ryw_enable") {
std::string mapper = Tuple().append(prefix).append(RECORD).append("{K[3]}"_sr).pack().toString();
fdb::Transaction tr(db);
fdb_check(tr.set_option(FDB_TR_OPTION_READ_YOUR_WRITES_DISABLE, nullptr, 0)); // Not disable RYW
auto result = get_mapped_range(
tr,
FDB_KEYSEL_FIRST_GREATER_OR_EQUAL((const uint8_t*)indexEntryKey(0).c_str(), indexEntryKey(0).size()),
FDB_KEYSEL_FIRST_GREATER_THAN((const uint8_t*)indexEntryKey(1).c_str(), indexEntryKey(1).size()),
(const uint8_t*)mapper.c_str(),
mapper.size(),
/* limit */ 0,
/* target_bytes */ 0,
/* FDBStreamingMode */ FDB_STREAMING_MODE_WANT_ALL,
/* iteration */ 0,
/* matchIndex */ MATCH_INDEX_ALL,
/* snapshot */ false,
/* reverse */ 0);
ASSERT(result.err == error_code_unsupported_operation);
}
void assertNotTuple(std::string str) {
try {
Tuple::unpack(str);
} catch (Error& e) {
return;
}
UNREACHABLE();
}
TEST_CASE("fdb_transaction_get_mapped_range_fail_on_mapper_not_tuple") {
// A string that cannot be parsed as tuple.
// "\x15:\x152\x15E\x15\x09\x15\x02\x02MySimpleRecord$repeater-version\x00\x15\x013\x00\x00\x00\x00\x1aU\x90\xba\x00\x00\x00\x02\x15\x04"
std::string mapper = {
'\x15', ':', '\x15', '2', '\x15', 'E', '\x15', '\t', '\x15', '\x02', '\x02', 'M',
'y', 'S', 'i', 'm', 'p', 'l', 'e', 'R', 'e', 'c', 'o', 'r',
'd', '$', 'r', 'e', 'p', 'e', 'a', 't', 'e', 'r', '-', 'v',
'e', 'r', 's', 'i', 'o', 'n', '\x00', '\x15', '\x01', '3', '\x00', '\x00',
'\x00', '\x00', '\x1a', 'U', '\x90', '\xba', '\x00', '\x00', '\x00', '\x02', '\x15', '\x04'
};
assertNotTuple(mapper);
fdb::Transaction tr(db);
auto result = getMappedIndexEntries(1, 3, tr, mapper, MATCH_INDEX_ALL);
ASSERT(result.err == error_code_mapper_not_tuple);
}
TEST_CASE("fdb_transaction_get_range reverse") {
std::map<std::string, std::string> data = create_data({ { "a", "1" }, { "b", "2" }, { "c", "3" }, { "d", "4" } });
insert_data(db, data);
fdb::Transaction tr(db);
while (1) {
auto result = get_range(tr,
FDB_KEYSEL_FIRST_GREATER_OR_EQUAL((const uint8_t*)key("a").c_str(), key("a").size()),
FDB_KEYSEL_LAST_LESS_OR_EQUAL((const uint8_t*)key("d").c_str(), key("d").size()) + 1,
/* limit */ 0,
/* target_bytes */ 0,
/* FDBStreamingMode */ FDB_STREAMING_MODE_WANT_ALL,
/* iteration */ 0,
/* snapshot */ false,
/* reverse */ 1);
if (result.err) {
fdb::EmptyFuture f1 = tr.on_error(result.err);
fdb_check(wait_future(f1));
continue;
}
CHECK(result.kvs.size() > 0);
CHECK(result.kvs.size() <= 4);
if (result.kvs.size() < 4) {
CHECK(result.more);
}
// Read data in reverse order.
auto it = data.rbegin();
for (auto results_it = result.kvs.begin(); results_it != result.kvs.end(); ++results_it, ++it) {
std::string data_key = it->first;
std::string data_value = it->second;
auto [key, value] = *results_it;
CHECK(data_key.compare(key) == 0);
CHECK(data[data_key].compare(value) == 0);
}
break;
}
}
TEST_CASE("fdb_transaction_get_range limit") {
std::map<std::string, std::string> data = create_data({ { "a", "1" }, { "b", "2" }, { "c", "3" }, { "d", "4" } });
insert_data(db, data);
fdb::Transaction tr(db);
while (1) {
auto result = get_range(tr,
FDB_KEYSEL_FIRST_GREATER_OR_EQUAL((const uint8_t*)key("a").c_str(), key("a").size()),
FDB_KEYSEL_LAST_LESS_OR_EQUAL((const uint8_t*)key("d").c_str(), key("d").size()) + 1,
/* limit */ 2,
/* target_bytes */ 0,
/* FDBStreamingMode */ FDB_STREAMING_MODE_WANT_ALL,
/* iteration */ 0,
/* snapshot */ false,
/* reverse */ 0);
if (result.err) {
fdb::EmptyFuture f1 = tr.on_error(result.err);
fdb_check(wait_future(f1));
continue;
}
CHECK(result.kvs.size() > 0);
CHECK(result.kvs.size() <= 2);
if (result.kvs.size() < 4) {
CHECK(result.more);
}
for (const auto& [key, value] : result.kvs) {
CHECK(data[key].compare(value) == 0);
}
break;
}
}
TEST_CASE("fdb_transaction_get_range FDB_STREAMING_MODE_EXACT") {
std::map<std::string, std::string> data = create_data({ { "a", "1" }, { "b", "2" }, { "c", "3" }, { "d", "4" } });
insert_data(db, data);
fdb::Transaction tr(db);
while (1) {
auto result = get_range(tr,
FDB_KEYSEL_FIRST_GREATER_OR_EQUAL((const uint8_t*)key("a").c_str(), key("a").size()),
FDB_KEYSEL_LAST_LESS_OR_EQUAL((const uint8_t*)key("d").c_str(), key("d").size()) + 1,
/* limit */ 3,
/* target_bytes */ 0,
/* FDBStreamingMode */ FDB_STREAMING_MODE_EXACT,
/* iteration */ 0,
/* snapshot */ false,
/* reverse */ 0);
if (result.err) {
fdb::EmptyFuture f1 = tr.on_error(result.err);
fdb_check(wait_future(f1));
continue;
}
CHECK(result.kvs.size() == 3);
CHECK(result.more);
for (const auto& [key, value] : result.kvs) {
CHECK(data[key].compare(value) == 0);
}
break;
}
}
TEST_CASE("fdb_transaction_clear") {
insert_data(db, create_data({ { "foo", "bar" } }));
fdb::Transaction tr(db);
while (1) {
tr.clear(key("foo"));
fdb::EmptyFuture f1 = tr.commit();
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
break;
}
auto value = get_value(key("foo"), /* snapshot */ false, {});
REQUIRE(!value.has_value());
}
TEST_CASE("fdb_transaction_atomic_op FDB_MUTATION_TYPE_ADD") {
insert_data(db, create_data({ { "foo", "\x00" } }));
fdb::Transaction tr(db);
int8_t param = 1;
int potentialCommitCount = 0;
while (1) {
tr.atomic_op(key("foo"), (const uint8_t*)&param, sizeof(param), FDB_MUTATION_TYPE_ADD);
if (potentialCommitCount + 1 == 256) {
// Trying to commit again might overflow the one unsigned byte we're looking at
break;
}
++potentialCommitCount;
fdb::EmptyFuture f1 = tr.commit();
fdb_error_t err = wait_future(f1);
if (err) {
if (fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE_NOT_COMMITTED, err)) {
--potentialCommitCount;
}
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
break;
}
auto value = get_value(key("foo"), /* snapshot */ false, {});
REQUIRE(value.has_value());
CHECK(value->size() == 1);
CHECK(uint8_t(value->data()[0]) > 0);
CHECK(uint8_t(value->data()[0]) <= potentialCommitCount);
}
TEST_CASE("fdb_transaction_atomic_op FDB_MUTATION_TYPE_BIT_AND") {
// Test bitwise and on values of same length:
// db key = foo
// db value = 'a' == 97
// param = 'b' == 98
//
// 'a' == 97 == 0b01100001
// & 'b' == 98 == 0b01100010
// -----------------------
// 0b01100000 == 96 == '`'
//
// Test bitwise and on extended database value:
// db key = bar
// db value = 'c' == 99
// param = "ad"
//
// 'c' == 99 == 0b0110001100000000 (zero extended on right to match length of param)
// & "ad" == 0b0110000101100100
// -------------------------------
// 0b0110000100000000 == 'a' followed by null (0)
//
// Test bitwise and on truncated database value:
// db key = baz
// db value = "abc"
// param = 'e' == 101
//
// "abc" -> 0b01100001 (truncated to "a" to match length of param)
// & 'e' == 101 0b01100101
// ---------------------
// 0b01100001 == 97 == 'a'
//
insert_data(db, create_data({ { "foo", "a" }, { "bar", "c" }, { "baz", "abc" } }));
fdb::Transaction tr(db);
char param[] = { 'a', 'd' };
while (1) {
tr.atomic_op(key("foo"), (const uint8_t*)"b", 1, FDB_MUTATION_TYPE_BIT_AND);
tr.atomic_op(key("bar"), (const uint8_t*)param, 2, FDB_MUTATION_TYPE_BIT_AND);
tr.atomic_op(key("baz"), (const uint8_t*)"e", 1, FDB_MUTATION_TYPE_BIT_AND);
fdb::EmptyFuture f1 = tr.commit();
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
break;
}
auto value = get_value(key("foo"), /* snapshot */ false, {});
REQUIRE(value.has_value());
CHECK(value->size() == 1);
CHECK(value->data()[0] == 96);
value = get_value(key("bar"), /* snapshot */ false, {});
REQUIRE(value.has_value());
CHECK(value->size() == 2);
CHECK(value->data()[0] == 97);
CHECK(value->data()[1] == 0);
value = get_value(key("baz"), /* snapshot */ false, {});
REQUIRE(value.has_value());
CHECK(value->size() == 1);
CHECK(value->data()[0] == 97);
}
TEST_CASE("fdb_transaction_atomic_op FDB_MUTATION_TYPE_BIT_OR") {
// Test bitwise or on values of same length:
// db key = foo
// db value = 'a' == 97
// param = 'b' == 98
//
// 'a' == 97 == 0b01100001
// | 'b' == 98 == 0b01100010
// -----------------------
// 0b01100011 == 99 == 'c'
//
// Test bitwise or on extended database value:
// db key = bar
// db value = 'b' == 98
// param = "ad"
//
// 'b' == 98 -> 0b0110001000000000 (zero extended on right to match length of param)
// | "ad" == 0b0110000101100100
// -------------------------------
// 0b0110001101100100 == "cd"
//
// Test bitwise or on truncated database value:
// db key = baz
// db value = "abc"
// param = 'd' == 100
//
// "abc" -> 0b01100001 (truncated to "a" to match length of param)
// | 'd' == 100 0b01100100
// ---------------------
// 0b01100101 == 101 == 'e'
//
insert_data(db, create_data({ { "foo", "a" }, { "bar", "b" }, { "baz", "abc" } }));
fdb::Transaction tr(db);
char param[] = { 'a', 'd' };
while (1) {
tr.atomic_op(key("foo"), (const uint8_t*)"b", 1, FDB_MUTATION_TYPE_BIT_OR);
tr.atomic_op(key("bar"), (const uint8_t*)param, 2, FDB_MUTATION_TYPE_BIT_OR);
tr.atomic_op(key("baz"), (const uint8_t*)"d", 1, FDB_MUTATION_TYPE_BIT_OR);
fdb::EmptyFuture f1 = tr.commit();
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
break;
}
auto value = get_value(key("foo"), /* snapshot */ false, {});
REQUIRE(value.has_value());
CHECK(value->size() == 1);
CHECK(value->data()[0] == 99);
value = get_value(key("bar"), /* snapshot */ false, {});
REQUIRE(value.has_value());
CHECK(value->compare("cd") == 0);
value = get_value(key("baz"), /* snapshot */ false, {});
REQUIRE(value.has_value());
CHECK(value->size() == 1);
CHECK(value->data()[0] == 101);
}
TEST_CASE("fdb_transaction_atomic_op FDB_MUTATION_TYPE_BIT_XOR") {
// Test bitwise xor on values of same length:
// db key = foo
// db value = 'a' == 97
// param = 'b' == 98
//
// 'a' == 97 == 0b01100001
// ^ 'b' == 98 == 0b01100010
// -----------------------
// 0b00000011 == 0x3
//
// Test bitwise xor on extended database value:
// db key = bar
// db value = 'b' == 98
// param = "ad"
//
// 'b' == 98 -> 0b0110001000000000 (zero extended on right to match length of param)
// ^ "ad" == 0b0110000101100100
// -------------------------------
// 0b0000001101100100 == 0x3 followed by 0x64
//
// Test bitwise xor on truncated database value:
// db key = baz
// db value = "abc"
// param = 'd' == 100
//
// "abc" -> 0b01100001 (truncated to "a" to match length of param)
// ^ 'd' == 100 0b01100100
// ---------------------
// 0b00000101 == 0x5
//
insert_data(db, create_data({ { "foo", "a" }, { "bar", "b" }, { "baz", "abc" } }));
fdb::Transaction tr(db);
char param[] = { 'a', 'd' };
int potentialCommitCount = 0;
while (1) {
tr.atomic_op(key("foo"), (const uint8_t*)"b", 1, FDB_MUTATION_TYPE_BIT_XOR);
tr.atomic_op(key("bar"), (const uint8_t*)param, 2, FDB_MUTATION_TYPE_BIT_XOR);
tr.atomic_op(key("baz"), (const uint8_t*)"d", 1, FDB_MUTATION_TYPE_BIT_XOR);
++potentialCommitCount;
fdb::EmptyFuture f1 = tr.commit();
fdb_error_t err = wait_future(f1);
if (err) {
if (fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE_NOT_COMMITTED, err)) {
--potentialCommitCount;
}
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
break;
}
if (potentialCommitCount != 1) {
MESSAGE("Transaction may not have committed exactly once. Suppressing assertions");
return;
}
auto value = get_value(key("foo"), /* snapshot */ false, {});
REQUIRE(value.has_value());
CHECK(value->size() == 1);
CHECK(value->data()[0] == 0x3);
value = get_value(key("bar"), /* snapshot */ false, {});
REQUIRE(value.has_value());
CHECK(value->size() == 2);
CHECK(value->data()[0] == 0x3);
CHECK(value->data()[1] == 0x64);
value = get_value(key("baz"), /* snapshot */ false, {});
REQUIRE(value.has_value());
CHECK(value->size() == 1);
CHECK(value->data()[0] == 0x5);
}
TEST_CASE("fdb_transaction_atomic_op FDB_MUTATION_TYPE_COMPARE_AND_CLEAR") {
// Atomically remove a key-value pair from the database based on a value
// comparison.
insert_data(db, create_data({ { "foo", "bar" }, { "fdb", "foundation" } }));
fdb::Transaction tr(db);
while (1) {
tr.atomic_op(key("foo"), (const uint8_t*)"bar", 3, FDB_MUTATION_TYPE_COMPARE_AND_CLEAR);
fdb::EmptyFuture f1 = tr.commit();
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
break;
}
auto value = get_value(key("foo"), /* snapshot */ false, {});
CHECK(!value.has_value());
value = get_value(key("fdb"), /* snapshot */ false, {});
REQUIRE(value.has_value());
CHECK(value->compare("foundation") == 0);
}
TEST_CASE("fdb_transaction_atomic_op FDB_MUTATION_TYPE_APPEND_IF_FITS") {
// Atomically append a value to an existing key-value pair, or insert the
// key-value pair if an existing key-value pair doesn't exist.
insert_data(db, create_data({ { "foo", "f" } }));
fdb::Transaction tr(db);
int potentialCommitCount = 0;
while (1) {
tr.atomic_op(key("foo"), (const uint8_t*)"db", 2, FDB_MUTATION_TYPE_APPEND_IF_FITS);
tr.atomic_op(key("bar"), (const uint8_t*)"foundation", 10, FDB_MUTATION_TYPE_APPEND_IF_FITS);
++potentialCommitCount;
fdb::EmptyFuture f1 = tr.commit();
fdb_error_t err = wait_future(f1);
if (err) {
if (fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE_NOT_COMMITTED, err)) {
--potentialCommitCount;
}
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
break;
}
auto value_foo = get_value(key("foo"), /* snapshot */ false, {});
REQUIRE(value_foo.has_value());
auto value_bar = get_value(key("bar"), /* snapshot */ false, {});
REQUIRE(value_bar.has_value());
if (potentialCommitCount != 1) {
MESSAGE("Transaction may not have committed exactly once. Suppressing assertions");
} else {
CHECK(value_foo.value() == "fdb");
CHECK(value_bar.value() == "foundation");
}
}
TEST_CASE("fdb_transaction_atomic_op FDB_MUTATION_TYPE_MAX") {
insert_data(db, create_data({ { "foo", "a" }, { "bar", "b" }, { "baz", "cba" } }));
fdb::Transaction tr(db);
while (1) {
tr.atomic_op(key("foo"), (const uint8_t*)"b", 1, FDB_MUTATION_TYPE_MAX);
// Value in database will be extended with zeros to match length of param.
tr.atomic_op(key("bar"), (const uint8_t*)"aa", 2, FDB_MUTATION_TYPE_MAX);
// Value in database will be truncated to match length of param.
tr.atomic_op(key("baz"), (const uint8_t*)"b", 1, FDB_MUTATION_TYPE_MAX);
fdb::EmptyFuture f1 = tr.commit();
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
break;
}
auto value = get_value(key("foo"), /* snapshot */ false, {});
REQUIRE(value.has_value());
CHECK(value->compare("b") == 0);
value = get_value(key("bar"), /* snapshot */ false, {});
REQUIRE(value.has_value());
CHECK(value->compare("aa") == 0);
value = get_value(key("baz"), /* snapshot */ false, {});
REQUIRE(value.has_value());
CHECK(value->compare("c") == 0);
}
TEST_CASE("fdb_transaction_atomic_op FDB_MUTATION_TYPE_MIN") {
insert_data(db, create_data({ { "foo", "a" }, { "bar", "b" }, { "baz", "cba" } }));
fdb::Transaction tr(db);
while (1) {
tr.atomic_op(key("foo"), (const uint8_t*)"b", 1, FDB_MUTATION_TYPE_MIN);
// Value in database will be extended with zeros to match length of param.
tr.atomic_op(key("bar"), (const uint8_t*)"aa", 2, FDB_MUTATION_TYPE_MIN);
// Value in database will be truncated to match length of param.
tr.atomic_op(key("baz"), (const uint8_t*)"b", 1, FDB_MUTATION_TYPE_MIN);
fdb::EmptyFuture f1 = tr.commit();
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
break;
}
auto value = get_value(key("foo"), /* snapshot */ false, {});
REQUIRE(value.has_value());
CHECK(value->compare("a") == 0);
value = get_value(key("bar"), /* snapshot */ false, {});
REQUIRE(value.has_value());
CHECK(value->size() == 2);
CHECK(value->data()[0] == 'b');
CHECK(value->data()[1] == 0);
value = get_value(key("baz"), /* snapshot */ false, {});
REQUIRE(value.has_value());
CHECK(value->compare("b") == 0);
}
TEST_CASE("fdb_transaction_atomic_op FDB_MUTATION_TYPE_BYTE_MAX") {
// The difference with FDB_MUTATION_TYPE_MAX is that strings will not be
// extended/truncated so lengths match.
insert_data(db, create_data({ { "foo", "a" }, { "bar", "b" }, { "baz", "cba" } }));
fdb::Transaction tr(db);
while (1) {
tr.atomic_op(key("foo"), (const uint8_t*)"b", 1, FDB_MUTATION_TYPE_BYTE_MAX);
tr.atomic_op(key("bar"), (const uint8_t*)"cc", 2, FDB_MUTATION_TYPE_BYTE_MAX);
tr.atomic_op(key("baz"), (const uint8_t*)"b", 1, FDB_MUTATION_TYPE_BYTE_MAX);
fdb::EmptyFuture f1 = tr.commit();
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
break;
}
auto value = get_value(key("foo"), /* snapshot */ false, {});
REQUIRE(value.has_value());
CHECK(value->compare("b") == 0);
value = get_value(key("bar"), /* snapshot */ false, {});
REQUIRE(value.has_value());
CHECK(value->compare("cc") == 0);
value = get_value(key("baz"), /* snapshot */ false, {});
REQUIRE(value.has_value());
CHECK(value->compare("cba") == 0);
}
TEST_CASE("fdb_transaction_atomic_op FDB_MUTATION_TYPE_BYTE_MIN") {
// The difference with FDB_MUTATION_TYPE_MIN is that strings will not be
// extended/truncated so lengths match.
insert_data(db, create_data({ { "foo", "a" }, { "bar", "b" }, { "baz", "abc" } }));
fdb::Transaction tr(db);
while (1) {
tr.atomic_op(key("foo"), (const uint8_t*)"b", 1, FDB_MUTATION_TYPE_BYTE_MIN);
tr.atomic_op(key("bar"), (const uint8_t*)"aa", 2, FDB_MUTATION_TYPE_BYTE_MIN);
tr.atomic_op(key("baz"), (const uint8_t*)"b", 1, FDB_MUTATION_TYPE_BYTE_MIN);
fdb::EmptyFuture f1 = tr.commit();
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
break;
}
auto value = get_value(key("foo"), /* snapshot */ false, {});
REQUIRE(value.has_value());
CHECK(value->compare("a") == 0);
value = get_value(key("bar"), /* snapshot */ false, {});
REQUIRE(value.has_value());
CHECK(value->compare("aa") == 0);
value = get_value(key("baz"), /* snapshot */ false, {});
REQUIRE(value.has_value());
CHECK(value->compare("abc") == 0);
}
TEST_CASE("fdb_transaction_atomic_op FDB_MUTATION_TYPE_SET_VERSIONSTAMPED_KEY") {
int offset = prefix.size() + 3;
const char* p = reinterpret_cast<const char*>(&offset);
char keybuf[] = {
'f', 'o', 'o', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', p[0], p[1], p[2], p[3]
};
std::string key = prefix + std::string(keybuf, 17);
std::string versionstamp("");
fdb::Transaction tr(db);
while (1) {
tr.atomic_op(key, (const uint8_t*)"bar", 3, FDB_MUTATION_TYPE_SET_VERSIONSTAMPED_KEY);
fdb::KeyFuture f1 = tr.get_versionstamp();
fdb::EmptyFuture f2 = tr.commit();
fdb_error_t err = wait_future(f2);
if (err) {
fdb::EmptyFuture f3 = tr.on_error(err);
fdb_check(wait_future(f3));
continue;
}
fdb_check(wait_future(f1));
const uint8_t* key;
int keylen;
fdb_check(f1.get(&key, &keylen));
versionstamp = std::string((const char*)key, keylen);
break;
}
REQUIRE(versionstamp.size() > 0);
std::string dbKey(prefix + "foo" + versionstamp);
auto value = get_value(dbKey, /* snapshot */ false, {});
REQUIRE(value.has_value());
CHECK(value->compare("bar") == 0);
}
TEST_CASE("fdb_transaction_atomic_op FDB_MUTATION_TYPE_SET_VERSIONSTAMPED_VALUE") {
// Don't care about prefixing value like we did the key.
char valbuf[] = { 'b', 'a', 'r', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', 3, 0, 0, 0 };
std::string versionstamp("");
fdb::Transaction tr(db);
while (1) {
tr.atomic_op(key("foo"), (const uint8_t*)valbuf, 17, FDB_MUTATION_TYPE_SET_VERSIONSTAMPED_VALUE);
fdb::KeyFuture f1 = tr.get_versionstamp();
fdb::EmptyFuture f2 = tr.commit();
fdb_error_t err = wait_future(f2);
if (err) {
fdb::EmptyFuture f3 = tr.on_error(err);
fdb_check(wait_future(f3));
continue;
}
fdb_check(wait_future(f1));
const uint8_t* key;
int keylen;
fdb_check(f1.get(&key, &keylen));
versionstamp = std::string((const char*)key, keylen);
break;
}
REQUIRE(versionstamp.size() > 0);
auto value = get_value(key("foo"), /* snapshot */ false, {});
REQUIRE(value.has_value());
CHECK(value->compare("bar" + versionstamp) == 0);
}
TEST_CASE("fdb_transaction_atomic_op FDB_MUTATION_TYPE_SET_VERSIONSTAMPED_KEY invalid index") {
// Only 9 bytes available starting at index 4 (ten bytes needed), should
// return an error.
char keybuf[] = { 'f', 'o', 'o', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', 4, 0, 0, 0 };
fdb::Transaction tr(db);
while (1) {
tr.atomic_op(keybuf, (const uint8_t*)"bar", 3, FDB_MUTATION_TYPE_SET_VERSIONSTAMPED_KEY);
fdb::EmptyFuture f1 = tr.commit();
CHECK(wait_future(f1) != 0); // type of error not specified
break;
}
}
TEST_CASE("fdb_transaction_get_committed_version read_only") {
// Read-only transaction should have a committed version of -1.
fdb::Transaction tr(db);
while (1) {
fdb::ValueFuture f1 = tr.get("foo", /*snapshot*/ false);
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
int64_t out_version;
fdb_check(tr.get_committed_version(&out_version));
CHECK(out_version == -1);
break;
}
}
TEST_CASE("fdb_transaction_get_committed_version") {
fdb::Transaction tr(db);
while (1) {
tr.set(key("foo"), "bar");
fdb::EmptyFuture f1 = tr.commit();
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
int64_t out_version;
fdb_check(tr.get_committed_version(&out_version));
CHECK(out_version >= 0);
break;
}
}
TEST_CASE("fdb_transaction_get_approximate_size") {
fdb::Transaction tr(db);
while (1) {
tr.set(key("foo"), "bar");
fdb::Int64Future f1 = tr.get_approximate_size();
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
int64_t size;
fdb_check(f1.get(&size));
CHECK(size >= 3);
break;
}
}
TEST_CASE("fdb_database_get_server_protocol") {
// We don't really have any expectations other than "don't crash" here
FDBFuture* protocolFuture = fdb_database_get_server_protocol(db, 0);
uint64_t out;
fdb_check(fdb_future_block_until_ready(protocolFuture));
fdb_check(fdb_future_get_uint64(protocolFuture, &out));
fdb_future_destroy(protocolFuture);
// Passing in an expected version that's different than the cluster version
protocolFuture = fdb_database_get_server_protocol(db, 0x0FDB00A200090000LL);
fdb_check(fdb_future_block_until_ready(protocolFuture));
fdb_check(fdb_future_get_uint64(protocolFuture, &out));
fdb_future_destroy(protocolFuture);
}
TEST_CASE("fdb_transaction_watch read_your_writes_disable") {
// Watches created on a transaction with the option READ_YOUR_WRITES_DISABLE
// should return a watches_disabled error.
fdb::Transaction tr(db);
fdb_check(tr.set_option(FDB_TR_OPTION_READ_YOUR_WRITES_DISABLE, nullptr, 0));
fdb::EmptyFuture f1 = tr.watch(key("foo"));
CHECK(wait_future(f1) == 1034); // watches_disabled
}
TEST_CASE("fdb_transaction_watch reset") {
// Resetting (or destroying) an uncommitted transaction should cause watches
// created by the transaction to fail with a transaction_cancelled error.
fdb::Transaction tr(db);
fdb::EmptyFuture f1 = tr.watch(key("foo"));
tr.reset();
CHECK(wait_future(f1) == 1025); // transaction_cancelled
}
TEST_CASE("fdb_transaction_watch max watches") {
int64_t max_watches = 3;
fdb_check(fdb_database_set_option(db, FDB_DB_OPTION_MAX_WATCHES, (const uint8_t*)&max_watches, 8));
auto event = std::make_shared<FdbEvent>();
fdb::Transaction tr(db);
while (1) {
fdb::EmptyFuture f1 = tr.watch(key("a"));
fdb::EmptyFuture f2 = tr.watch(key("b"));
fdb::EmptyFuture f3 = tr.watch(key("c"));
fdb::EmptyFuture f4 = tr.watch(key("d"));
fdb::EmptyFuture f5 = tr.commit();
fdb_error_t err = wait_future(f5);
if (err) {
fdb::EmptyFuture f6 = tr.on_error(err);
fdb_check(wait_future(f6));
continue;
}
// Callbacks will be triggered with operation_cancelled errors once the
// too_many_watches error fires, as the other futures will go out of scope
// and be cleaned up. The future which too_many_watches occurs on is
// nondeterministic, so each future is checked.
fdb_check(f1.set_callback(
+[](FDBFuture* f, void* param) {
fdb_error_t err = fdb_future_get_error(f);
if (err != /*operation_cancelled*/ 1101 && !fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE, err)) {
CHECK(err == 1032); // too_many_watches
}
auto* event = static_cast<std::shared_ptr<FdbEvent>*>(param);
(*event)->set();
delete event;
},
new std::shared_ptr<FdbEvent>(event)));
fdb_check(f2.set_callback(
+[](FDBFuture* f, void* param) {
fdb_error_t err = fdb_future_get_error(f);
if (err != /*operation_cancelled*/ 1101 && !fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE, err)) {
CHECK(err == 1032); // too_many_watches
}
auto* event = static_cast<std::shared_ptr<FdbEvent>*>(param);
(*event)->set();
delete event;
},
new std::shared_ptr<FdbEvent>(event)));
fdb_check(f3.set_callback(
+[](FDBFuture* f, void* param) {
fdb_error_t err = fdb_future_get_error(f);
if (err != /*operation_cancelled*/ 1101 && !fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE, err)) {
CHECK(err == 1032); // too_many_watches
}
auto* event = static_cast<std::shared_ptr<FdbEvent>*>(param);
(*event)->set();
delete event;
},
new std::shared_ptr<FdbEvent>(event)));
fdb_check(f4.set_callback(
+[](FDBFuture* f, void* param) {
fdb_error_t err = fdb_future_get_error(f);
if (err != /*operation_cancelled*/ 1101 && !fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE, err)) {
CHECK(err == 1032); // too_many_watches
}
auto* event = static_cast<std::shared_ptr<FdbEvent>*>(param);
(*event)->set();
delete event;
},
new std::shared_ptr<FdbEvent>(event)));
event->wait();
break;
}
// Reset available number of watches.
max_watches = 10000;
fdb_check(fdb_database_set_option(db, FDB_DB_OPTION_MAX_WATCHES, (const uint8_t*)&max_watches, 8));
}
TEST_CASE("fdb_transaction_watch") {
insert_data(db, create_data({ { "foo", "foo" } }));
struct Context {
FdbEvent event;
};
Context context;
fdb::Transaction tr(db);
while (1) {
fdb::EmptyFuture f1 = tr.watch(key("foo"));
fdb::EmptyFuture f2 = tr.commit();
fdb_error_t err = wait_future(f2);
if (err) {
fdb::EmptyFuture f3 = tr.on_error(err);
fdb_check(wait_future(f3));
continue;
}
fdb_check(f1.set_callback(
+[](FDBFuture*, void* param) {
auto* context = static_cast<Context*>(param);
context->event.set();
},
&context));
// Update value for key "foo" to trigger the watch.
insert_data(db, create_data({ { "foo", "bar" } }));
context.event.wait();
break;
}
}
TEST_CASE("fdb_transaction_cancel") {
// Cannot use transaction after cancelling it...
fdb::Transaction tr(db);
tr.cancel();
fdb::ValueFuture f1 = tr.get("foo", /* snapshot */ false);
CHECK(wait_future(f1) == 1025); // transaction_cancelled
// ... until the transaction has been reset.
tr.reset();
fdb::ValueFuture f2 = tr.get("foo", /* snapshot */ false);
CHECK(wait_future(f2) != 1025); // transaction_cancelled
}
TEST_CASE("fdb_transaction_add_conflict_range") {
bool success = false;
bool retry = true;
while (retry) {
fdb::Transaction tr(db);
while (1) {
fdb::Int64Future f1 = tr.get_read_version();
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
break;
}
fdb::Transaction tr2(db);
while (1) {
fdb_check(tr2.add_conflict_range(key("a"), strinc_str(key("a")), FDB_CONFLICT_RANGE_TYPE_WRITE));
fdb::EmptyFuture f1 = tr2.commit();
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr2.on_error(err);
fdb_check(wait_future(f2));
continue;
}
break;
}
while (1) {
fdb_check(tr.add_conflict_range(key("a"), strinc_str(key("a")), FDB_CONFLICT_RANGE_TYPE_READ));
fdb_check(tr.add_conflict_range(key("a"), strinc_str(key("a")), FDB_CONFLICT_RANGE_TYPE_WRITE));
fdb::EmptyFuture f1 = tr.commit();
fdb_error_t err = wait_future(f1);
if (err == 1020) { // not_committed
// Test should pass if transactions conflict.
success = true;
retry = false;
} else if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
retry = true;
} else {
// If the transaction succeeded, something went wrong.
CHECK(false);
retry = false;
}
break;
}
}
// Double check that failure was achieved and the loop wasn't just broken out
// of.
CHECK(success);
}
TEST_CASE("special-key-space valid transaction ID") {
auto value = get_value("\xff\xff/tracing/transaction_id", /* snapshot */ false, {});
REQUIRE(value.has_value());
UID transaction_id = UID::fromString(value.value());
CHECK(transaction_id.first() > 0);
CHECK(transaction_id.second() > 0);
}
TEST_CASE("special-key-space custom transaction ID") {
fdb::Transaction tr(db);
fdb_check(tr.set_option(FDB_TR_OPTION_SPECIAL_KEY_SPACE_ENABLE_WRITES, nullptr, 0));
while (1) {
UID randomTransactionID = UID(deterministicRandom()->randomUInt64(), deterministicRandom()->randomUInt64());
tr.set("\xff\xff/tracing/transaction_id", randomTransactionID.toString());
fdb::ValueFuture f1 = tr.get("\xff\xff/tracing/transaction_id",
/* snapshot */ false);
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
int out_present;
char* val;
int vallen;
fdb_check(f1.get(&out_present, (const uint8_t**)&val, &vallen));
REQUIRE(out_present);
UID transaction_id = UID::fromString(val);
CHECK(transaction_id == randomTransactionID);
break;
}
}
TEST_CASE("special-key-space set transaction ID after write") {
fdb::Transaction tr(db);
fdb_check(tr.set_option(FDB_TR_OPTION_SPECIAL_KEY_SPACE_ENABLE_WRITES, nullptr, 0));
while (1) {
tr.set(key("foo"), "bar");
tr.set("\xff\xff/tracing/transaction_id", "0");
fdb::ValueFuture f1 = tr.get("\xff\xff/tracing/transaction_id",
/* snapshot */ false);
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
int out_present;
char* val;
int vallen;
fdb_check(f1.get(&out_present, (const uint8_t**)&val, &vallen));
REQUIRE(out_present);
UID transaction_id = UID::fromString(val);
CHECK(transaction_id.first() > 0);
CHECK(transaction_id.second() > 0);
break;
}
}
TEST_CASE("special-key-space disable tracing") {
fdb::Transaction tr(db);
fdb_check(tr.set_option(FDB_TR_OPTION_SPECIAL_KEY_SPACE_ENABLE_WRITES, nullptr, 0));
while (1) {
tr.set("\xff\xff/tracing/token", "false");
fdb::ValueFuture f1 = tr.get("\xff\xff/tracing/token",
/* snapshot */ false);
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
int out_present;
char* val;
int vallen;
fdb_check(f1.get(&out_present, (const uint8_t**)&val, &vallen));
REQUIRE(out_present);
uint64_t token = std::stoul(std::string(val, vallen));
CHECK(token == 0);
break;
}
}
TEST_CASE("special-key-space tracing get range") {
std::string tracingBegin = "\xff\xff/tracing/";
std::string tracingEnd = "\xff\xff/tracing0";
fdb::Transaction tr(db);
fdb_check(tr.set_option(FDB_TR_OPTION_SPECIAL_KEY_SPACE_ENABLE_WRITES, nullptr, 0));
while (1) {
fdb::KeyValueArrayFuture f1 =
tr.get_range(FDB_KEYSEL_FIRST_GREATER_OR_EQUAL((const uint8_t*)tracingBegin.c_str(), tracingBegin.size()),
FDB_KEYSEL_LAST_LESS_THAN((const uint8_t*)tracingEnd.c_str(), tracingEnd.size()) + 1,
/* limit */ 0,
/* target_bytes */ 0,
/* FDBStreamingMode */ FDB_STREAMING_MODE_WANT_ALL,
/* iteration */ 0,
/* snapshot */ false,
/* reverse */ 0);
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
FDBKeyValue const* out_kv;
int out_count;
int out_more;
fdb_check(f1.get(&out_kv, &out_count, &out_more));
CHECK(!out_more);
CHECK(out_count == 2);
CHECK(std::string((char*)out_kv[1].key, out_kv[1].key_length) == tracingBegin + "transaction_id");
UID transaction_id = UID::fromString(std::string((char*)out_kv[1].value));
CHECK(transaction_id.first() > 0);
CHECK(transaction_id.second() > 0);
break;
}
}
std::string get_valid_status_json() {
fdb::Transaction tr(db);
while (1) {
fdb::ValueFuture f1 = tr.get("\xff\xff/status/json", false);
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
int out_present;
char* val;
int vallen;
fdb_check(f1.get(&out_present, (const uint8_t**)&val, &vallen));
assert(out_present);
std::string statusJsonStr(val, vallen);
rapidjson::Document statusJson;
statusJson.Parse(statusJsonStr.c_str());
// make sure it is available
bool available = statusJson["client"]["database_status"]["available"].GetBool();
if (!available)
continue; // cannot reach to the cluster, retry
return statusJsonStr;
}
}
TEST_CASE("fdb_database_reboot_worker") {
#ifdef USE_TSAN
MESSAGE(
"fdb_database_reboot_worker disabled for tsan, since fdbmonitor doesn't seem to restart the killed process");
return;
#endif
std::string status_json = get_valid_status_json();
rapidjson::Document statusJson;
statusJson.Parse(status_json.c_str());
CHECK(statusJson.HasMember("cluster"));
CHECK(statusJson["cluster"].HasMember("generation"));
int old_generation = statusJson["cluster"]["generation"].GetInt();
CHECK(statusJson["cluster"].HasMember("processes"));
// Make sure we only have one process in the cluster
// Thus, rebooting the worker ensures a recovery
// Configuration changes may break the contract here
CHECK(statusJson["cluster"]["processes"].MemberCount() == 1);
auto processPtr = statusJson["cluster"]["processes"].MemberBegin();
CHECK(processPtr->value.HasMember("address"));
std::string network_address = processPtr->value["address"].GetString();
while (1) {
fdb::Int64Future f =
fdb::Database::reboot_worker(db, (const uint8_t*)network_address.c_str(), network_address.size(), false, 0);
fdb_check(wait_future(f));
int64_t successful;
fdb_check(f.get(&successful));
if (successful)
break; // retry rebooting until success
}
status_json = get_valid_status_json();
statusJson.Parse(status_json.c_str());
CHECK(statusJson.HasMember("cluster"));
CHECK(statusJson["cluster"].HasMember("generation"));
int new_generation = statusJson["cluster"]["generation"].GetInt();
// The generation number should increase after the recovery
CHECK(new_generation > old_generation);
}
TEST_CASE("fdb_database_force_recovery_with_data_loss") {
// This command cannot be tested completely in the current unit test configuration
// For now, we simply call the function to make sure it exist
// Background:
// It is also only usable when usable_regions=2, so it requires a fearless configuration
// In particular, you have two data centers, and the storage servers in one region are allowed to fall behind (async
// replication) Normally, you would not want to recover to that set of storage servers unless there are tlogs which
// can let those storage servers catch up However, if all the tlogs are dead and you still want to be able to
// recover your database even if that means losing recently committed mutation, that's the time this function works
std::string dcid = "test_id";
while (1) {
fdb::EmptyFuture f =
fdb::Database::force_recovery_with_data_loss(db, (const uint8_t*)dcid.c_str(), dcid.size());
fdb_check(wait_future(f));
break;
}
}
std::string random_hex_string(size_t length) {
const char charset[] = "0123456789"
"ABCDEF"
"abcdef";
// construct a random generator engine from a time-based seed:
std::default_random_engine generator(time(nullptr));
std::uniform_int_distribution<int> distribution(0, strlen(charset) - 1);
auto randchar = [&charset, &generator, &distribution]() -> char { return charset[distribution(generator)]; };
std::string str(length, 0);
std::generate_n(str.begin(), length, randchar);
return str;
}
TEST_CASE("fdb_database_create_snapshot") {
std::string snapshot_command = "test";
std::string uid = "invalid_uid";
bool retry = false;
while (1) {
fdb::EmptyFuture f = fdb::Database::create_snapshot(db,
(const uint8_t*)uid.c_str(),
uid.length(),
(const uint8_t*)snapshot_command.c_str(),
snapshot_command.length());
fdb_error_t err = wait_future(f);
if (err == 2509) { // expected error code
CHECK(!retry);
uid = random_hex_string(32);
retry = true;
} else if (err == 2505) {
CHECK(retry);
break;
} else {
// Otherwise, something went wrong.
CHECK(false);
}
}
}
TEST_CASE("fdb_error_predicate") {
CHECK(fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE, 1007)); // transaction_too_old
CHECK(fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE, 1020)); // not_committed
CHECK(fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE, 1038)); // database_locked
CHECK(!fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE, 1036)); // accessed_unreadable
CHECK(!fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE, 2000)); // client_invalid_operation
CHECK(!fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE, 2004)); // key_outside_legal_range
CHECK(!fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE, 2005)); // inverted_range
CHECK(!fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE, 2006)); // invalid_option_value
CHECK(!fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE, 2007)); // invalid_option
CHECK(!fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE, 2011)); // version_invalid
CHECK(!fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE, 2020)); // transaction_invalid_version
CHECK(!fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE, 2023)); // transaction_read_only
CHECK(!fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE, 2100)); // incompatible_protocol_version
CHECK(!fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE, 2101)); // transaction_too_large
CHECK(!fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE, 2102)); // key_too_large
CHECK(!fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE, 2103)); // value_too_large
CHECK(!fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE, 2108)); // unsupported_operation
CHECK(!fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE, 2200)); // api_version_unset
CHECK(!fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE, 4000)); // unknown_error
CHECK(!fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE, 4001)); // internal_error
CHECK(fdb_error_predicate(FDB_ERROR_PREDICATE_MAYBE_COMMITTED, 1021)); // commit_unknown_result
CHECK(!fdb_error_predicate(FDB_ERROR_PREDICATE_MAYBE_COMMITTED, 1000)); // operation_failed
CHECK(!fdb_error_predicate(FDB_ERROR_PREDICATE_MAYBE_COMMITTED, 1004)); // timed_out
CHECK(!fdb_error_predicate(FDB_ERROR_PREDICATE_MAYBE_COMMITTED, 1025)); // transaction_cancelled
CHECK(!fdb_error_predicate(FDB_ERROR_PREDICATE_MAYBE_COMMITTED, 1038)); // database_locked
CHECK(!fdb_error_predicate(FDB_ERROR_PREDICATE_MAYBE_COMMITTED, 1101)); // operation_cancelled
CHECK(!fdb_error_predicate(FDB_ERROR_PREDICATE_MAYBE_COMMITTED, 2002)); // commit_read_incomplete
CHECK(fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE_NOT_COMMITTED, 1007)); // transaction_too_old
CHECK(fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE_NOT_COMMITTED, 1020)); // not_committed
CHECK(fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE_NOT_COMMITTED, 1038)); // database_locked
CHECK(!fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE_NOT_COMMITTED, 1021)); // commit_unknown_result
CHECK(!fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE_NOT_COMMITTED, 1025)); // transaction_cancelled
CHECK(!fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE_NOT_COMMITTED, 1031)); // transaction_timed_out
CHECK(!fdb_error_predicate(FDB_ERROR_PREDICATE_RETRYABLE_NOT_COMMITTED, 1040)); // proxy_memory_limit_exceeded
}
TEST_CASE("block_from_callback") {
fdb::Transaction tr(db);
fdb::ValueFuture f1 = tr.get("foo", /*snapshot*/ true);
struct Context {
FdbEvent event;
fdb::Transaction* tr;
};
Context context;
context.tr = &tr;
fdb_check(f1.set_callback(
+[](FDBFuture*, void* param) {
auto* context = static_cast<Context*>(param);
fdb::ValueFuture f2 = context->tr->get("bar", /*snapshot*/ true);
fdb_error_t error = f2.block_until_ready();
if (error) {
CHECK(error == /*blocked_from_network_thread*/ 2026);
}
context->event.set();
},
&context));
context.event.wait();
}
// monitors network busyness for 2 sec (40 readings)
TEST_CASE("monitor_network_busyness") {
bool containsGreaterZero = false;
for (int i = 0; i < 40; i++) {
double busyness = fdb_database_get_main_thread_busyness(db);
// make sure the busyness is between 0 and 1
CHECK(busyness >= 0);
CHECK(busyness <= 1);
if (busyness > 0) {
containsGreaterZero = true;
}
std::this_thread::sleep_for(std::chrono::milliseconds(50));
}
// assert that at least one of the busyness readings was greater than 0
CHECK(containsGreaterZero);
}
// Commit a transaction and confirm it has not been reset
TEST_CASE("commit_does_not_reset") {
fdb::Transaction tr(db);
fdb::Transaction tr2(db);
// Commit two transactions, one that will fail with conflict and the other
// that will succeed. Ensure both transactions are not reset at the end.
while (1) {
fdb::Int64Future tr1GrvFuture = tr.get_read_version();
fdb_error_t err = wait_future(tr1GrvFuture);
if (err) {
fdb::EmptyFuture tr1OnErrorFuture = tr.on_error(err);
fdb_check(wait_future(tr1OnErrorFuture));
continue;
}
int64_t tr1StartVersion;
CHECK(!tr1GrvFuture.get(&tr1StartVersion));
fdb::Int64Future tr2GrvFuture = tr2.get_read_version();
err = wait_future(tr2GrvFuture);
if (err) {
fdb::EmptyFuture tr2OnErrorFuture = tr2.on_error(err);
fdb_check(wait_future(tr2OnErrorFuture));
continue;
}
int64_t tr2StartVersion;
CHECK(!tr2GrvFuture.get(&tr2StartVersion));
tr.set(key("foo"), "bar");
fdb::EmptyFuture tr1CommitFuture = tr.commit();
err = wait_future(tr1CommitFuture);
if (err) {
fdb::EmptyFuture tr1OnErrorFuture = tr.on_error(err);
fdb_check(wait_future(tr1OnErrorFuture));
continue;
}
fdb_check(tr2.add_conflict_range(key("foo"), strinc_str(key("foo")), FDB_CONFLICT_RANGE_TYPE_READ));
tr2.set(key("foo"), "bar");
fdb::EmptyFuture tr2CommitFuture = tr2.commit();
err = wait_future(tr2CommitFuture);
CHECK(err == 1020); // not_committed
fdb::Int64Future tr1GrvFuture2 = tr.get_read_version();
err = wait_future(tr1GrvFuture2);
if (err) {
fdb::EmptyFuture tr1OnErrorFuture = tr.on_error(err);
fdb_check(wait_future(tr1OnErrorFuture));
continue;
}
int64_t tr1EndVersion;
CHECK(!tr1GrvFuture2.get(&tr1EndVersion));
fdb::Int64Future tr2GrvFuture2 = tr2.get_read_version();
err = wait_future(tr2GrvFuture2);
if (err) {
fdb::EmptyFuture tr2OnErrorFuture = tr2.on_error(err);
fdb_check(wait_future(tr2OnErrorFuture));
continue;
}
int64_t tr2EndVersion;
CHECK(!tr2GrvFuture2.get(&tr2EndVersion));
// If we reset the transaction, then the read version will change
CHECK(tr1StartVersion == tr1EndVersion);
CHECK(tr2StartVersion == tr2EndVersion);
break;
}
}
TEST_CASE("Fast alloc thread cleanup") {
// Try to cause an OOM if thread cleanup doesn't work
for (int i = 0; i < 50000; ++i) {
auto thread = std::thread([]() {
fdb::Transaction tr(db);
for (int s = 0; s < 11; ++s) {
tr.set(key("foo"), std::string(8 << s, '\x00'));
}
});
thread.join();
}
}
TEST_CASE("Tenant create, access, and delete") {
std::string tenantName = "tenant";
std::string testKey = "foo";
std::string testValue = "bar";
fdb::Transaction tr(db);
while (1) {
fdb_check(tr.set_option(FDB_TR_OPTION_SPECIAL_KEY_SPACE_ENABLE_WRITES, nullptr, 0));
tr.set("\xff\xff/management/tenant_map/" + tenantName, "");
fdb::EmptyFuture commitFuture = tr.commit();
fdb_error_t err = wait_future(commitFuture);
if (err) {
fdb::EmptyFuture f = tr.on_error(err);
fdb_check(wait_future(f));
continue;
}
tr.reset();
break;
}
while (1) {
StringRef begin = "\xff\xff/management/tenant_map/"_sr;
StringRef end = "\xff\xff/management/tenant_map0"_sr;
fdb_check(tr.set_option(FDB_TR_OPTION_SPECIAL_KEY_SPACE_ENABLE_WRITES, nullptr, 0));
fdb::KeyValueArrayFuture f = tr.get_range(FDB_KEYSEL_FIRST_GREATER_OR_EQUAL(begin.begin(), begin.size()),
FDB_KEYSEL_FIRST_GREATER_OR_EQUAL(end.begin(), end.size()),
/* limit */ 0,
/* target_bytes */ 0,
/* FDBStreamingMode */ FDB_STREAMING_MODE_WANT_ALL,
/* iteration */ 0,
/* snapshot */ false,
/* reverse */ 0);
fdb_error_t err = wait_future(f);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
FDBKeyValue const* outKv;
int outCount;
int outMore;
fdb_check(f.get(&outKv, &outCount, &outMore));
CHECK(outCount == 1);
CHECK(StringRef(outKv->key, outKv->key_length) == StringRef(tenantName).withPrefix(begin));
tr.reset();
break;
}
fdb::Tenant tenant(db, reinterpret_cast<const uint8_t*>(tenantName.c_str()), tenantName.size());
fdb::Transaction tr2(tenant);
while (1) {
tr2.set(testKey, testValue);
fdb::EmptyFuture commitFuture = tr2.commit();
fdb_error_t err = wait_future(commitFuture);
if (err) {
fdb::EmptyFuture f = tr2.on_error(err);
fdb_check(wait_future(f));
continue;
}
tr2.reset();
break;
}
while (1) {
fdb::ValueFuture f1 = tr2.get(testKey, false);
fdb_error_t err = wait_future(f1);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
int out_present;
char* val;
int vallen;
fdb_check(f1.get(&out_present, (const uint8_t**)&val, &vallen));
CHECK(out_present == 1);
CHECK(vallen == testValue.size());
CHECK(testValue == val);
tr2.clear(testKey);
fdb::EmptyFuture commitFuture = tr2.commit();
err = wait_future(commitFuture);
if (err) {
fdb::EmptyFuture f = tr2.on_error(err);
fdb_check(wait_future(f));
continue;
}
tr2.reset();
break;
}
while (1) {
fdb_check(tr.set_option(FDB_TR_OPTION_SPECIAL_KEY_SPACE_ENABLE_WRITES, nullptr, 0));
tr.clear("\xff\xff/management/tenant_map/" + tenantName);
fdb::EmptyFuture commitFuture = tr.commit();
fdb_error_t err = wait_future(commitFuture);
if (err) {
fdb::EmptyFuture f = tr.on_error(err);
fdb_check(wait_future(f));
continue;
}
tr.reset();
break;
}
while (1) {
fdb::ValueFuture f1 = tr2.get(testKey, false);
fdb_error_t err = wait_future(f1);
if (err == error_code_tenant_not_found) {
tr2.reset();
break;
}
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
}
}
int64_t granule_start_load_fail(const char* filename,
int filenameLength,
int64_t offset,
int64_t length,
int64_t fullFileLength,
void* userContext) {
CHECK(false);
return -1;
}
uint8_t* granule_get_load_fail(int64_t loadId, void* userContext) {
CHECK(false);
return nullptr;
}
void granule_free_load_fail(int64_t loadId, void* userContext) {
CHECK(false);
}
TEST_CASE("Blob Granule Functions") {
auto confValue =
get_value("\xff/conf/blob_granules_enabled", /* snapshot */ false, { FDB_TR_OPTION_READ_SYSTEM_KEYS });
if (!confValue.has_value() || confValue.value() != "1") {
return;
}
// write some data
insert_data(db, create_data({ { "bg1", "a" }, { "bg2", "b" }, { "bg3", "c" } }));
// because wiring up files is non-trivial, just test the calls complete with the expected no_materialize error
FDBReadBlobGranuleContext granuleContext;
granuleContext.userContext = nullptr;
granuleContext.start_load_f = &granule_start_load_fail;
granuleContext.get_load_f = &granule_get_load_fail;
granuleContext.free_load_f = &granule_free_load_fail;
granuleContext.debugNoMaterialize = true;
granuleContext.granuleParallelism = 1;
// dummy values
FDBKeyValue const* out_kv;
int out_count;
int out_more;
fdb::Transaction tr(db);
int64_t originalReadVersion = -1;
// test no materialize gets error but completes, save read version
while (1) {
fdb_check(tr.set_option(FDB_TR_OPTION_READ_YOUR_WRITES_DISABLE, nullptr, 0));
// -2 is latest version
fdb::KeyValueArrayResult r = tr.read_blob_granules(key("bg"), key("bh"), 0, -2, granuleContext);
fdb_error_t err = r.get(&out_kv, &out_count, &out_more);
if (err && err != 2037 /* blob_granule_not_materialized */) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
CHECK(err == 2037 /* blob_granule_not_materialized */);
// If read done, save read version. Should have already used read version so this shouldn't error
fdb::Int64Future grvFuture = tr.get_read_version();
fdb_error_t grvErr = wait_future(grvFuture);
CHECK(!grvErr);
CHECK(!grvFuture.get(&originalReadVersion));
CHECK(originalReadVersion > 0);
tr.reset();
break;
}
// test with begin version > 0
while (1) {
fdb_check(tr.set_option(FDB_TR_OPTION_READ_YOUR_WRITES_DISABLE, nullptr, 0));
// -2 is latest version, read version should be >= originalReadVersion
fdb::KeyValueArrayResult r =
tr.read_blob_granules(key("bg"), key("bh"), originalReadVersion, -2, granuleContext);
fdb_error_t err = r.get(&out_kv, &out_count, &out_more);
;
if (err && err != 2037 /* blob_granule_not_materialized */) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
CHECK(err == 2037 /* blob_granule_not_materialized */);
tr.reset();
break;
}
// test with prior read version completes after delay larger than normal MVC window
// TODO: should we not do this?
std::this_thread::sleep_for(std::chrono::milliseconds(6000));
while (1) {
fdb_check(tr.set_option(FDB_TR_OPTION_READ_YOUR_WRITES_DISABLE, nullptr, 0));
fdb::KeyValueArrayResult r =
tr.read_blob_granules(key("bg"), key("bh"), 0, originalReadVersion, granuleContext);
fdb_error_t err = r.get(&out_kv, &out_count, &out_more);
if (err && err != 2037 /* blob_granule_not_materialized */) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
CHECK(err == 2037 /* blob_granule_not_materialized */);
tr.reset();
break;
}
// test ranges
while (1) {
fdb::KeyRangeArrayFuture f = tr.get_blob_granule_ranges(key("bg"), key("bh"));
fdb_error_t err = wait_future(f);
if (err) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
const FDBKeyRange* out_kr;
int out_count;
fdb_check(f.get(&out_kr, &out_count));
CHECK(out_count >= 1);
// check key ranges are in order
for (int i = 0; i < out_count; i++) {
// key range start < end
CHECK(std::string((const char*)out_kr[i].begin_key, out_kr[i].begin_key_length) <
std::string((const char*)out_kr[i].end_key, out_kr[i].end_key_length));
}
// Ranges themselves are sorted
for (int i = 0; i < out_count - 1; i++) {
CHECK(std::string((const char*)out_kr[i].end_key, out_kr[i].end_key_length) <=
std::string((const char*)out_kr[i + 1].begin_key, out_kr[i + 1].begin_key_length));
}
tr.reset();
break;
}
// do a purge + wait at that version to purge everything before originalReadVersion
fdb::KeyFuture purgeKeyFuture =
fdb::Database::purge_blob_granules(db, key("bg"), key("bh"), originalReadVersion, false);
fdb_check(wait_future(purgeKeyFuture));
const uint8_t* purgeKeyData;
int purgeKeyLen;
fdb_check(purgeKeyFuture.get(&purgeKeyData, &purgeKeyLen));
std::string purgeKey((const char*)purgeKeyData, purgeKeyLen);
fdb::EmptyFuture waitPurgeFuture = fdb::Database::wait_purge_granules_complete(db, purgeKey);
fdb_check(wait_future(waitPurgeFuture));
// re-read again at the purge version to make sure it is still valid
while (1) {
fdb_check(tr.set_option(FDB_TR_OPTION_READ_YOUR_WRITES_DISABLE, nullptr, 0));
fdb::KeyValueArrayResult r =
tr.read_blob_granules(key("bg"), key("bh"), 0, originalReadVersion, granuleContext);
fdb_error_t err = r.get(&out_kv, &out_count, &out_more);
if (err && err != 2037 /* blob_granule_not_materialized */) {
fdb::EmptyFuture f2 = tr.on_error(err);
fdb_check(wait_future(f2));
continue;
}
CHECK(err == 2037 /* blob_granule_not_materialized */);
tr.reset();
break;
}
}
int main(int argc, char** argv) {
if (argc < 3) {
std::cout << "Unit tests for the FoundationDB C API.\n"
<< "Usage: fdb_c_unit_tests /path/to/cluster_file key_prefix [externalClient] [doctest args]"
<< std::endl;
return 1;
}
fdb_check(fdb_select_api_version(720));
if (argc >= 4) {
std::string externalClientLibrary = argv[3];
if (externalClientLibrary.substr(0, 2) != "--") {
fdb_check(fdb_network_set_option(
FDBNetworkOption::FDB_NET_OPTION_DISABLE_LOCAL_CLIENT, reinterpret_cast<const uint8_t*>(""), 0));
fdb_check(fdb_network_set_option(FDBNetworkOption::FDB_NET_OPTION_EXTERNAL_CLIENT_LIBRARY,
reinterpret_cast<const uint8_t*>(externalClientLibrary.c_str()),
externalClientLibrary.size()));
}
}
/* fdb_check(fdb_network_set_option( */
/* FDBNetworkOption::FDB_NET_OPTION_CLIENT_BUGGIFY_ENABLE, reinterpret_cast<const uint8_t*>(""), 0)); */
doctest::Context context;
context.applyCommandLine(argc, argv);
fdb_check(fdb_setup_network());
std::thread network_thread{ &fdb_run_network };
db = fdb_open_database(argv[1]);
clusterFilePath = std::string(argv[1]);
prefix = argv[2];
int res = context.run();
fdb_database_destroy(db);
if (context.shouldExit()) {
fdb_check(fdb_stop_network());
network_thread.join();
return res;
}
fdb_check(fdb_stop_network());
network_thread.join();
return res;
}