foundationdb/fdbserver/BlobWorker.actor.cpp

3118 lines
125 KiB
C++

/*
* BlobWorker.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <tuple>
#include <utility>
#include <vector>
#include "contrib/fmt-8.1.1/include/fmt/format.h"
#include "fdbclient/FDBTypes.h"
#include "fdbclient/SystemData.h"
#include "fdbclient/BackupContainerFileSystem.h"
#include "fdbclient/BlobGranuleCommon.h"
#include "fdbclient/BlobGranuleReader.actor.h"
#include "fdbclient/BlobWorkerCommon.h"
#include "fdbclient/BlobWorkerInterface.h"
#include "fdbclient/DatabaseContext.h"
#include "fdbclient/ManagementAPI.actor.h"
#include "fdbclient/NativeAPI.actor.h"
#include "fdbclient/Notified.h"
#include "fdbserver/Knobs.h"
#include "fdbserver/BlobGranuleServerCommon.actor.h"
#include "fdbserver/MutationTracking.h"
#include "fdbserver/WaitFailure.h"
#include "fdbserver/ServerDBInfo.h"
#include "flow/Arena.h"
#include "flow/Error.h"
#include "flow/IRandom.h"
#include "flow/Trace.h"
#include "flow/actorcompiler.h" // has to be last include
#include "flow/network.h"
#define BW_DEBUG false
#define BW_REQUEST_DEBUG false
/*
* The Blob Worker is a stateless role assigned a set of granules by the Blob Manager.
* It is responsible for managing the change feeds for those granules, and for consuming the mutations from those change
* feeds and writing them out as files to blob storage.
*/
struct GranuleStartState {
UID granuleID;
Version changeFeedStartVersion;
Version previousDurableVersion;
Optional<std::pair<KeyRange, UID>> parentGranule;
bool doSnapshot;
Optional<GranuleFiles> blobFilesToSnapshot;
Optional<GranuleFiles> existingFiles;
Optional<GranuleHistory> history;
};
// FIXME: add global byte limit for pending and buffered deltas
struct GranuleMetadata : NonCopyable, ReferenceCounted<GranuleMetadata> {
KeyRange keyRange;
GranuleFiles files;
Standalone<GranuleDeltas> currentDeltas; // only contain deltas in pendingDeltaVersion + 1, bufferedDeltaVersion
uint64_t bytesInNewDeltaFiles = 0;
uint64_t bufferedDeltaBytes = 0;
// for client to know when it is safe to read a certain version and from where (check waitForVersion)
Version bufferedDeltaVersion; // largest delta version in currentDeltas (including empty versions)
Version pendingDeltaVersion = 0; // largest version in progress writing to s3/fdb
NotifiedVersion durableDeltaVersion; // largest version persisted in s3/fdb
NotifiedVersion durableSnapshotVersion; // same as delta vars, except for snapshots
Version pendingSnapshotVersion = 0;
Version initialSnapshotVersion = invalidVersion;
Version knownCommittedVersion;
int64_t originalEpoch;
int64_t originalSeqno;
int64_t continueEpoch;
int64_t continueSeqno;
Promise<Void> cancelled;
Promise<Void> readable;
Promise<Void> historyLoaded;
Promise<Void> resumeSnapshot;
AsyncVar<Reference<ChangeFeedData>> activeCFData;
AssignBlobRangeRequest originalReq;
void resume() {
if (resumeSnapshot.canBeSet()) {
resumeSnapshot.send(Void());
}
}
};
struct GranuleRangeMetadata {
int64_t lastEpoch;
int64_t lastSeqno;
Reference<GranuleMetadata> activeMetadata;
Future<GranuleStartState> assignFuture;
Future<Void> fileUpdaterFuture;
Future<Void> historyLoaderFuture;
void cancel() {
if (activeMetadata->cancelled.canBeSet()) {
activeMetadata->cancelled.send(Void());
}
activeMetadata.clear();
assignFuture.cancel();
historyLoaderFuture.cancel();
}
GranuleRangeMetadata() : lastEpoch(0), lastSeqno(0) {}
GranuleRangeMetadata(int64_t epoch, int64_t seqno, Reference<GranuleMetadata> activeMetadata)
: lastEpoch(epoch), lastSeqno(seqno), activeMetadata(activeMetadata) {}
};
// represents a previous version of a granule, and optionally the files that compose it
struct GranuleHistoryEntry : NonCopyable, ReferenceCounted<GranuleHistoryEntry> {
KeyRange range;
UID granuleID;
Version startVersion; // version of the first snapshot
Version endVersion; // version of the last delta file
// load files lazily, and allows for clearing old cold-queried files to save memory
// FIXME: add memory limit and evictor for old cached files
Future<GranuleFiles> files;
// FIXME: do skip pointers with single back-pointer and neighbor pointers
// Just parent reference for now (assumes no merging)
Reference<GranuleHistoryEntry> parentGranule;
GranuleHistoryEntry() : startVersion(invalidVersion), endVersion(invalidVersion) {}
GranuleHistoryEntry(KeyRange range, UID granuleID, Version startVersion, Version endVersion)
: range(range), granuleID(granuleID), startVersion(startVersion), endVersion(endVersion) {}
};
struct BlobWorkerData : NonCopyable, ReferenceCounted<BlobWorkerData> {
UID id;
Database db;
BlobWorkerStats stats;
PromiseStream<Future<Void>> addActor;
LocalityData locality;
int64_t currentManagerEpoch = -1;
AsyncVar<ReplyPromiseStream<GranuleStatusReply>> currentManagerStatusStream;
bool statusStreamInitialized = false;
// FIXME: refactor out the parts of this that are just for interacting with blob stores from the backup business
// logic
Reference<BackupContainerFileSystem> bstore;
KeyRangeMap<GranuleRangeMetadata> granuleMetadata;
// contains the history of completed granules before the existing ones. Maps to the latest one, and has
// back-pointers to earlier granules
// FIXME: expire from map after a delay when granule is revoked and the history is no longer needed
KeyRangeMap<Reference<GranuleHistoryEntry>> granuleHistory;
PromiseStream<AssignBlobRangeRequest> granuleUpdateErrors;
Promise<Void> doGRVCheck;
NotifiedVersion grvVersion;
Promise<Void> fatalError;
FlowLock initialSnapshotLock;
int changeFeedStreamReplyBufferSize = SERVER_KNOBS->BG_DELTA_FILE_TARGET_BYTES / 2;
BlobWorkerData(UID id, Database db)
: id(id), db(db), stats(id, SERVER_KNOBS->WORKER_LOGGING_INTERVAL),
initialSnapshotLock(SERVER_KNOBS->BLOB_WORKER_INITIAL_SNAPSHOT_PARALLELISM) {}
bool managerEpochOk(int64_t epoch) {
if (epoch < currentManagerEpoch) {
if (BW_DEBUG) {
fmt::print("BW {0} got request from old epoch {1}, notifying them they are out of date\n",
id.toString(),
epoch);
}
return false;
} else {
if (epoch > currentManagerEpoch) {
currentManagerEpoch = epoch;
if (BW_DEBUG) {
fmt::print("BW {0} found new manager epoch {1}\n", id.toString(), currentManagerEpoch);
}
}
return true;
}
}
};
// serialize change feed key as UID bytes, to use 16 bytes on disk
static Key granuleIDToCFKey(UID granuleID) {
BinaryWriter wr(Unversioned());
wr << granuleID;
return wr.toValue();
}
// parse change feed key back to UID, to be human-readable
static UID cfKeyToGranuleID(Key cfKey) {
return BinaryReader::fromStringRef<UID>(cfKey, Unversioned());
}
// returns true if we can acquire it
static void acquireGranuleLock(int64_t epoch, int64_t seqno, int64_t prevOwnerEpoch, int64_t prevOwnerSeqno) {
// returns true if our lock (E, S) >= (Eprev, Sprev)
if (epoch < prevOwnerEpoch || (epoch == prevOwnerEpoch && seqno < prevOwnerSeqno)) {
if (BW_DEBUG) {
fmt::print("Lock acquire check failed. Proposed ({0}, {1}) < previous ({2}, {3})\n",
epoch,
seqno,
prevOwnerEpoch,
prevOwnerSeqno);
}
throw granule_assignment_conflict();
}
}
static void checkGranuleLock(int64_t epoch, int64_t seqno, int64_t ownerEpoch, int64_t ownerSeqno) {
// sanity check - lock value should never go backwards because of acquireGranuleLock
ASSERT(epoch <= ownerEpoch);
ASSERT(epoch < ownerEpoch || (epoch == ownerEpoch && seqno <= ownerSeqno));
// returns true if we still own the lock, false if someone else does
if (epoch != ownerEpoch || seqno != ownerSeqno) {
if (BW_DEBUG) {
fmt::print("Lock assignment check failed. Expected ({0}, {1}), got ({2}, {3})\n",
epoch,
seqno,
ownerEpoch,
ownerSeqno);
}
throw granule_assignment_conflict();
}
}
ACTOR Future<Void> readAndCheckGranuleLock(Reference<ReadYourWritesTransaction> tr,
KeyRange granuleRange,
int64_t epoch,
int64_t seqno) {
state Key lockKey = blobGranuleLockKeyFor(granuleRange);
Optional<Value> lockValue = wait(tr->get(lockKey));
ASSERT(lockValue.present());
std::tuple<int64_t, int64_t, UID> currentOwner = decodeBlobGranuleLockValue(lockValue.get());
checkGranuleLock(epoch, seqno, std::get<0>(currentOwner), std::get<1>(currentOwner));
// if we still own the lock, add a conflict range in case anybody else takes it over while we add this file
// FIXME: we don't need these conflict ranges
tr->addReadConflictRange(singleKeyRange(lockKey));
return Void();
}
// Read snapshot and delta files for granule history, for completed granule
// Retries on error local to this function
ACTOR Future<GranuleFiles> loadHistoryFiles(Reference<BlobWorkerData> bwData, UID granuleID) {
state Transaction tr(bwData->db);
state KeyRange range = blobGranuleFileKeyRangeFor(granuleID);
state Key startKey = range.begin;
state GranuleFiles files;
loop {
try {
wait(readGranuleFiles(&tr, &startKey, range.end, &files, granuleID, BW_DEBUG));
return files;
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
// read snapshot and delta files from previous owner of the active granule
// This is separated out from above because this is done as part of granule open transaction
ACTOR Future<GranuleFiles> loadPreviousFiles(Transaction* tr, UID granuleID) {
state KeyRange range = blobGranuleFileKeyRangeFor(granuleID);
// no need to add conflict range for read b/c of granule lock
state Key startKey = range.begin;
state GranuleFiles files;
wait(readGranuleFiles(tr, &startKey, range.end, &files, granuleID, BW_DEBUG));
return files;
}
// To cleanup of the old change feed for the old granule range, all new sub-granules split from the old range must
// update shared state to coordinate when it is safe to clean up the old change feed.
// his goes through 3 phases for each new sub-granule:
// 1. Starting - the blob manager writes all sub-granules with this state as a durable intent to split the range
// 2. Assigned - a worker that is assigned a sub-granule updates that granule's state here. This means that the
// worker
// has started a new change feed for the new sub-granule, but still needs to consume from the old change feed.
// 3. Done - the worker that is assigned this sub-granule has persisted all of the data from its part of the old
// change
// feed in delta files. From this granule's perspective, it is safe to clean up the old change feed.
// Once all sub-granules have reached step 2 (Assigned), the change feed can be safely "stopped" - it needs to
// continue to serve the mutations it has seen so far, but will not need any new mutations after this version. The
// last sub-granule to reach this step is responsible for commiting the change feed stop as part of its transaction.
// Because this change feed stops commits in the same transaction as the worker's new change feed start, it is
// guaranteed that no versions are missed between the old and new change feed.
//
// Once all sub-granules have reached step 3 (Done), the change feed can be safely destroyed, as all of the
// mutations in the old change feed are guaranteed to be persisted in delta files. The last sub-granule to reach
// this step is responsible for committing the change feed destroy, and for cleaning up the split state for all
// sub-granules as part of its transaction.
ACTOR Future<Void> updateGranuleSplitState(Transaction* tr,
KeyRange parentGranuleRange,
UID parentGranuleID,
UID currentGranuleID,
BlobGranuleSplitState newState) {
state KeyRange currentRange = blobGranuleSplitKeyRangeFor(parentGranuleID);
state RangeResult totalState = wait(tr->getRange(currentRange, SERVER_KNOBS->BG_MAX_SPLIT_FANOUT + 1));
// FIXME: remove above conflict range?
tr->addWriteConflictRange(currentRange);
ASSERT_WE_THINK(!totalState.more && totalState.size() <= SERVER_KNOBS->BG_MAX_SPLIT_FANOUT);
// maybe someone decreased the knob, we should gracefully handle it not in simulation
if (totalState.more || totalState.size() > SERVER_KNOBS->BG_MAX_SPLIT_FANOUT) {
RangeResult tryAgain = wait(tr->getRange(currentRange, 10000));
ASSERT(!tryAgain.more);
totalState = tryAgain;
}
if (totalState.empty()) {
ASSERT(newState == BlobGranuleSplitState::Done);
if (BW_DEBUG) {
fmt::print("Found empty split state for parent granule {0}\n", parentGranuleID.toString());
}
// must have retried and successfully nuked everything
return Void();
}
ASSERT(totalState.size() >= 2);
int total = totalState.size();
int totalStarted = 0;
int totalDone = 0;
BlobGranuleSplitState currentState = BlobGranuleSplitState::Unknown;
for (auto& it : totalState) {
UID pid;
UID cid;
std::pair<UID, UID> k = decodeBlobGranuleSplitKey(it.key);
pid = k.first;
cid = k.second;
ASSERT(pid == parentGranuleID);
BlobGranuleSplitState st = decodeBlobGranuleSplitValue(it.value).first;
ASSERT(st != BlobGranuleSplitState::Unknown);
if (st == BlobGranuleSplitState::Initialized) {
totalStarted++;
} else if (st == BlobGranuleSplitState::Done) {
totalDone++;
}
if (cid == currentGranuleID) {
ASSERT(currentState == BlobGranuleSplitState::Unknown);
currentState = st;
}
}
ASSERT(currentState != BlobGranuleSplitState::Unknown);
if (currentState < newState) {
if (BW_DEBUG) {
fmt::print("Updating granule {0} split state from {1} {2} -> {3}\n",
currentGranuleID.toString(),
parentGranuleID.toString(),
currentState,
newState);
}
Key myStateKey = blobGranuleSplitKeyFor(parentGranuleID, currentGranuleID);
if (newState == BlobGranuleSplitState::Done && currentState == BlobGranuleSplitState::Assigned &&
totalDone == total - 1) {
// we are the last one to change from Assigned -> Done, so everything can be cleaned up for the old
// change feed and splitting state
if (BW_DEBUG) {
fmt::print("{0} destroying old granule {1}\n", currentGranuleID.toString(), parentGranuleID.toString());
}
// FIXME: appears change feed destroy isn't working! ADD BACK
// wait(updateChangeFeed(tr, granuleIDToCFKey(parentGranuleID), ChangeFeedStatus::CHANGE_FEED_DESTROY));
Key oldGranuleLockKey = blobGranuleLockKeyFor(parentGranuleRange);
// FIXME: deleting granule lock can cause races where another granule with the same range starts way later
// and thinks it can own the granule! Need to change file cleanup to destroy these, if there is no more
// granule in the history with that exact key range!
// Alternative fix could be to, on granule open, query for all overlapping granule locks and ensure none of
// them have higher (epoch, seqno), but that is much more expensive
// tr->clear(singleKeyRange(oldGranuleLockKey));
tr->clear(currentRange);
TEST(true); // Granule split cleanup on last delta file persisted
} else {
tr->atomicOp(myStateKey, blobGranuleSplitValueFor(newState), MutationRef::SetVersionstampedValue);
if (newState == BlobGranuleSplitState::Assigned && currentState == BlobGranuleSplitState::Initialized &&
totalStarted == 1) {
// We are the last one to change from Start -> Assigned, so we can stop the parent change feed.
if (BW_DEBUG) {
fmt::print("{0} stopping change feed for old granule {1}\n",
currentGranuleID.toString().c_str(),
parentGranuleID.toString().c_str());
}
wait(updateChangeFeed(
tr, KeyRef(granuleIDToCFKey(parentGranuleID)), ChangeFeedStatus::CHANGE_FEED_STOP));
}
TEST(true); // Granule split stopping change feed
}
} else if (BW_DEBUG) {
TEST(true); // Out of order granule split state updates ignored
fmt::print("Ignoring granule {0} split state from {1} {2} -> {3}\n",
currentGranuleID.toString(),
parentGranuleID.toString(),
currentState,
newState);
}
return Void();
}
// Returns the split state for a given granule on granule reassignment, or unknown if it doesn't exist (meaning the
// granule splitting finished)
ACTOR Future<std::pair<BlobGranuleSplitState, Version>> getGranuleSplitState(Transaction* tr,
UID parentGranuleID,
UID currentGranuleID) {
Key myStateKey = blobGranuleSplitKeyFor(parentGranuleID, currentGranuleID);
Optional<Value> st = wait(tr->get(myStateKey));
if (st.present()) {
return decodeBlobGranuleSplitValue(st.get());
} else {
return std::pair(BlobGranuleSplitState::Unknown, invalidVersion);
}
}
// writeDelta file writes speculatively in the common case to optimize throughput. It creates the s3 object even though
// the data in it may not yet be committed, and even though previous delta fiels with lower versioned data may still be
// in flight. The synchronization happens after the s3 file is written, but before we update the FDB index of what files
// exist. Before updating FDB, we ensure the version is committed and all previous delta files have updated FDB.
ACTOR Future<BlobFileIndex> writeDeltaFile(Reference<BlobWorkerData> bwData,
KeyRange keyRange,
UID granuleID,
int64_t epoch,
int64_t seqno,
Standalone<GranuleDeltas> deltasToWrite,
Version currentDeltaVersion,
Future<BlobFileIndex> previousDeltaFileFuture,
Future<Void> waitCommitted,
Optional<std::pair<KeyRange, UID>> oldGranuleComplete) {
wait(delay(0, TaskPriority::BlobWorkerUpdateStorage));
// Prefix filename with random chars both to avoid hotspotting on granuleID, and to have unique file names if
// multiple blob workers try to create the exact same file at the same millisecond (which observably happens)
state std::string fname = deterministicRandom()->randomUniqueID().shortString() + "_" + granuleID.toString() +
"_T" + std::to_string((uint64_t)(1000.0 * now())) + "_V" +
std::to_string(currentDeltaVersion) + ".delta";
state Value serialized = ObjectWriter::toValue(deltasToWrite, Unversioned());
state size_t serializedSize = serialized.size();
// Free up deltasToWrite here to reduce memory
deltasToWrite = Standalone<GranuleDeltas>();
state Reference<IBackupFile> objectFile = wait(bwData->bstore->writeFile(fname));
++bwData->stats.s3PutReqs;
++bwData->stats.deltaFilesWritten;
bwData->stats.deltaBytesWritten += serializedSize;
wait(objectFile->append(serialized.begin(), serializedSize));
wait(objectFile->finish());
// free serialized since it is persisted in blob
serialized = Value();
state int numIterations = 0;
try {
// before updating FDB, wait for the delta file version to be committed and previous delta files to finish
wait(waitCommitted);
BlobFileIndex prev = wait(previousDeltaFileFuture);
wait(delay(0, TaskPriority::BlobWorkerUpdateFDB));
// update FDB with new file
state Reference<ReadYourWritesTransaction> tr = makeReference<ReadYourWritesTransaction>(bwData->db);
loop {
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
try {
wait(readAndCheckGranuleLock(tr, keyRange, epoch, seqno));
numIterations++;
Key dfKey = blobGranuleFileKeyFor(granuleID, 'D', currentDeltaVersion);
Value dfValue = blobGranuleFileValueFor(fname, 0, serializedSize);
tr->set(dfKey, dfValue);
if (oldGranuleComplete.present()) {
wait(updateGranuleSplitState(&tr->getTransaction(),
oldGranuleComplete.get().first,
oldGranuleComplete.get().second,
granuleID,
BlobGranuleSplitState::Done));
}
wait(tr->commit());
if (BW_DEBUG) {
fmt::print(
"Granule {0} [{1} - {2}) updated fdb with delta file {3} of size {4} at version {5}, cv={6}\n",
granuleID.toString(),
keyRange.begin.printable(),
keyRange.end.printable(),
fname,
serializedSize,
currentDeltaVersion,
tr->getCommittedVersion());
}
if (BUGGIFY_WITH_PROB(0.01)) {
wait(delay(deterministicRandom()->random01()));
}
return BlobFileIndex(currentDeltaVersion, fname, 0, serializedSize);
} catch (Error& e) {
wait(tr->onError(e));
}
}
} catch (Error& e) {
// If this actor was cancelled, doesn't own the granule anymore, or got some other error before trying to
// commit a transaction, we can and want to safely delete the file we wrote. Otherwise, we may have updated FDB
// with file and cannot safely delete it.
if (numIterations > 0) {
TEST(true); // Granule potentially leaving orphaned delta file
throw e;
}
if (BW_DEBUG) {
fmt::print("deleting delta file {0} after error {1}\n", fname, e.name());
}
TEST(true); // Granule cleaning up delta file after error
++bwData->stats.s3DeleteReqs;
bwData->addActor.send(bwData->bstore->deleteFile(fname));
throw e;
}
}
ACTOR Future<BlobFileIndex> writeSnapshot(Reference<BlobWorkerData> bwData,
KeyRange keyRange,
UID granuleID,
int64_t epoch,
int64_t seqno,
Version version,
PromiseStream<RangeResult> rows,
bool createGranuleHistory) {
// Prefix filename with random chars both to avoid hotspotting on granuleID, and to have unique file names if
// multiple blob workers try to create the exact same file at the same millisecond (which observably happens)
state std::string fname = deterministicRandom()->randomUniqueID().shortString() + "_" + granuleID.toString() +
"_T" + std::to_string((uint64_t)(1000.0 * now())) + "_V" + std::to_string(version) +
".snapshot";
state Standalone<GranuleSnapshot> snapshot;
wait(delay(0, TaskPriority::BlobWorkerUpdateStorage));
loop {
try {
RangeResult res = waitNext(rows.getFuture());
snapshot.arena().dependsOn(res.arena());
snapshot.append(snapshot.arena(), res.begin(), res.size());
wait(yield(TaskPriority::BlobWorkerUpdateStorage));
} catch (Error& e) {
if (e.code() == error_code_end_of_stream) {
break;
}
throw e;
}
}
wait(delay(0, TaskPriority::BlobWorkerUpdateStorage));
if (BW_DEBUG) {
fmt::print("Granule [{0} - {1}) read {2} snapshot rows\n",
keyRange.begin.printable(),
keyRange.end.printable(),
snapshot.size());
}
if (g_network->isSimulated()) {
if (snapshot.size() > 0) {
ASSERT(keyRange.begin <= snapshot[0].key);
ASSERT(keyRange.end > snapshot[snapshot.size() - 1].key);
}
for (int i = 0; i < snapshot.size() - 1; i++) {
if (snapshot[i].key >= snapshot[i + 1].key) {
fmt::print("SORT ORDER VIOLATION IN SNAPSHOT FILE: {0}, {1}\n",
snapshot[i].key.printable(),
snapshot[i + 1].key.printable());
}
ASSERT(snapshot[i].key < snapshot[i + 1].key);
}
}
state Value serialized = ObjectWriter::toValue(snapshot, Unversioned());
state size_t serializedSize = serialized.size();
// free snapshot to reduce memory
snapshot = Standalone<GranuleSnapshot>();
// write to blob using multi part upload
state Reference<IBackupFile> objectFile = wait(bwData->bstore->writeFile(fname));
++bwData->stats.s3PutReqs;
++bwData->stats.snapshotFilesWritten;
bwData->stats.snapshotBytesWritten += serializedSize;
wait(objectFile->append(serialized.begin(), serializedSize));
wait(objectFile->finish());
// free serialized since it is persisted in blob
serialized = Value();
wait(delay(0, TaskPriority::BlobWorkerUpdateFDB));
// object uploaded successfully, save it to system key space
state Reference<ReadYourWritesTransaction> tr = makeReference<ReadYourWritesTransaction>(bwData->db);
state int numIterations = 0;
try {
loop {
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
try {
wait(readAndCheckGranuleLock(tr, keyRange, epoch, seqno));
numIterations++;
Key snapshotFileKey = blobGranuleFileKeyFor(granuleID, 'S', version);
Key snapshotFileValue = blobGranuleFileValueFor(fname, 0, serializedSize);
tr->set(snapshotFileKey, snapshotFileValue);
// create granule history at version if this is a new granule with the initial dump from FDB
if (createGranuleHistory) {
Key historyKey = blobGranuleHistoryKeyFor(keyRange, version);
Standalone<BlobGranuleHistoryValue> historyValue;
historyValue.granuleID = granuleID;
tr->set(historyKey, blobGranuleHistoryValueFor(historyValue));
}
wait(tr->commit());
break;
} catch (Error& e) {
wait(tr->onError(e));
}
}
} catch (Error& e) {
// If this actor was cancelled, doesn't own the granule anymore, or got some other error before trying to
// commit a transaction, we can and want to safely delete the file we wrote. Otherwise, we may have updated FDB
// with file and cannot safely delete it.
if (numIterations > 0) {
TEST(true); // Granule potentially leaving orphaned snapshot file
throw e;
}
if (BW_DEBUG) {
fmt::print("deleting snapshot file {0} after error {1}\n", fname, e.name());
}
TEST(true); // Granule deleting snapshot file after error
++bwData->stats.s3DeleteReqs;
bwData->addActor.send(bwData->bstore->deleteFile(fname));
throw e;
}
if (BW_DEBUG) {
fmt::print("Granule [{0} - {1}) committed new snapshot file {2} with {3} bytes\n\n",
keyRange.begin.printable(),
keyRange.end.printable(),
fname,
serializedSize);
}
if (BUGGIFY_WITH_PROB(0.1)) {
wait(delay(deterministicRandom()->random01()));
}
return BlobFileIndex(version, fname, 0, serializedSize);
}
ACTOR Future<BlobFileIndex> dumpInitialSnapshotFromFDB(Reference<BlobWorkerData> bwData,
Reference<GranuleMetadata> metadata,
UID granuleID,
Key cfKey) {
if (BW_DEBUG) {
fmt::print("Dumping snapshot from FDB for [{0} - {1})\n",
metadata->keyRange.begin.printable(),
metadata->keyRange.end.printable());
}
wait(bwData->initialSnapshotLock.take());
state FlowLock::Releaser holdingDVL(bwData->initialSnapshotLock);
state Reference<ReadYourWritesTransaction> tr = makeReference<ReadYourWritesTransaction>(bwData->db);
state int64_t bytesRead = 0;
state int retries = 0;
state Version lastReadVersion = invalidVersion;
state Version readVersion = invalidVersion;
loop {
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
try {
Version rv = wait(tr->getReadVersion());
readVersion = rv;
ASSERT(lastReadVersion <= readVersion);
state PromiseStream<RangeResult> rowsStream;
state Future<BlobFileIndex> snapshotWriter = writeSnapshot(bwData,
metadata->keyRange,
granuleID,
metadata->originalEpoch,
metadata->originalSeqno,
readVersion,
rowsStream,
true);
Future<Void> streamFuture =
tr->getTransaction().getRangeStream(rowsStream, metadata->keyRange, GetRangeLimits(), Snapshot::True);
wait(streamFuture && success(snapshotWriter));
TraceEvent("BlobGranuleSnapshotFile", bwData->id)
.detail("Granule", metadata->keyRange)
.detail("Version", readVersion);
DEBUG_KEY_RANGE("BlobWorkerFDBSnapshot", readVersion, metadata->keyRange, bwData->id);
// initial snapshot is committed in fdb, we can pop the change feed up to this version
bwData->addActor.send(bwData->db->popChangeFeedMutations(cfKey, readVersion));
return snapshotWriter.get();
} catch (Error& e) {
if (e.code() == error_code_operation_cancelled) {
throw e;
}
if (BW_DEBUG) {
fmt::print("Dumping snapshot {0} from FDB for [{1} - {2}) got error {3} after {4} bytes\n",
retries + 1,
metadata->keyRange.begin.printable(),
metadata->keyRange.end.printable(),
e.name(),
bytesRead);
}
state Error err = e;
wait(tr->onError(e));
retries++;
TEST(true); // Granule initial snapshot failed
TraceEvent(SevWarn, "BlobGranuleInitialSnapshotRetry", bwData->id)
.error(err)
.detail("Granule", metadata->keyRange)
.detail("Count", retries);
bytesRead = 0;
lastReadVersion = readVersion;
// Pop change feed up to readVersion, because that data will be before the next snapshot
// Do this to prevent a large amount of CF data from accumulating if we have consecutive failures to
// snapshot
// Also somewhat servers as a rate limiting function and checking that the database is available for this
// key range
wait(bwData->db->popChangeFeedMutations(cfKey, readVersion));
}
}
}
// files might not be the current set of files in metadata, in the case of doing the initial snapshot of a granule that
// was split.
ACTOR Future<BlobFileIndex> compactFromBlob(Reference<BlobWorkerData> bwData,
Reference<GranuleMetadata> metadata,
UID granuleID,
GranuleFiles files,
Version version) {
wait(delay(0, TaskPriority::BlobWorkerUpdateStorage));
if (BW_DEBUG) {
fmt::print("Compacting snapshot from blob for [{0} - {1})\n",
metadata->keyRange.begin.printable().c_str(),
metadata->keyRange.end.printable().c_str());
}
ASSERT(!files.snapshotFiles.empty());
ASSERT(!files.deltaFiles.empty());
state Arena filenameArena;
state BlobGranuleChunkRef chunk;
state int64_t compactBytesRead = 0;
state Version snapshotVersion = files.snapshotFiles.back().version;
BlobFileIndex snapshotF = files.snapshotFiles.back();
ASSERT(snapshotVersion < version);
chunk.snapshotFile = BlobFilePointerRef(filenameArena, snapshotF.filename, snapshotF.offset, snapshotF.length);
compactBytesRead += snapshotF.length;
int deltaIdx = files.deltaFiles.size() - 1;
while (deltaIdx >= 0 && files.deltaFiles[deltaIdx].version > snapshotVersion) {
deltaIdx--;
}
deltaIdx++;
Version lastDeltaVersion = invalidVersion;
while (deltaIdx < files.deltaFiles.size() && files.deltaFiles[deltaIdx].version <= version) {
BlobFileIndex deltaF = files.deltaFiles[deltaIdx];
chunk.deltaFiles.emplace_back_deep(filenameArena, deltaF.filename, deltaF.offset, deltaF.length);
compactBytesRead += deltaF.length;
lastDeltaVersion = files.deltaFiles[deltaIdx].version;
deltaIdx++;
}
ASSERT(lastDeltaVersion == version);
chunk.includedVersion = version;
if (BW_DEBUG) {
fmt::print("Re-snapshotting [{0} - {1}) @ {2} from blob\n",
metadata->keyRange.begin.printable(),
metadata->keyRange.end.printable(),
version);
}
loop {
try {
state PromiseStream<RangeResult> rowsStream;
state Future<BlobFileIndex> snapshotWriter = writeSnapshot(bwData,
metadata->keyRange,
granuleID,
metadata->originalEpoch,
metadata->originalSeqno,
version,
rowsStream,
false);
RangeResult newGranule =
wait(readBlobGranule(chunk, metadata->keyRange, version, bwData->bstore, &bwData->stats));
bwData->stats.bytesReadFromS3ForCompaction += compactBytesRead;
rowsStream.send(std::move(newGranule));
rowsStream.sendError(end_of_stream());
BlobFileIndex f = wait(snapshotWriter);
DEBUG_KEY_RANGE("BlobWorkerBlobSnapshot", version, metadata->keyRange, bwData->id);
return f;
} catch (Error& e) {
if (BW_DEBUG) {
fmt::print("Compacting snapshot from blob for [{0} - {1}) got error {2}\n",
metadata->keyRange.begin.printable(),
metadata->keyRange.end.printable(),
e.name());
}
throw e;
}
}
}
ACTOR Future<BlobFileIndex> checkSplitAndReSnapshot(Reference<BlobWorkerData> bwData,
Reference<GranuleMetadata> metadata,
UID granuleID,
int64_t bytesInNewDeltaFiles,
Future<BlobFileIndex> lastDeltaBeforeSnapshot,
int64_t versionsSinceLastSnapshot) {
BlobFileIndex lastDeltaIdx = wait(lastDeltaBeforeSnapshot);
state Version reSnapshotVersion = lastDeltaIdx.version;
while (!bwData->statusStreamInitialized) {
wait(bwData->currentManagerStatusStream.onChange());
}
wait(delay(0, TaskPriority::BlobWorkerUpdateFDB));
if (BW_DEBUG) {
fmt::print("Granule [{0} - {1}) checking with BM for re-snapshot after {2} bytes\n",
metadata->keyRange.begin.printable(),
metadata->keyRange.end.printable(),
metadata->bytesInNewDeltaFiles);
}
TraceEvent("BlobGranuleSnapshotCheck", bwData->id)
.detail("Granule", metadata->keyRange)
.detail("Version", reSnapshotVersion);
// Save these from the start so repeated requests are idempotent
// Need to retry in case response is dropped or manager changes. Eventually, a manager will
// either reassign the range with continue=true, or will revoke the range. But, we will keep the
// range open at this version for reads until that assignment change happens
metadata->resumeSnapshot.reset();
state int64_t statusEpoch = metadata->continueEpoch;
state int64_t statusSeqno = metadata->continueSeqno;
// If two snapshots happen without a split within a low time interval, this granule is "write-hot"
// FIXME: If a rollback happens, this could incorrectly identify a hot granule as not hot. This should be rare
// though and is just less efficient.
state bool writeHot = versionsSinceLastSnapshot <= SERVER_KNOBS->BG_HOT_SNAPSHOT_VERSIONS;
loop {
loop {
try {
loop {
choose {
when(wait(bwData->currentManagerStatusStream.get().onReady())) { break; }
when(wait(bwData->currentManagerStatusStream.onChange())) {}
}
}
bwData->currentManagerStatusStream.get().send(GranuleStatusReply(metadata->keyRange,
true,
writeHot,
statusEpoch,
statusSeqno,
granuleID,
metadata->initialSnapshotVersion,
reSnapshotVersion));
break;
} catch (Error& e) {
if (e.code() == error_code_operation_cancelled) {
throw e;
}
TEST(true); // Blob worker re-sending split evaluation to manager after not error/not hearing back
// if we got broken promise while waiting, the old stream was killed, so we don't need to wait on
// change, just retry
if (e.code() == error_code_broken_promise) {
wait(delay(FLOW_KNOBS->PREVENT_FAST_SPIN_DELAY));
} else {
wait(bwData->currentManagerStatusStream.onChange());
}
}
}
choose {
when(wait(bwData->currentManagerStatusStream.onChange())) {}
when(wait(metadata->resumeSnapshot.getFuture())) { break; }
when(wait(delay(1.0))) {}
}
if (BW_DEBUG) {
fmt::print("Granule [{0} - {1})\n, hasn't heard back from BM in BW {2}, re-sending status\n",
metadata->keyRange.begin.printable(),
metadata->keyRange.end.printable(),
bwData->id.toString());
}
}
if (BW_DEBUG) {
fmt::print("Granule [{0} - {1}) re-snapshotting after {2} bytes\n",
metadata->keyRange.begin.printable(),
metadata->keyRange.end.printable(),
bytesInNewDeltaFiles);
}
TraceEvent("BlobGranuleSnapshotFile", bwData->id)
.detail("Granule", metadata->keyRange)
.detail("Version", metadata->durableDeltaVersion.get());
// wait for file updater to make sure that last delta file is in the metadata before
while (metadata->files.deltaFiles.empty() || metadata->files.deltaFiles.back().version < reSnapshotVersion) {
wait(delay(FLOW_KNOBS->PREVENT_FAST_SPIN_DELAY));
}
BlobFileIndex reSnapshotIdx =
wait(compactFromBlob(bwData, metadata, granuleID, metadata->files, reSnapshotVersion));
return reSnapshotIdx;
}
ACTOR Future<Void> handleCompletedDeltaFile(Reference<BlobWorkerData> bwData,
Reference<GranuleMetadata> metadata,
BlobFileIndex completedDeltaFile,
Key cfKey,
Version cfStartVersion,
std::deque<std::pair<Version, Version>>* rollbacksCompleted) {
metadata->files.deltaFiles.push_back(completedDeltaFile);
ASSERT(metadata->durableDeltaVersion.get() < completedDeltaFile.version);
metadata->durableDeltaVersion.set(completedDeltaFile.version);
if (completedDeltaFile.version > cfStartVersion) {
if (BW_DEBUG) {
fmt::print("Popping change feed {0} at {1}\n", cfKey.printable(), completedDeltaFile.version);
}
// FIXME: for a write-hot shard, we could potentially batch these and only pop the largest one after several
// have completed
// FIXME: also have these be async, have each pop change feed wait on the prior one, wait on them before
// re-snapshotting
Future<Void> popFuture = bwData->db->popChangeFeedMutations(cfKey, completedDeltaFile.version);
wait(popFuture);
}
while (!rollbacksCompleted->empty() && completedDeltaFile.version >= rollbacksCompleted->front().second) {
fmt::print("Granule [{0} - {1}) on BW {2} completed rollback {3} -> {4} with delta file {5}\n",
metadata->keyRange.begin.printable().c_str(),
metadata->keyRange.end.printable().c_str(),
bwData->id.toString().substr(0, 5).c_str(),
rollbacksCompleted->front().second,
rollbacksCompleted->front().first,
completedDeltaFile.version);
rollbacksCompleted->pop_front();
}
return Void();
}
// if we get an i/o error updating files, or a rollback, reassign the granule to ourselves and start fresh
static bool granuleCanRetry(const Error& e) {
switch (e.code()) {
case error_code_please_reboot:
case error_code_io_error:
case error_code_io_timeout:
case error_code_http_request_failed:
return true;
default:
return false;
};
}
struct InFlightFile {
Future<BlobFileIndex> future;
Version version;
uint64_t bytes;
bool snapshot;
InFlightFile(Future<BlobFileIndex> future, Version version, uint64_t bytes, bool snapshot)
: future(future), version(version), bytes(bytes), snapshot(snapshot) {}
};
static Version doGranuleRollback(Reference<GranuleMetadata> metadata,
Version mutationVersion,
Version rollbackVersion,
std::deque<InFlightFile>& inFlightFiles,
std::deque<std::pair<Version, Version>>& rollbacksInProgress,
std::deque<std::pair<Version, Version>>& rollbacksCompleted) {
Version cfRollbackVersion;
if (metadata->pendingDeltaVersion > rollbackVersion) {
// if we already started writing mutations to a delta or snapshot file with version > rollbackVersion,
// we need to rescind those delta file writes
ASSERT(!inFlightFiles.empty());
cfRollbackVersion = metadata->durableDeltaVersion.get();
metadata->pendingSnapshotVersion = metadata->durableSnapshotVersion.get();
int toPop = 0;
bool pendingSnapshot = false;
for (auto& f : inFlightFiles) {
if (f.snapshot) {
if (f.version > rollbackVersion) {
TEST(true); // Granule rollback cancelling snapshot file
if (BW_DEBUG) {
fmt::print("[{0} - {1}) rollback cancelling snapshot file @ {2}\n",
metadata->keyRange.begin.printable(),
metadata->keyRange.end.printable(),
f.version);
}
f.future.cancel();
toPop++;
} else {
metadata->pendingSnapshotVersion = f.version;
metadata->bytesInNewDeltaFiles = 0;
pendingSnapshot = true;
}
} else {
if (f.version > rollbackVersion) {
f.future.cancel();
if (!pendingSnapshot) {
metadata->bytesInNewDeltaFiles -= f.bytes;
}
toPop++;
TEST(true); // Granule rollback cancelling delta file
if (BW_DEBUG) {
fmt::print("[{0} - {1}) rollback cancelling delta file @ {2}\n",
metadata->keyRange.begin.printable(),
metadata->keyRange.end.printable(),
f.version);
}
} else {
ASSERT(f.version > cfRollbackVersion);
cfRollbackVersion = f.version;
if (pendingSnapshot) {
metadata->bytesInNewDeltaFiles += f.bytes;
}
}
}
}
ASSERT(toPop > 0);
while (toPop > 0) {
inFlightFiles.pop_back();
toPop--;
}
metadata->pendingDeltaVersion = cfRollbackVersion;
if (BW_DEBUG) {
fmt::print("[{0} - {1}) rollback discarding all {2} in-memory mutations\n",
metadata->keyRange.begin.printable(),
metadata->keyRange.end.printable(),
metadata->currentDeltas.size());
}
// discard all in-memory mutations
metadata->currentDeltas = Standalone<GranuleDeltas>();
metadata->bufferedDeltaBytes = 0;
metadata->bufferedDeltaVersion = cfRollbackVersion;
// Track that this rollback happened, since we have to re-read mutations up to the rollback
// Add this rollback to in progress, and put all completed ones back in progress
rollbacksInProgress.push_back(std::pair(rollbackVersion, mutationVersion));
while (!rollbacksCompleted.empty()) {
if (rollbacksCompleted.back().first >= cfRollbackVersion) {
rollbacksInProgress.push_front(rollbacksCompleted.back());
rollbacksCompleted.pop_back();
} else {
// some rollbacks in completed could still have a delta file in flight after this rollback, they should
// remain in completed
break;
}
}
} else {
// No pending delta files to discard, just in-memory mutations
TEST(true); // Granule rollback discarding in memory mutations
// FIXME: could binary search?
int mIdx = metadata->currentDeltas.size() - 1;
while (mIdx >= 0) {
if (metadata->currentDeltas[mIdx].version <= rollbackVersion) {
break;
}
for (auto& m : metadata->currentDeltas[mIdx].mutations) {
metadata->bufferedDeltaBytes -= m.totalSize();
}
mIdx--;
}
mIdx++;
if (BW_DEBUG) {
fmt::print("[{0} - {1}) rollback discarding {2} in-memory mutations, {3} mutations and {4} bytes left\n",
metadata->keyRange.begin.printable(),
metadata->keyRange.end.printable(),
metadata->currentDeltas.size() - mIdx,
mIdx,
metadata->bufferedDeltaBytes);
}
metadata->currentDeltas.resize(metadata->currentDeltas.arena(), mIdx);
// delete all deltas in rollback range, but we can optimize here to just skip the uncommitted mutations
// directly and immediately pop the rollback out of inProgress to completed
metadata->bufferedDeltaVersion = rollbackVersion;
cfRollbackVersion = mutationVersion;
rollbacksCompleted.push_back(std::pair(rollbackVersion, mutationVersion));
}
if (BW_DEBUG) {
fmt::print("[{0} - {1}) finishing rollback to {2}\n",
metadata->keyRange.begin.printable(),
metadata->keyRange.end.printable(),
cfRollbackVersion);
}
return cfRollbackVersion;
}
ACTOR Future<Void> waitOnCFVersion(Reference<GranuleMetadata> metadata, Version waitVersion) {
loop {
try {
// if not valid, we're about to be cancelled anyway
state Future<Void> atLeast = metadata->activeCFData.get().isValid()
? metadata->activeCFData.get()->whenAtLeast(waitVersion)
: Never();
choose {
when(wait(atLeast)) { break; }
when(wait(metadata->activeCFData.onChange())) {}
}
} catch (Error& e) {
if (e.code() == error_code_operation_cancelled || e.code() == error_code_change_feed_popped) {
throw e;
}
// if waiting on a parent granule change feed and we change to the child, the parent will get end_of_stream,
// which could cause this waiting whenAtLeast to get change_feed_cancelled. We should simply retry and wait
// a bit, as blobGranuleUpdateFiles will switch to the new change feed
wait(delay(0.05));
}
}
// stop after change feed callback
wait(delay(0, TaskPriority::BlobWorkerReadChangeFeed));
return Void();
}
ACTOR Future<Void> waitCommittedGrv(Reference<BlobWorkerData> bwData,
Reference<GranuleMetadata> metadata,
Version version) {
if (version > bwData->grvVersion.get()) {
// this order is important, since we need to register a waiter on the notified version before waking the GRV
// actor
Future<Void> grvAtLeast = bwData->grvVersion.whenAtLeast(version);
Promise<Void> doGrvCheck = bwData->doGRVCheck;
if (doGrvCheck.canBeSet()) {
doGrvCheck.send(Void());
}
wait(grvAtLeast);
}
Version grvVersion = bwData->grvVersion.get();
wait(waitOnCFVersion(metadata, grvVersion));
return Void();
}
ACTOR Future<Void> waitVersionCommitted(Reference<BlobWorkerData> bwData,
Reference<GranuleMetadata> metadata,
Version version) {
// If GRV is way in the future, we know we can't roll back more than 5 seconds (or whatever this knob is set to)
// worth of versions
wait(waitCommittedGrv(bwData, metadata, version) ||
waitOnCFVersion(metadata, version + SERVER_KNOBS->MAX_READ_TRANSACTION_LIFE_VERSIONS));
if (version > metadata->knownCommittedVersion) {
metadata->knownCommittedVersion = version;
}
return Void();
}
// updater for a single granule
// TODO: this is getting kind of large. Should try to split out this actor if it continues to grow?
ACTOR Future<Void> blobGranuleUpdateFiles(Reference<BlobWorkerData> bwData,
Reference<GranuleMetadata> metadata,
Future<GranuleStartState> assignFuture) {
state std::deque<InFlightFile> inFlightFiles;
state Future<Void> oldChangeFeedFuture;
state Future<Void> changeFeedFuture;
state GranuleStartState startState;
state bool readOldChangeFeed;
state Optional<std::pair<KeyRange, UID>> oldChangeFeedDataComplete;
state Key cfKey;
state Optional<Key> oldCFKey;
state int pendingSnapshots = 0;
state std::deque<std::pair<Version, Version>> rollbacksInProgress;
state std::deque<std::pair<Version, Version>> rollbacksCompleted;
state bool snapshotEligible; // just wrote a delta file or just took granule over from another worker
state bool justDidRollback = false;
try {
// set resume snapshot so it's not valid until we pause to ask the blob manager for a re-snapshot
metadata->resumeSnapshot.send(Void());
// before starting, make sure worker persists range assignment and acquires the granule lock
GranuleStartState _info = wait(assignFuture);
startState = _info;
wait(delay(0, TaskPriority::BlobWorkerUpdateStorage));
cfKey = granuleIDToCFKey(startState.granuleID);
if (startState.parentGranule.present()) {
oldCFKey = granuleIDToCFKey(startState.parentGranule.get().second);
}
if (BW_DEBUG) {
fmt::print("Granule File Updater Starting for [{0} - {1}) @ ({2}, {3}):\n",
metadata->keyRange.begin.printable(),
metadata->keyRange.end.printable(),
metadata->originalEpoch,
metadata->originalSeqno);
fmt::print(" CFID: {}\n", startState.granuleID.toString());
fmt::print(" CF Start Version: {}\n", startState.changeFeedStartVersion);
fmt::print(" Previous Durable Version: {}\n", startState.previousDurableVersion);
fmt::print(" doSnapshot={}\n", startState.doSnapshot ? "T" : "F");
fmt::print(" Prev CFID: {}\n",
startState.parentGranule.present() ? startState.parentGranule.get().second.toString().c_str()
: "");
fmt::print(" blobFilesToSnapshot={}\n", startState.blobFilesToSnapshot.present() ? "T" : "F");
}
state Version startVersion;
state BlobFileIndex newSnapshotFile;
// if this is a reassign, calculate how close to a snapshot the previous owner was
if (startState.existingFiles.present()) {
GranuleFiles files = startState.existingFiles.get();
if (!files.snapshotFiles.empty() && !files.deltaFiles.empty()) {
Version snapshotVersion = files.snapshotFiles.back().version;
for (int i = files.deltaFiles.size() - 1; i >= 0; i--) {
if (files.deltaFiles[i].version > snapshotVersion) {
metadata->bytesInNewDeltaFiles += files.deltaFiles[i].length;
}
}
}
metadata->files = startState.existingFiles.get();
snapshotEligible = true;
}
if (!startState.doSnapshot) {
TEST(true); // Granule moved without split
startVersion = startState.previousDurableVersion;
ASSERT(!metadata->files.snapshotFiles.empty());
metadata->pendingSnapshotVersion = metadata->files.snapshotFiles.back().version;
metadata->durableSnapshotVersion.set(metadata->pendingSnapshotVersion);
metadata->initialSnapshotVersion = metadata->files.snapshotFiles.front().version;
} else {
if (startState.blobFilesToSnapshot.present()) {
startVersion = startState.previousDurableVersion;
Future<BlobFileIndex> inFlightBlobSnapshot = compactFromBlob(
bwData, metadata, startState.granuleID, startState.blobFilesToSnapshot.get(), startVersion);
inFlightFiles.push_back(InFlightFile(inFlightBlobSnapshot, startVersion, 0, true));
pendingSnapshots++;
metadata->durableSnapshotVersion.set(startState.blobFilesToSnapshot.get().snapshotFiles.back().version);
} else {
ASSERT(startState.previousDurableVersion == invalidVersion);
BlobFileIndex fromFDB = wait(dumpInitialSnapshotFromFDB(bwData, metadata, startState.granuleID, cfKey));
newSnapshotFile = fromFDB;
ASSERT(startState.changeFeedStartVersion <= fromFDB.version);
startVersion = newSnapshotFile.version;
metadata->files.snapshotFiles.push_back(newSnapshotFile);
metadata->durableSnapshotVersion.set(startVersion);
wait(yield(TaskPriority::BlobWorkerUpdateStorage));
}
metadata->initialSnapshotVersion = startVersion;
metadata->pendingSnapshotVersion = startVersion;
}
metadata->durableDeltaVersion.set(startVersion);
metadata->pendingDeltaVersion = startVersion;
metadata->bufferedDeltaVersion = startVersion;
metadata->knownCommittedVersion = startVersion;
Reference<ChangeFeedData> cfData = makeReference<ChangeFeedData>();
if (startState.parentGranule.present() && startVersion < startState.changeFeedStartVersion) {
// read from parent change feed up until our new change feed is started
// Required to have canReadPopped = false, otherwise another granule can take over the change feed, and pop
// it. That could cause this worker to think it has the full correct set of data if it then reads the data,
// until it checks the granule lock again.
// passing false for canReadPopped means we will get an exception if we try to read any popped data, killing
// this actor
readOldChangeFeed = true;
oldChangeFeedFuture = bwData->db->getChangeFeedStream(cfData,
oldCFKey.get(),
startVersion + 1,
startState.changeFeedStartVersion,
metadata->keyRange,
bwData->changeFeedStreamReplyBufferSize,
false);
} else {
readOldChangeFeed = false;
changeFeedFuture = bwData->db->getChangeFeedStream(cfData,
cfKey,
startVersion + 1,
MAX_VERSION,
metadata->keyRange,
bwData->changeFeedStreamReplyBufferSize,
false);
}
// Start actors BEFORE setting new change feed data to ensure the change feed data is properly initialized by
// the client
metadata->activeCFData.set(cfData);
ASSERT(metadata->readable.canBeSet());
metadata->readable.send(Void());
loop {
// check outstanding snapshot/delta files for completion
while (inFlightFiles.size() > 0) {
if (inFlightFiles.front().future.isReady()) {
BlobFileIndex completedFile = wait(inFlightFiles.front().future);
if (inFlightFiles.front().snapshot) {
if (metadata->files.deltaFiles.empty()) {
ASSERT(completedFile.version == metadata->initialSnapshotVersion);
} else {
ASSERT(completedFile.version == metadata->files.deltaFiles.back().version);
}
metadata->files.snapshotFiles.push_back(completedFile);
metadata->durableSnapshotVersion.set(completedFile.version);
pendingSnapshots--;
} else {
wait(handleCompletedDeltaFile(bwData,
metadata,
completedFile,
cfKey,
startState.changeFeedStartVersion,
&rollbacksCompleted));
}
inFlightFiles.pop_front();
wait(yield(TaskPriority::BlobWorkerUpdateStorage));
} else {
break;
}
}
// inject delay into reading change feed stream
if (BUGGIFY_WITH_PROB(0.001)) {
wait(delay(deterministicRandom()->random01(), TaskPriority::BlobWorkerReadChangeFeed));
} else {
// FIXME: if we're already BlobWorkerReadChangeFeed, don't do a delay?
wait(delay(0, TaskPriority::BlobWorkerReadChangeFeed));
}
state Standalone<VectorRef<MutationsAndVersionRef>> mutations;
try {
// Even if there are no new mutations, there still might be readers waiting on durableDeltaVersion
// to advance. We need to check whether any outstanding files have finished so we don't wait on
// mutations forever
choose {
when(Standalone<VectorRef<MutationsAndVersionRef>> _mutations =
waitNext(metadata->activeCFData.get()->mutations.getFuture())) {
mutations = _mutations;
ASSERT(!mutations.empty());
if (readOldChangeFeed) {
ASSERT(mutations.back().version < startState.changeFeedStartVersion);
} else {
ASSERT(mutations.front().version >= startState.changeFeedStartVersion);
}
if (mutations.front().version <= metadata->bufferedDeltaVersion) {
fmt::print("ERROR: Mutations went backwards for granule [{0} - {1}). "
"bufferedDeltaVersion={2}, mutationVersion={3} !!!\n",
metadata->keyRange.begin.printable(),
metadata->keyRange.end.printable(),
metadata->bufferedDeltaVersion,
mutations.front().version);
}
ASSERT(mutations.front().version > metadata->bufferedDeltaVersion);
// If this assert trips we should have gotten change_feed_popped from SS and didn't
ASSERT(mutations.front().version >= metadata->activeCFData.get()->popVersion);
}
when(wait(inFlightFiles.empty() ? Never() : success(inFlightFiles.front().future))) {}
}
} catch (Error& e) {
// only error we should expect here is when we finish consuming old change feed
if (e.code() != error_code_end_of_stream) {
throw;
}
ASSERT(readOldChangeFeed);
readOldChangeFeed = false;
// set this so next delta file write updates granule split metadata to done
ASSERT(startState.parentGranule.present());
oldChangeFeedDataComplete = startState.parentGranule.get();
if (BW_DEBUG) {
fmt::print("Granule [{0} - {1}) switching to new change feed {2} @ {3}\n",
metadata->keyRange.begin.printable(),
metadata->keyRange.end.printable(),
startState.granuleID.toString(),
metadata->bufferedDeltaVersion);
}
Reference<ChangeFeedData> cfData = makeReference<ChangeFeedData>();
changeFeedFuture = bwData->db->getChangeFeedStream(cfData,
cfKey,
startState.changeFeedStartVersion,
MAX_VERSION,
metadata->keyRange,
bwData->changeFeedStreamReplyBufferSize,
false);
// Start actors BEFORE setting new change feed data to ensure the change feed data is properly
// initialized by the client
metadata->activeCFData.set(cfData);
}
// process mutations
if (!mutations.empty()) {
bool processedAnyMutations = false;
Version lastDeltaVersion = invalidVersion;
for (MutationsAndVersionRef deltas : mutations) {
// Buffer mutations at this version. There should not be multiple MutationsAndVersionRef with the
// same version
ASSERT(deltas.version > metadata->bufferedDeltaVersion);
ASSERT(deltas.version > lastDeltaVersion);
// FIXME: this assert isn't true - why
// ASSERT(!deltas.mutations.empty());
if (!deltas.mutations.empty()) {
if (deltas.mutations.size() == 1 && deltas.mutations.back().param1 == lastEpochEndPrivateKey) {
// Note rollbackVerision is durable, [rollbackVersion+1 - deltas.version] needs to be tossed
// For correctness right now, there can be no waits and yields either in rollback handling
// or in handleBlobGranuleFileRequest once waitForVersion has succeeded, otherwise this will
// race and clobber results
Version rollbackVersion;
BinaryReader br(deltas.mutations[0].param2, Unversioned());
br >> rollbackVersion;
ASSERT(rollbackVersion >= metadata->durableDeltaVersion.get());
if (!rollbacksInProgress.empty()) {
ASSERT(rollbacksInProgress.front().first == rollbackVersion);
ASSERT(rollbacksInProgress.front().second == deltas.version);
if (BW_DEBUG) {
fmt::print("Passed rollback {0} -> {1}\n", deltas.version, rollbackVersion);
}
rollbacksCompleted.push_back(rollbacksInProgress.front());
rollbacksInProgress.pop_front();
} else {
// FIXME: add counter for granule rollbacks and rollbacks skipped?
// explicitly check last delta in currentDeltas because lastVersion and
// bufferedDeltaVersion include empties
if (metadata->pendingDeltaVersion <= rollbackVersion &&
(metadata->currentDeltas.empty() ||
metadata->currentDeltas.back().version <= rollbackVersion)) {
if (BW_DEBUG) {
TEST(true); // Granule ignoring rollback
fmt::print(
"Granule [{0} - {1}) on BW {2} skipping rollback {3} -> {4} completely\n",
metadata->keyRange.begin.printable().c_str(),
metadata->keyRange.end.printable().c_str(),
bwData->id.toString().substr(0, 5).c_str(),
deltas.version,
rollbackVersion);
}
// Still have to add to rollbacksCompleted. If we later roll the granule back past
// this because of cancelling a delta file, we need to count this as in progress so
// we can match the rollback mutation to a rollbackInProgress when we restart the
// stream.
rollbacksCompleted.push_back(std::pair(rollbackVersion, deltas.version));
} else {
TEST(true); // Granule processing rollback
if (BW_DEBUG) {
fmt::print("[{0} - {1}) on BW {2} ROLLBACK @ {3} -> {4}\n",
metadata->keyRange.begin.printable(),
metadata->keyRange.end.printable(),
bwData->id.toString().substr(0, 5).c_str(),
deltas.version,
rollbackVersion);
TraceEvent(SevWarn, "GranuleRollback", bwData->id)
.detail("Granule", metadata->keyRange)
.detail("Version", deltas.version)
.detail("RollbackVersion", rollbackVersion);
}
Version cfRollbackVersion = doGranuleRollback(metadata,
deltas.version,
rollbackVersion,
inFlightFiles,
rollbacksInProgress,
rollbacksCompleted);
Reference<ChangeFeedData> cfData = makeReference<ChangeFeedData>();
if (!readOldChangeFeed && cfRollbackVersion < startState.changeFeedStartVersion) {
// It isn't possible to roll back across the parent/child feed boundary, but as
// part of rolling back we may need to cancel in-flight delta files, and those
// delta files may include stuff from before the parent/child boundary. So we
// have to go back to reading the old change feed
ASSERT(cfRollbackVersion >= startState.previousDurableVersion);
ASSERT(cfRollbackVersion >= metadata->durableDeltaVersion.get());
TEST(true); // rollback crossed change feed boundaries
readOldChangeFeed = true;
oldChangeFeedDataComplete.reset();
}
if (readOldChangeFeed) {
ASSERT(cfRollbackVersion < startState.changeFeedStartVersion);
oldChangeFeedFuture =
bwData->db->getChangeFeedStream(cfData,
oldCFKey.get(),
cfRollbackVersion + 1,
startState.changeFeedStartVersion,
metadata->keyRange,
bwData->changeFeedStreamReplyBufferSize,
false);
} else {
if (cfRollbackVersion < startState.changeFeedStartVersion) {
fmt::print("Rollback past CF start??. rollback={0}, start={1}\n",
cfRollbackVersion,
startState.changeFeedStartVersion);
}
ASSERT(cfRollbackVersion >= startState.changeFeedStartVersion);
changeFeedFuture =
bwData->db->getChangeFeedStream(cfData,
cfKey,
cfRollbackVersion + 1,
MAX_VERSION,
metadata->keyRange,
bwData->changeFeedStreamReplyBufferSize,
false);
}
// Start actors BEFORE setting new change feed data to ensure the change feed data
// is properly initialized by the client
metadata->activeCFData.set(cfData);
justDidRollback = true;
break;
}
}
} else if (!rollbacksInProgress.empty() && rollbacksInProgress.front().first < deltas.version &&
rollbacksInProgress.front().second > deltas.version) {
TEST(true); // Granule skipping mutations b/c prior rollback
if (BW_DEBUG) {
fmt::print("Skipping mutations @ {} b/c prior rollback\n", deltas.version);
}
} else {
for (auto& delta : deltas.mutations) {
metadata->bufferedDeltaBytes += delta.totalSize();
bwData->stats.changeFeedInputBytes += delta.totalSize();
bwData->stats.mutationBytesBuffered += delta.totalSize();
DEBUG_MUTATION("BlobWorkerBuffer", deltas.version, delta, bwData->id)
.detail("Granule", metadata->keyRange)
.detail("ChangeFeedID", readOldChangeFeed ? oldCFKey.get() : cfKey)
.detail("OldChangeFeed", readOldChangeFeed ? "T" : "F");
}
metadata->currentDeltas.push_back_deep(metadata->currentDeltas.arena(), deltas);
processedAnyMutations = true;
ASSERT(deltas.version != invalidVersion);
ASSERT(deltas.version > lastDeltaVersion);
lastDeltaVersion = deltas.version;
}
}
if (justDidRollback) {
break;
}
}
if (!justDidRollback && processedAnyMutations) {
// update buffered version
ASSERT(lastDeltaVersion != invalidVersion);
ASSERT(lastDeltaVersion > metadata->bufferedDeltaVersion);
// Update buffered delta version so new waitForVersion checks can bypass waiting entirely
metadata->bufferedDeltaVersion = lastDeltaVersion;
}
justDidRollback = false;
// Write a new delta file IF we have enough bytes
if (metadata->bufferedDeltaBytes >= SERVER_KNOBS->BG_DELTA_FILE_TARGET_BYTES) {
if (BW_DEBUG) {
fmt::print("Granule [{0} - {1}) flushing delta file after {2} bytes @ {3} {4}\n",
metadata->keyRange.begin.printable(),
metadata->keyRange.end.printable(),
metadata->bufferedDeltaBytes,
lastDeltaVersion,
oldChangeFeedDataComplete.present() ? ". Finalizing " : "");
}
TraceEvent("BlobGranuleDeltaFile", bwData->id)
.detail("Granule", metadata->keyRange)
.detail("Version", lastDeltaVersion);
// sanity check for version order
ASSERT(lastDeltaVersion >= metadata->currentDeltas.back().version);
ASSERT(metadata->pendingDeltaVersion < metadata->currentDeltas.front().version);
// launch pipelined, but wait for previous operation to complete before persisting to FDB
Future<BlobFileIndex> previousFuture;
if (!inFlightFiles.empty()) {
previousFuture = inFlightFiles.back().future;
} else {
previousFuture = Future<BlobFileIndex>(BlobFileIndex());
}
Future<BlobFileIndex> dfFuture =
writeDeltaFile(bwData,
metadata->keyRange,
startState.granuleID,
metadata->originalEpoch,
metadata->originalSeqno,
metadata->currentDeltas,
lastDeltaVersion,
previousFuture,
waitVersionCommitted(bwData, metadata, lastDeltaVersion),
oldChangeFeedDataComplete);
inFlightFiles.push_back(
InFlightFile(dfFuture, lastDeltaVersion, metadata->bufferedDeltaBytes, false));
oldChangeFeedDataComplete.reset();
// add new pending delta file
ASSERT(metadata->pendingDeltaVersion < lastDeltaVersion);
metadata->pendingDeltaVersion = lastDeltaVersion;
metadata->bytesInNewDeltaFiles += metadata->bufferedDeltaBytes;
bwData->stats.mutationBytesBuffered -= metadata->bufferedDeltaBytes;
// reset current deltas
metadata->currentDeltas = Standalone<GranuleDeltas>();
metadata->bufferedDeltaBytes = 0;
// if we just wrote a delta file, check if we need to compact here.
// exhaust old change feed before compacting - otherwise we could end up with an endlessly
// growing list of previous change feeds in the worst case.
snapshotEligible = true;
}
// FIXME: if we're still reading from old change feed, we should probably compact if we're making a
// bunch of extra delta files at some point, even if we don't consider it for a split yet
// If we have enough delta files, try to re-snapshot
if (snapshotEligible && metadata->bytesInNewDeltaFiles >= SERVER_KNOBS->BG_DELTA_BYTES_BEFORE_COMPACT &&
metadata->pendingDeltaVersion >= startState.changeFeedStartVersion) {
if (BW_DEBUG && !inFlightFiles.empty()) {
fmt::print("Granule [{0} - {1}) ready to re-snapshot at {2} after {3} > {4} bytes, waiting for "
"outstanding {5} files to finish\n",
metadata->keyRange.begin.printable(),
metadata->keyRange.end.printable(),
metadata->pendingDeltaVersion,
metadata->bytesInNewDeltaFiles,
SERVER_KNOBS->BG_DELTA_BYTES_BEFORE_COMPACT,
inFlightFiles.size());
}
// Speculatively assume we will get the range back. This is both a performance optimization, and
// necessary to keep consuming versions from the change feed so that we can realize
// our last delta file is committed and write it
Future<BlobFileIndex> previousFuture;
if (!inFlightFiles.empty()) {
previousFuture = inFlightFiles.back().future;
ASSERT(!inFlightFiles.back().snapshot);
} else {
previousFuture = Future<BlobFileIndex>(metadata->files.deltaFiles.back());
}
int64_t versionsSinceLastSnapshot =
metadata->pendingDeltaVersion - metadata->pendingSnapshotVersion;
Future<BlobFileIndex> inFlightBlobSnapshot = checkSplitAndReSnapshot(bwData,
metadata,
startState.granuleID,
metadata->bytesInNewDeltaFiles,
previousFuture,
versionsSinceLastSnapshot);
inFlightFiles.push_back(InFlightFile(inFlightBlobSnapshot, metadata->pendingDeltaVersion, 0, true));
pendingSnapshots++;
metadata->pendingSnapshotVersion = metadata->pendingDeltaVersion;
// reset metadata
metadata->bytesInNewDeltaFiles = 0;
// If we have more than one snapshot file and that file is unblocked (committedVersion >=
// snapshotVersion), wait for it to finish
if (pendingSnapshots > 1) {
state int waitIdx = 0;
int idx = 0;
Version safeVersion =
std::max(metadata->knownCommittedVersion,
metadata->bufferedDeltaVersion - SERVER_KNOBS->MAX_READ_TRANSACTION_LIFE_VERSIONS);
for (auto& f : inFlightFiles) {
if (f.snapshot && f.version < metadata->pendingSnapshotVersion &&
f.version <= safeVersion) {
if (BW_DEBUG) {
fmt::print("[{0} - {1}) Waiting on previous snapshot file @ {2} <= {3}\n",
metadata->keyRange.begin.printable(),
metadata->keyRange.end.printable(),
f.version,
safeVersion);
}
waitIdx = idx + 1;
}
idx++;
}
while (waitIdx > 0) {
TEST(true); // Granule blocking on previous snapshot
// TODO don't duplicate code
BlobFileIndex completedFile = wait(inFlightFiles.front().future);
if (inFlightFiles.front().snapshot) {
if (metadata->files.deltaFiles.empty()) {
ASSERT(completedFile.version == metadata->initialSnapshotVersion);
} else {
ASSERT(completedFile.version == metadata->files.deltaFiles.back().version);
}
metadata->files.snapshotFiles.push_back(completedFile);
metadata->durableSnapshotVersion.set(completedFile.version);
pendingSnapshots--;
} else {
wait(handleCompletedDeltaFile(bwData,
metadata,
completedFile,
cfKey,
startState.changeFeedStartVersion,
&rollbacksCompleted));
}
inFlightFiles.pop_front();
waitIdx--;
wait(yield(TaskPriority::BlobWorkerUpdateStorage));
}
}
} else if (snapshotEligible &&
metadata->bytesInNewDeltaFiles >= SERVER_KNOBS->BG_DELTA_BYTES_BEFORE_COMPACT) {
// if we're in the old change feed case and can't snapshot but we have enough data to, don't
// queue too many files in parallel, and slow down change feed consuming to let file writing
// catch up
TEST(true); // Granule processing long tail of old change feed
if (inFlightFiles.size() > 10 && inFlightFiles.front().version <= metadata->knownCommittedVersion) {
if (BW_DEBUG) {
fmt::print("[{0} - {1}) Waiting on delta file b/c old change feed\n",
metadata->keyRange.begin.printable(),
metadata->keyRange.end.printable());
}
choose {
when(BlobFileIndex completedDeltaFile = wait(inFlightFiles.front().future)) {}
when(wait(delay(0.1))) {}
}
}
}
snapshotEligible = false;
}
}
} catch (Error& e) {
// Free last change feed data
metadata->activeCFData.set(Reference<ChangeFeedData>());
if (e.code() == error_code_operation_cancelled) {
throw;
}
if (metadata->cancelled.canBeSet()) {
metadata->cancelled.send(Void());
}
if (e.code() == error_code_granule_assignment_conflict) {
TraceEvent(SevInfo, "GranuleAssignmentConflict", bwData->id).detail("Granule", metadata->keyRange);
return Void();
}
++bwData->stats.granuleUpdateErrors;
if (BW_DEBUG) {
fmt::print("Granule file updater for [{0} - {1}) got error {2}, exiting\n",
metadata->keyRange.begin.printable(),
metadata->keyRange.end.printable(),
e.name());
}
if (granuleCanRetry(e)) {
TEST(true); // Granule close and re-open on error
TraceEvent("GranuleFileUpdaterRetriableError", bwData->id)
.error(e)
.detail("Granule", metadata->keyRange)
.detail("GranuleID", startState.granuleID);
// explicitly cancel all outstanding write futures BEFORE updating promise stream, to ensure they
// can't update files after the re-assigned granule acquires the lock
// do it backwards though because future depends on previous one, so it could cause a cascade
for (int i = inFlightFiles.size() - 1; i >= 0; i--) {
inFlightFiles[i].future.cancel();
}
// if we retry and re-open, we need to use a normal request (no continue) and update the
// seqno
metadata->originalReq.managerEpoch = metadata->continueEpoch;
metadata->originalReq.managerSeqno = metadata->continueSeqno;
metadata->originalReq.type = AssignRequestType::Normal;
bwData->granuleUpdateErrors.send(metadata->originalReq);
throw e;
}
TraceEvent(SevError, "GranuleFileUpdaterUnexpectedError", bwData->id)
.error(e)
.detail("Granule", metadata->keyRange)
.detail("GranuleID", startState.granuleID);
ASSERT_WE_THINK(false);
// if not simulation, kill the BW
if (bwData->fatalError.canBeSet()) {
bwData->fatalError.sendError(e);
}
throw e;
}
}
// walk graph back to previous known version
// Once loaded, go reverse up stack inserting each into the graph and setting its parent pointer.
// if a racing granule already loaded a prefix of the history, skip inserting entries already present
ACTOR Future<Void> blobGranuleLoadHistory(Reference<BlobWorkerData> bwData,
Reference<GranuleMetadata> metadata,
Future<GranuleStartState> assignFuture) {
try {
GranuleStartState startState = wait(assignFuture);
state Optional<GranuleHistory> activeHistory = startState.history;
if (activeHistory.present() && activeHistory.get().value.parentGranules.size() > 0) {
state Transaction tr(bwData->db);
state GranuleHistory curHistory = activeHistory.get();
ASSERT(activeHistory.get().value.parentGranules.size() == 1);
state Version stopVersion;
auto prev = bwData->granuleHistory.rangeContaining(metadata->keyRange.begin);
// FIXME: not true for merges
ASSERT(prev.begin() <= metadata->keyRange.begin && prev.end() >= metadata->keyRange.end);
stopVersion = prev.value().isValid() ? prev.value()->startVersion : invalidVersion;
state std::vector<Reference<GranuleHistoryEntry>> historyEntryStack;
// while the start version of the current granule's parent not past the last known start version,
// walk backwards
while (curHistory.value.parentGranules.size() > 0 &&
curHistory.value.parentGranules[0].second >= stopVersion) {
state GranuleHistory next;
loop {
try {
Optional<Value> v = wait(tr.get(blobGranuleHistoryKeyFor(
curHistory.value.parentGranules[0].first, curHistory.value.parentGranules[0].second)));
ASSERT(v.present());
next = GranuleHistory(curHistory.value.parentGranules[0].first,
curHistory.value.parentGranules[0].second,
decodeBlobGranuleHistoryValue(v.get()));
break;
} catch (Error& e) {
wait(tr.onError(e));
}
}
ASSERT(next.version != invalidVersion);
// granule next.granuleID goes from the version range [next.version, curHistory.version]
historyEntryStack.push_back(makeReference<GranuleHistoryEntry>(
next.range, next.value.granuleID, next.version, curHistory.version));
curHistory = next;
}
if (!historyEntryStack.empty()) {
Version oldestStartVersion = historyEntryStack.back()->startVersion;
ASSERT(stopVersion == oldestStartVersion || stopVersion == invalidVersion);
} else {
ASSERT(stopVersion == invalidVersion);
}
// go back up stack and apply history entries from oldest to newest, skipping ranges that were already
// applied by other racing loads.
// yielding in this loop would mean we'd need to re-check for load races
auto prev2 = bwData->granuleHistory.rangeContaining(metadata->keyRange.begin);
// FIXME: not true for merges
ASSERT(prev2.begin() <= metadata->keyRange.begin && prev2.end() >= metadata->keyRange.end);
stopVersion = prev2.value().isValid() ? prev2.value()->startVersion : invalidVersion;
int i = historyEntryStack.size() - 1;
while (i >= 0 && historyEntryStack[i]->startVersion <= stopVersion) {
TEST(true); // Granule skipping history entries loaded by parallel reader
i--;
}
int skipped = historyEntryStack.size() - 1 - i;
while (i >= 0) {
auto prevRanges = bwData->granuleHistory.rangeContaining(historyEntryStack[i]->range.begin);
// sanity check
ASSERT(!prevRanges.value().isValid() ||
prevRanges.value()->endVersion == historyEntryStack[i]->startVersion);
historyEntryStack[i]->parentGranule = prevRanges.value();
bwData->granuleHistory.insert(historyEntryStack[i]->range, historyEntryStack[i]);
i--;
}
if (BW_DEBUG) {
fmt::print("Loaded {0} history entries for granule [{1} - {2}) ({3} skipped)\n",
historyEntryStack.size(),
metadata->keyRange.begin.printable(),
metadata->keyRange.end.printable(),
skipped);
}
}
metadata->historyLoaded.send(Void());
return Void();
} catch (Error& e) {
if (e.code() == error_code_operation_cancelled) {
throw e;
}
if (e.code() == error_code_granule_assignment_conflict) {
return Void();
}
// SplitStorageMetrics explicitly has a SevError if it gets an error, so no errors should propagate here
TraceEvent(SevError, "BlobWorkerUnexpectedErrorLoadGranuleHistory", bwData->id).error(e);
ASSERT_WE_THINK(false);
// if not simulation, kill the BW
if (bwData->fatalError.canBeSet()) {
bwData->fatalError.sendError(e);
}
throw e;
}
}
// TODO might want to separate this out for valid values for range assignments vs read requests. Assignment conflict
// isn't valid for read requests but is for assignments
namespace {
bool canReplyWith(Error e) {
switch (e.code()) {
case error_code_blob_granule_transaction_too_old:
case error_code_transaction_too_old:
case error_code_future_version: // not thrown yet
case error_code_wrong_shard_server:
case error_code_process_behind: // not thrown yet
return true;
default:
return false;
};
}
} // namespace
// assumes metadata is already readable and the query is reading from the active granule, not a history one
ACTOR Future<Void> waitForVersion(Reference<GranuleMetadata> metadata, Version v) {
// if we don't have to wait for change feed version to catch up or wait for any pending file writes to complete,
// nothing to do
ASSERT(metadata->activeCFData.get().isValid());
if (v <= metadata->activeCFData.get()->getVersion() &&
(v <= metadata->durableDeltaVersion.get() ||
metadata->durableDeltaVersion.get() == metadata->pendingDeltaVersion) &&
(v <= metadata->durableSnapshotVersion.get() ||
metadata->durableSnapshotVersion.get() == metadata->pendingSnapshotVersion)) {
TEST(true); // Granule read not waiting
return Void();
}
// wait for change feed version to catch up to ensure we have all data
if (metadata->activeCFData.get()->getVersion() < v) {
wait(metadata->activeCFData.get()->whenAtLeast(v));
ASSERT(metadata->activeCFData.get()->getVersion() >= v);
}
// wait for any pending delta and snapshot files as of the moment the change feed version caught up.
state Version pendingDeltaV = metadata->pendingDeltaVersion;
state Version pendingSnapshotV = metadata->pendingSnapshotVersion;
// If there are mutations that are no longer buffered but have not been
// persisted to a delta file that are necessary for the query, wait for them
if (pendingDeltaV > metadata->durableDeltaVersion.get() && v > metadata->durableDeltaVersion.get()) {
TEST(true); // Granule read waiting for pending delta
wait(metadata->durableDeltaVersion.whenAtLeast(pendingDeltaV));
ASSERT(metadata->durableDeltaVersion.get() >= pendingDeltaV);
}
// This isn't strictly needed, but if we're in the process of re-snapshotting, we'd likely rather
// return that snapshot file than the previous snapshot file and all its delta files.
if (pendingSnapshotV > metadata->durableSnapshotVersion.get() && v > metadata->durableSnapshotVersion.get()) {
TEST(true); // Granule read waiting for pending snapshot
wait(metadata->durableSnapshotVersion.whenAtLeast(pendingSnapshotV));
ASSERT(metadata->durableSnapshotVersion.get() >= pendingSnapshotV);
}
// There is a race here - we wait for pending delta files before this to finish, but while we do, we
// kick off another delta file and roll the mutations. In that case, we must return the new delta
// file instead of in memory mutations, so we wait for that delta file to complete
if (metadata->pendingDeltaVersion >= v) {
TEST(true); // Granule mutations flushed while waiting for files to complete
wait(metadata->durableDeltaVersion.whenAtLeast(v));
ASSERT(metadata->durableDeltaVersion.get() >= v);
}
return Void();
}
ACTOR Future<Void> doBlobGranuleFileRequest(Reference<BlobWorkerData> bwData, BlobGranuleFileRequest req) {
if (BW_REQUEST_DEBUG) {
fmt::print("BW {0} processing blobGranuleFileRequest for range [{1} - {2}) @ {3}\n",
bwData->id.toString(),
req.keyRange.begin.printable(),
req.keyRange.end.printable(),
req.readVersion);
}
try {
// TODO REMOVE in api V2
ASSERT(req.beginVersion == 0);
state BlobGranuleFileReply rep;
state std::vector<Reference<GranuleMetadata>> granules;
auto checkRanges = bwData->granuleMetadata.intersectingRanges(req.keyRange);
// check for gaps as errors and copy references to granule metadata before yielding or doing any
// work
KeyRef lastRangeEnd = req.keyRange.begin;
for (auto& r : checkRanges) {
bool isValid = r.value().activeMetadata.isValid();
if (lastRangeEnd < r.begin() || !isValid) {
if (BW_REQUEST_DEBUG) {
fmt::print("No {0} blob data for [{1} - {2}) in request range [{3} - {4}), skipping request\n",
isValid ? "" : "valid",
lastRangeEnd.printable(),
r.begin().printable(),
req.keyRange.begin.printable(),
req.keyRange.end.printable());
}
throw wrong_shard_server();
}
granules.push_back(r.value().activeMetadata);
lastRangeEnd = r.end();
}
if (lastRangeEnd < req.keyRange.end) {
if (BW_REQUEST_DEBUG) {
fmt::print("No blob data for [{0} - {1}) in request range [{2} - {3}), skipping request\n",
lastRangeEnd.printable(),
req.keyRange.end.printable(),
req.keyRange.begin.printable(),
req.keyRange.end.printable());
}
throw wrong_shard_server();
}
// do work for each range
state Key readThrough = req.keyRange.begin;
for (auto m : granules) {
if (readThrough >= m->keyRange.end) {
// previous read did time travel that already included this granule
// FIXME: this will get more complicated with merges where this could potentially
// include partial boundaries. For now with only splits we can skip the whole range
continue;
}
state Reference<GranuleMetadata> metadata = m;
choose {
when(wait(metadata->readable.getFuture())) {}
when(wait(metadata->cancelled.getFuture())) { throw wrong_shard_server(); }
}
// in case both readable and cancelled are ready, check cancelled
if (!metadata->cancelled.canBeSet()) {
throw wrong_shard_server();
}
state KeyRange chunkRange;
state GranuleFiles chunkFiles;
if (metadata->initialSnapshotVersion > req.readVersion) {
TEST(true); // Granule Time Travel Read
// this is a time travel query, find previous granule
if (metadata->historyLoaded.canBeSet()) {
choose {
when(wait(metadata->historyLoaded.getFuture())) {}
when(wait(metadata->cancelled.getFuture())) { throw wrong_shard_server(); }
}
}
// FIXME: doesn't work once we add granule merging, could be multiple ranges and/or
// multiple parents
Key historySearchKey = std::max(req.keyRange.begin, metadata->keyRange.begin);
Reference<GranuleHistoryEntry> cur = bwData->granuleHistory.rangeContaining(historySearchKey).value();
// FIXME: use skip pointers here
Version expectedEndVersion = metadata->initialSnapshotVersion;
if (cur.isValid()) {
ASSERT(cur->endVersion == expectedEndVersion);
}
while (cur.isValid() && req.readVersion < cur->startVersion) {
// assert version of history is contiguous
ASSERT(cur->endVersion == expectedEndVersion);
expectedEndVersion = cur->startVersion;
cur = cur->parentGranule;
}
if (!cur.isValid()) {
// this request predates blob data
throw blob_granule_transaction_too_old();
}
if (BW_REQUEST_DEBUG) {
fmt::print("[{0} - {1}) @ {2} time traveled back to {3} [{4} - {5}) @ [{6} - {7})\n",
req.keyRange.begin.printable(),
req.keyRange.end.printable(),
req.readVersion,
cur->granuleID.toString(),
cur->range.begin.printable(),
cur->range.end.printable(),
cur->startVersion,
cur->endVersion);
}
ASSERT(cur->endVersion > req.readVersion);
ASSERT(cur->startVersion <= req.readVersion);
// lazily load files for old granule if not present
chunkRange = cur->range;
if (!cur->files.isValid() || cur->files.isError()) {
cur->files = loadHistoryFiles(bwData->db, cur->granuleID, BW_DEBUG);
}
choose {
when(GranuleFiles _f = wait(cur->files)) { chunkFiles = _f; }
when(wait(metadata->cancelled.getFuture())) { throw wrong_shard_server(); }
}
ASSERT(!chunkFiles.snapshotFiles.empty());
ASSERT(!chunkFiles.deltaFiles.empty());
ASSERT(chunkFiles.deltaFiles.back().version > req.readVersion);
ASSERT(chunkFiles.snapshotFiles.front().version <= req.readVersion);
} else {
TEST(true); // Granule Active Read
// this is an active granule query
loop {
if (!metadata->activeCFData.get().isValid() || !metadata->cancelled.canBeSet()) {
throw wrong_shard_server();
}
Future<Void> waitForVersionFuture = waitForVersion(metadata, req.readVersion);
if (waitForVersionFuture.isReady()) {
// didn't wait, so no need to check rollback stuff
break;
}
// rollback resets all of the version information, so we have to redo wait for
// version on rollback
try {
choose {
when(wait(waitForVersionFuture)) { break; }
when(wait(metadata->activeCFData.onChange())) {}
when(wait(metadata->cancelled.getFuture())) { throw wrong_shard_server(); }
}
} catch (Error& e) {
// We can get change feed cancelled from whenAtLeast. This means the change feed may retry, or
// may be cancelled. Wait a bit and try again to see
if (e.code() == error_code_change_feed_popped) {
TEST(true); // Change feed popped while read waiting
throw wrong_shard_server();
}
if (e.code() != error_code_change_feed_cancelled) {
throw e;
}
TEST(true); // Change feed switched while read waiting
// wait 1ms and try again
wait(delay(0.001));
}
if ((BW_REQUEST_DEBUG) && metadata->activeCFData.get().isValid()) {
fmt::print("{0} - {1}) @ {2} hit CF change, restarting waitForVersion\n",
req.keyRange.begin.printable().c_str(),
req.keyRange.end.printable().c_str(),
req.readVersion);
}
}
chunkFiles = metadata->files;
chunkRange = metadata->keyRange;
}
if (!metadata->cancelled.canBeSet()) {
fmt::print("ERROR: Request [{0} - {1}) @ {2} cancelled for granule [{3} - {4}) after waitForVersion!\n",
req.keyRange.begin.printable(),
req.keyRange.end.printable(),
req.readVersion,
metadata->keyRange.begin.printable(),
metadata->keyRange.end.printable());
}
// granule is up to date, do read
ASSERT(metadata->cancelled.canBeSet());
BlobGranuleChunkRef chunk;
// TODO change in V2
chunk.includedVersion = req.readVersion;
chunk.keyRange = KeyRangeRef(StringRef(rep.arena, chunkRange.begin), StringRef(rep.arena, chunkRange.end));
// handle snapshot files
// TODO refactor the "find snapshot file" logic to GranuleFiles?
// FIXME: binary search instead of linear search, especially when file count is large
int i = chunkFiles.snapshotFiles.size() - 1;
while (i >= 0 && chunkFiles.snapshotFiles[i].version > req.readVersion) {
i--;
}
// because of granule history, we should always be able to find the desired snapshot
// version, and have thrown blob_granule_transaction_too_old earlier if not possible.
if (i < 0) {
fmt::print("req @ {0} >= initial snapshot {1} but can't find snapshot in ({2}) files:\n",
req.readVersion,
metadata->initialSnapshotVersion,
chunkFiles.snapshotFiles.size());
for (auto& f : chunkFiles.snapshotFiles) {
fmt::print(" {0}", f.version);
}
}
ASSERT(i >= 0);
BlobFileIndex snapshotF = chunkFiles.snapshotFiles[i];
chunk.snapshotFile = BlobFilePointerRef(rep.arena, snapshotF.filename, snapshotF.offset, snapshotF.length);
Version snapshotVersion = chunkFiles.snapshotFiles[i].version;
chunk.snapshotVersion = snapshotVersion;
// handle delta files
// cast this to an int so i going to -1 still compares properly
int lastDeltaFileIdx = chunkFiles.deltaFiles.size() - 1;
i = lastDeltaFileIdx;
// skip delta files that are too new
while (i >= 0 && chunkFiles.deltaFiles[i].version > req.readVersion) {
i--;
}
if (i < lastDeltaFileIdx) {
// we skipped one file at the end with a larger read version, this will actually contain
// our query version, so add it back.
i++;
}
// only include delta files after the snapshot file
int j = i;
while (j >= 0 && chunkFiles.deltaFiles[j].version > snapshotVersion) {
j--;
}
j++;
while (j <= i) {
BlobFileIndex deltaF = chunkFiles.deltaFiles[j];
chunk.deltaFiles.emplace_back_deep(rep.arena, deltaF.filename, deltaF.offset, deltaF.length);
bwData->stats.readReqDeltaBytesReturned += deltaF.length;
j++;
}
// new deltas (if version is larger than version of last delta file)
// FIXME: do trivial key bounds here if key range is not fully contained in request key
// range
if (req.readVersion > metadata->durableDeltaVersion.get()) {
if (metadata->durableDeltaVersion.get() != metadata->pendingDeltaVersion) {
fmt::print("real-time read [{0} - {1}) @ {2} doesn't have mutations!! durable={3}, pending={4}\n",
metadata->keyRange.begin.printable(),
metadata->keyRange.end.printable(),
req.readVersion,
metadata->durableDeltaVersion.get(),
metadata->pendingDeltaVersion);
}
ASSERT(metadata->durableDeltaVersion.get() == metadata->pendingDeltaVersion);
rep.arena.dependsOn(metadata->currentDeltas.arena());
for (auto& delta : metadata->currentDeltas) {
if (delta.version > req.readVersion) {
break;
}
chunk.newDeltas.push_back_deep(rep.arena, delta);
}
}
rep.chunks.push_back(rep.arena, chunk);
bwData->stats.readReqTotalFilesReturned += chunk.deltaFiles.size() + int(chunk.snapshotFile.present());
readThrough = chunk.keyRange.end;
wait(yield(TaskPriority::DefaultEndpoint));
}
ASSERT(!req.reply.isSet());
req.reply.send(rep);
--bwData->stats.activeReadRequests;
} catch (Error& e) {
// fmt::print("Error in BGFRequest {0}\n", e.name());
if (e.code() == error_code_operation_cancelled) {
req.reply.sendError(wrong_shard_server());
throw;
}
if (e.code() == error_code_wrong_shard_server) {
++bwData->stats.wrongShardServer;
}
--bwData->stats.activeReadRequests;
if (canReplyWith(e)) {
req.reply.sendError(e);
} else {
throw e;
}
}
return Void();
}
ACTOR Future<Void> handleBlobGranuleFileRequest(Reference<BlobWorkerData> bwData, BlobGranuleFileRequest req) {
choose {
when(wait(doBlobGranuleFileRequest(bwData, req))) {}
when(wait(delay(SERVER_KNOBS->BLOB_WORKER_REQUEST_TIMEOUT))) {
if (!req.reply.isSet()) {
TEST(true); // Blob Worker request timeout hit
if (BW_DEBUG) {
fmt::print("BW {0} request [{1} - {2}) @ {3} timed out, sending WSS\n",
bwData->id.toString().substr(0, 5),
req.keyRange.begin.printable(),
req.keyRange.end.printable(),
req.readVersion);
}
--bwData->stats.activeReadRequests;
++bwData->stats.granuleRequestTimeouts;
// return wrong_shard_server because it's possible that someone else actually owns the granule now
req.reply.sendError(wrong_shard_server());
}
}
}
return Void();
}
// FIXME: move this up by other granule state stuff like BGUF
ACTOR Future<GranuleStartState> openGranule(Reference<BlobWorkerData> bwData, AssignBlobRangeRequest req) {
ASSERT(req.type != AssignRequestType::Continue);
state Transaction tr(bwData->db);
state Key lockKey = blobGranuleLockKeyFor(req.keyRange);
if (BW_DEBUG) {
fmt::print("{0} [{1} - {2}) opening\n",
bwData->id.toString(),
req.keyRange.begin.printable(),
req.keyRange.end.printable());
}
loop {
try {
tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr.setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE);
state GranuleStartState info;
info.changeFeedStartVersion = invalidVersion;
state Future<Optional<Value>> fLockValue = tr.get(lockKey);
Future<Optional<GranuleHistory>> fHistory = getLatestGranuleHistory(&tr, req.keyRange);
Optional<GranuleHistory> history = wait(fHistory);
info.history = history;
Optional<Value> prevLockValue = wait(fLockValue);
state bool hasPrevOwner = prevLockValue.present();
if (hasPrevOwner) {
TEST(true); // Granule open found previous owner
std::tuple<int64_t, int64_t, UID> prevOwner = decodeBlobGranuleLockValue(prevLockValue.get());
acquireGranuleLock(req.managerEpoch, req.managerSeqno, std::get<0>(prevOwner), std::get<1>(prevOwner));
info.granuleID = std::get<2>(prevOwner);
// if it's the first snapshot of a new granule, history won't be present
if (info.history.present()) {
ASSERT(info.granuleID == info.history.get().value.granuleID);
}
GranuleFiles granuleFiles = wait(loadPreviousFiles(&tr, info.granuleID));
info.existingFiles = granuleFiles;
info.doSnapshot = false;
if (!info.history.present()) {
// the only time history can be not present if a lock already exists is if it's a
// new granule and it died before it could persist the initial snapshot from FDB
ASSERT(info.existingFiles.get().snapshotFiles.empty());
}
if (info.existingFiles.get().snapshotFiles.empty()) {
ASSERT(info.existingFiles.get().deltaFiles.empty());
info.previousDurableVersion = invalidVersion;
info.doSnapshot = true;
} else if (info.existingFiles.get().deltaFiles.empty()) {
info.previousDurableVersion = info.existingFiles.get().snapshotFiles.back().version;
} else {
info.previousDurableVersion = info.existingFiles.get().deltaFiles.back().version;
}
// for the non-splitting cases, this doesn't need to be 100% accurate, it just needs to
// be smaller than the next delta file write.
info.changeFeedStartVersion = info.previousDurableVersion;
} else {
// else we are first, no need to check for owner conflict
if (info.history.present()) {
// if this granule is derived from a split or merge, this history entry is already
// present (written by the blob manager)
info.granuleID = info.history.get().value.granuleID;
} else {
// FIXME: could avoid max uid for granule ids here
// if this granule is not derived from a split or merge, create the granule id here
info.granuleID = deterministicRandom()->randomUniqueID();
}
wait(updateChangeFeed(
&tr, granuleIDToCFKey(info.granuleID), ChangeFeedStatus::CHANGE_FEED_CREATE, req.keyRange));
info.doSnapshot = true;
info.previousDurableVersion = invalidVersion;
}
tr.set(lockKey, blobGranuleLockValueFor(req.managerEpoch, req.managerSeqno, info.granuleID));
wait(krmSetRange(&tr, blobGranuleMappingKeys.begin, req.keyRange, blobGranuleMappingValueFor(bwData->id)));
// If anything in previousGranules, need to do the handoff logic and set
// ret.previousChangeFeedId, and the previous durable version will come from the previous
// granules
if (info.history.present() && info.history.get().value.parentGranules.size() > 0) {
TEST(true); // Granule open found parent
// TODO change this for merge
ASSERT(info.history.get().value.parentGranules.size() == 1);
state KeyRange parentGranuleRange = info.history.get().value.parentGranules[0].first;
Optional<Value> parentGranuleLockValue = wait(tr.get(blobGranuleLockKeyFor(parentGranuleRange)));
if (parentGranuleLockValue.present()) {
std::tuple<int64_t, int64_t, UID> parentGranuleLock =
decodeBlobGranuleLockValue(parentGranuleLockValue.get());
UID parentGranuleID = std::get<2>(parentGranuleLock);
if (BW_DEBUG) {
fmt::print(" parent granule id {}\n", parentGranuleID.toString());
}
info.parentGranule = std::pair(parentGranuleRange, parentGranuleID);
state std::pair<BlobGranuleSplitState, Version> granuleSplitState =
std::pair(BlobGranuleSplitState::Initialized, invalidVersion);
if (hasPrevOwner) {
std::pair<BlobGranuleSplitState, Version> _gss =
wait(getGranuleSplitState(&tr, parentGranuleID, info.granuleID));
granuleSplitState = _gss;
}
if (granuleSplitState.first == BlobGranuleSplitState::Assigned) {
TEST(true); // Granule open found granule in assign state
// was already assigned, use change feed start version
ASSERT(granuleSplitState.second > 0);
info.changeFeedStartVersion = granuleSplitState.second;
} else if (granuleSplitState.first == BlobGranuleSplitState::Initialized) {
TEST(true); // Granule open found granule in initialized state
wait(updateGranuleSplitState(&tr,
info.parentGranule.get().first,
info.parentGranule.get().second,
info.granuleID,
BlobGranuleSplitState::Assigned));
// change feed was created as part of this transaction, changeFeedStartVersion
// will be set later
} else {
TEST(true); // Granule open found granule in done state
// this sub-granule is done splitting, no need for split logic.
info.parentGranule.reset();
}
}
if (info.doSnapshot) {
ASSERT(info.parentGranule.present());
// only need to do snapshot if no files exist yet for this granule.
ASSERT(info.previousDurableVersion == invalidVersion);
GranuleFiles prevFiles = wait(loadPreviousFiles(&tr, info.parentGranule.get().second));
ASSERT(!prevFiles.snapshotFiles.empty() || !prevFiles.deltaFiles.empty());
info.blobFilesToSnapshot = prevFiles;
info.previousDurableVersion = info.blobFilesToSnapshot.get().deltaFiles.empty()
? info.blobFilesToSnapshot.get().snapshotFiles.back().version
: info.blobFilesToSnapshot.get().deltaFiles.back().version;
}
}
wait(tr.commit());
if (info.changeFeedStartVersion == invalidVersion) {
info.changeFeedStartVersion = tr.getCommittedVersion();
}
TraceEvent("GranuleOpen", bwData->id).detail("Granule", req.keyRange);
return info;
} catch (Error& e) {
if (e.code() == error_code_granule_assignment_conflict) {
throw e;
}
wait(tr.onError(e));
}
}
}
ACTOR Future<Void> start(Reference<BlobWorkerData> bwData, GranuleRangeMetadata* meta, AssignBlobRangeRequest req) {
ASSERT(meta->activeMetadata.isValid());
meta->activeMetadata->originalReq = req;
meta->assignFuture = openGranule(bwData, req);
meta->fileUpdaterFuture = blobGranuleUpdateFiles(bwData, meta->activeMetadata, meta->assignFuture);
meta->historyLoaderFuture = blobGranuleLoadHistory(bwData, meta->activeMetadata, meta->assignFuture);
wait(success(meta->assignFuture));
return Void();
}
static GranuleRangeMetadata constructActiveBlobRange(Reference<BlobWorkerData> bwData,
KeyRange keyRange,
int64_t epoch,
int64_t seqno) {
Reference<GranuleMetadata> newMetadata = makeReference<GranuleMetadata>();
newMetadata->keyRange = keyRange;
// FIXME: original Epoch/Seqno is now not necessary with originalReq
newMetadata->originalEpoch = epoch;
newMetadata->originalSeqno = seqno;
newMetadata->continueEpoch = epoch;
newMetadata->continueSeqno = seqno;
return GranuleRangeMetadata(epoch, seqno, newMetadata);
}
static GranuleRangeMetadata constructInactiveBlobRange(int64_t epoch, int64_t seqno) {
return GranuleRangeMetadata(epoch, seqno, Reference<GranuleMetadata>());
}
// ignore stale assignments and make repeating the same one idempotent
static bool newerRangeAssignment(GranuleRangeMetadata oldMetadata, int64_t epoch, int64_t seqno) {
return epoch > oldMetadata.lastEpoch || (epoch == oldMetadata.lastEpoch && seqno > oldMetadata.lastSeqno);
}
// TODO unit test this assignment, particularly out-of-order insertions!
// The contract from the blob manager is:
// If a key range [A, B) was assigned to the worker at seqno S1, no part of the keyspace that intersects
// [A, B] may be re-assigned to the worker until the range has been revoked from this worker. This
// revoking can either happen by the blob manager willingly relinquishing the range, or by the blob
// manager reassigning it somewhere else. This means that if the worker gets an assignment for any range
// that intersects [A, B) at S3, there must have been a revoke message for [A, B) with seqno S3 where S1
// < S2 < S3, that was delivered out of order. This means that if there are any intersecting but not
// fully overlapping ranges with a new range assignment, they had already been revoked. So the worker
// will mark them as revoked, but leave the sequence number as S1, so that when the actual revoke
// message comes in, it is a no-op, but updates the sequence number. Similarly, if a worker gets an
// assign message for any range that already has a higher sequence number, that range was either
// revoked, or revoked and then re-assigned. Either way, this assignment is no longer valid.
// Returns future to wait on to ensure prior work of other granules is done before responding to the
// manager with a successful assignment And if the change produced a new granule that needs to start
// doing work, returns the new granule so that the caller can start() it with the appropriate starting
// state.
// Not an actor because we need to guarantee it changes the synchronously as part of the request
static bool changeBlobRange(Reference<BlobWorkerData> bwData,
KeyRange keyRange,
int64_t epoch,
int64_t seqno,
bool active,
bool disposeOnCleanup,
bool selfReassign,
std::vector<Future<Void>>& toWaitOut,
Optional<AssignRequestType> assignType = Optional<AssignRequestType>()) {
ASSERT(active == assignType.present());
if (BW_DEBUG) {
fmt::print("{0} range for [{1} - {2}): {3} @ ({4}, {5})\n",
selfReassign ? "Re-assigning" : "Changing",
keyRange.begin.printable(),
keyRange.end.printable(),
active ? "T" : "F",
epoch,
seqno);
}
// For each range that intersects this update:
// If the identical range already exists at the same assignment sequence number and it is not a
// self-reassign, this is a noop. Otherwise, this will consist of a series of ranges that are either
// older, or newer. For each older range, cancel it if it is active. Insert the current range.
// Re-insert all newer ranges over the current range.
std::vector<std::pair<KeyRange, GranuleRangeMetadata>> newerRanges;
auto ranges = bwData->granuleMetadata.intersectingRanges(keyRange);
bool alreadyAssigned = false;
for (auto& r : ranges) {
bool thisAssignmentNewer = newerRangeAssignment(r.value(), epoch, seqno);
if (BW_DEBUG) {
fmt::print("thisAssignmentNewer={}\n", thisAssignmentNewer ? "true" : "false");
}
if (BW_DEBUG) {
fmt::print("last: ({0}, {1}). now: ({2}, {3})\n", r.value().lastEpoch, r.value().lastSeqno, epoch, seqno);
}
if (r.value().lastEpoch == epoch && r.value().lastSeqno == seqno) {
// the range in our map can be different if later the range was split, but then an old request gets retried.
// Assume that it's the same as initially
if (selfReassign) {
thisAssignmentNewer = true;
} else {
if (BW_DEBUG) {
printf("same assignment\n");
}
// applied the same assignment twice, make idempotent
if (r.value().activeMetadata.isValid()) {
toWaitOut.push_back(success(r.value().assignFuture));
}
alreadyAssigned = true;
break;
}
}
if (r.value().activeMetadata.isValid() && thisAssignmentNewer) {
// cancel actors for old range and clear reference
if (BW_DEBUG) {
fmt::print(" [{0} - {1}): @ ({2}, {3}) (cancelling)\n",
r.begin().printable(),
r.end().printable(),
r.value().lastEpoch,
r.value().lastSeqno);
}
if (!active) {
bwData->stats.numRangesAssigned--;
}
r.value().cancel();
} else if (!thisAssignmentNewer) {
// re-insert the known newer range over this existing range
newerRanges.push_back(std::pair(r.range(), r.value()));
}
}
if (alreadyAssigned) {
return false;
}
// if range is active, and isn't surpassed by a newer range already, insert an active range
GranuleRangeMetadata newMetadata = (active && newerRanges.empty())
? constructActiveBlobRange(bwData, keyRange, epoch, seqno)
: constructInactiveBlobRange(epoch, seqno);
bwData->granuleMetadata.insert(keyRange, newMetadata);
if (BW_DEBUG) {
fmt::print("Inserting new range [{0} - {1}): {2} @ ({3}, {4})\n",
keyRange.begin.printable(),
keyRange.end.printable(),
newMetadata.activeMetadata.isValid() ? "T" : "F",
newMetadata.lastEpoch,
newMetadata.lastSeqno);
}
for (auto& it : newerRanges) {
if (BW_DEBUG) {
fmt::print("Re-inserting newer range [{0} - {1}): {2} @ ({3}, {4})\n",
it.first.begin.printable(),
it.first.end.printable(),
it.second.activeMetadata.isValid() ? "T" : "F",
it.second.lastEpoch,
it.second.lastSeqno);
}
bwData->granuleMetadata.insert(it.first, it.second);
}
return newerRanges.size() == 0;
}
static bool resumeBlobRange(Reference<BlobWorkerData> bwData, KeyRange keyRange, int64_t epoch, int64_t seqno) {
auto existingRange = bwData->granuleMetadata.rangeContaining(keyRange.begin);
// if range boundaries don't match, or this (epoch, seqno) is old or the granule is inactive, ignore
if (keyRange.begin != existingRange.begin() || keyRange.end != existingRange.end() ||
existingRange.value().lastEpoch > epoch ||
(existingRange.value().lastEpoch == epoch && existingRange.value().lastSeqno > seqno) ||
!existingRange.value().activeMetadata.isValid()) {
if (BW_DEBUG) {
fmt::print(
"BW {0} got out of date resume range for [{1} - {2}) @ ({3}, {4}). Currently [{5} - {6}) @ ({7}, "
"{8}): {9}\n",
bwData->id.toString(),
existingRange.begin().printable(),
existingRange.end().printable(),
existingRange.value().lastEpoch,
existingRange.value().lastSeqno,
keyRange.begin.printable(),
keyRange.end.printable(),
epoch,
seqno,
existingRange.value().activeMetadata.isValid() ? "T" : "F");
}
return false;
}
if (existingRange.value().lastEpoch != epoch || existingRange.value().lastSeqno != seqno) {
// update the granule metadata map, and the continueEpoch/seqno. Saves an extra transaction
existingRange.value().lastEpoch = epoch;
existingRange.value().lastSeqno = seqno;
existingRange.value().activeMetadata->continueEpoch = epoch;
existingRange.value().activeMetadata->continueSeqno = seqno;
existingRange.value().activeMetadata->resume();
}
// else we already processed this continue, do nothing
return true;
}
// the contract of handleRangeAssign and handleRangeRevoke is that they change the mapping before doing any waiting.
// This ensures GetGranuleAssignment returns an up-to-date set of ranges
ACTOR Future<Void> handleRangeAssign(Reference<BlobWorkerData> bwData,
AssignBlobRangeRequest req,
bool isSelfReassign) {
try {
if (req.type == AssignRequestType::Continue) {
resumeBlobRange(bwData, req.keyRange, req.managerEpoch, req.managerSeqno);
} else {
std::vector<Future<Void>> toWait;
state bool shouldStart = changeBlobRange(bwData,
req.keyRange,
req.managerEpoch,
req.managerSeqno,
true,
false,
isSelfReassign,
toWait,
req.type);
wait(waitForAll(toWait));
if (shouldStart) {
bwData->stats.numRangesAssigned++;
auto m = bwData->granuleMetadata.rangeContaining(req.keyRange.begin);
ASSERT(m.begin() == req.keyRange.begin && m.end() == req.keyRange.end);
if (m.value().activeMetadata.isValid()) {
wait(start(bwData, &m.value(), req));
}
}
}
if (!isSelfReassign) {
ASSERT(!req.reply.isSet());
req.reply.send(Void());
}
return Void();
} catch (Error& e) {
if (e.code() == error_code_operation_cancelled) {
throw e;
}
if (BW_DEBUG) {
fmt::print("AssignRange [{0} - {1}) ({2}, {3}) in BW {4} got error {5}\n",
req.keyRange.begin.printable().c_str(),
req.keyRange.end.printable().c_str(),
req.managerEpoch,
req.managerSeqno,
bwData->id.toString().c_str(),
e.name());
}
if (!isSelfReassign) {
if (e.code() == error_code_granule_assignment_conflict) {
req.reply.sendError(e);
bwData->stats.numRangesAssigned--;
return Void();
}
if (canReplyWith(e)) {
req.reply.sendError(e);
}
}
TraceEvent(SevError, "BlobWorkerUnexpectedErrorRangeAssign", bwData->id)
.error(e)
.detail("Range", req.keyRange)
.detail("ManagerEpoch", req.managerEpoch)
.detail("SeqNo", req.managerSeqno);
ASSERT_WE_THINK(false);
// if not simulation, kill the BW
if (bwData->fatalError.canBeSet()) {
bwData->fatalError.sendError(e);
}
throw e;
}
}
ACTOR Future<Void> handleRangeRevoke(Reference<BlobWorkerData> bwData, RevokeBlobRangeRequest req) {
try {
std::vector<Future<Void>> toWait;
changeBlobRange(bwData, req.keyRange, req.managerEpoch, req.managerSeqno, false, req.dispose, false, toWait);
wait(waitForAll(toWait));
req.reply.send(Void());
return Void();
} catch (Error& e) {
// FIXME: retry on error if dispose fails?
if (BW_DEBUG) {
fmt::print("RevokeRange [{0} - {1}) ({2}, {3}) got error {4}\n",
req.keyRange.begin.printable(),
req.keyRange.end.printable(),
req.managerEpoch,
req.managerSeqno,
e.name());
}
if (canReplyWith(e)) {
req.reply.sendError(e);
}
throw;
}
}
ACTOR Future<Void> registerBlobWorker(Reference<BlobWorkerData> bwData, BlobWorkerInterface interf) {
state Reference<ReadYourWritesTransaction> tr = makeReference<ReadYourWritesTransaction>(bwData->db);
loop {
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr->setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE);
try {
Key blobWorkerListKey = blobWorkerListKeyFor(interf.id());
// FIXME: should be able to remove this conflict range
tr->addReadConflictRange(singleKeyRange(blobWorkerListKey));
tr->set(blobWorkerListKey, blobWorkerListValue(interf));
wait(tr->commit());
if (BW_DEBUG) {
fmt::print("Registered blob worker {}\n", interf.id().toString());
}
return Void();
} catch (Error& e) {
if (BW_DEBUG) {
fmt::print("Registering blob worker {0} got error {1}\n", interf.id().toString(), e.name());
}
wait(tr->onError(e));
}
}
}
ACTOR Future<Void> monitorRemoval(Reference<BlobWorkerData> bwData) {
state Key blobWorkerListKey = blobWorkerListKeyFor(bwData->id);
loop {
loop {
state ReadYourWritesTransaction tr(bwData->db);
try {
tr.setOption(FDBTransactionOptions::READ_SYSTEM_KEYS);
tr.setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE);
Optional<Value> val = wait(tr.get(blobWorkerListKey));
if (!val.present()) {
TEST(true); // Blob worker found out BM killed it from reading DB
return Void();
}
state Future<Void> watchFuture = tr.watch(blobWorkerListKey);
wait(tr.commit());
wait(watchFuture);
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
}
// Because change feeds send uncommitted data and explicit rollback messages, we speculatively buffer/write
// uncommitted data. This means we must ensure the data is actually committed before "committing" those writes in
// the blob granule. The simplest way to do this is to have the blob worker do a periodic GRV, which is guaranteed
// to be an earlier committed version. Then, once the change feed has consumed up through the GRV's data, we can
// guarantee nothing will roll back the in-memory mutations
ACTOR Future<Void> runGRVChecks(Reference<BlobWorkerData> bwData) {
state Transaction tr(bwData->db);
loop {
// only do grvs to get committed version if we need it to persist delta files
while (bwData->grvVersion.numWaiting() == 0) {
wait(bwData->doGRVCheck.getFuture());
bwData->doGRVCheck = Promise<Void>();
}
// batch potentially multiple delta files into one GRV, and also rate limit GRVs for this worker
wait(delay(SERVER_KNOBS->BLOB_WORKER_BATCH_GRV_INTERVAL));
tr.reset();
try {
Version readVersion = wait(tr.getReadVersion());
ASSERT(readVersion >= bwData->grvVersion.get());
bwData->grvVersion.set(readVersion);
++bwData->stats.commitVersionChecks;
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
static void handleGetGranuleAssignmentsRequest(Reference<BlobWorkerData> self,
const GetGranuleAssignmentsRequest& req) {
GetGranuleAssignmentsReply reply;
auto allRanges = self->granuleMetadata.intersectingRanges(normalKeys);
for (auto& it : allRanges) {
if (it.value().activeMetadata.isValid()) {
// range is active, copy into reply's arena
StringRef start = StringRef(reply.arena, it.begin());
StringRef end = StringRef(reply.arena, it.end());
reply.assignments.push_back(
reply.arena, GranuleAssignmentRef(KeyRangeRef(start, end), it.value().lastEpoch, it.value().lastSeqno));
}
}
if (BW_DEBUG) {
fmt::print("Worker {0} sending {1} granule assignments back to BM {2}\n",
self->id.toString(),
reply.assignments.size(),
req.managerEpoch);
}
req.reply.send(reply);
}
ACTOR Future<Void> blobWorker(BlobWorkerInterface bwInterf,
ReplyPromise<InitializeBlobWorkerReply> recruitReply,
Reference<AsyncVar<ServerDBInfo> const> dbInfo) {
state Reference<BlobWorkerData> self(
new BlobWorkerData(bwInterf.id(), openDBOnServer(dbInfo, TaskPriority::DefaultEndpoint, LockAware::True)));
self->id = bwInterf.id();
self->locality = bwInterf.locality;
state Future<Void> collection = actorCollection(self->addActor.getFuture());
if (BW_DEBUG) {
printf("Initializing blob worker s3 stuff\n");
}
try {
if (BW_DEBUG) {
fmt::print("BW constructing backup container from {0}\n", SERVER_KNOBS->BG_URL);
}
self->bstore = BackupContainerFileSystem::openContainerFS(SERVER_KNOBS->BG_URL);
if (BW_DEBUG) {
printf("BW constructed backup container\n");
}
// register the blob worker to the system keyspace
wait(registerBlobWorker(self, bwInterf));
} catch (Error& e) {
if (BW_DEBUG) {
fmt::print("BW got backup container init error {0}\n", e.name());
}
// if any errors came up while initializing the blob worker, let the blob manager know
// that recruitment failed
if (!recruitReply.isSet()) {
recruitReply.sendError(recruitment_failed());
}
throw e;
}
// By now, we know that initialization was successful, so
// respond to the initialization request with the interface itself
// Note: this response gets picked up by the blob manager
InitializeBlobWorkerReply rep;
rep.interf = bwInterf;
recruitReply.send(rep);
self->addActor.send(waitFailureServer(bwInterf.waitFailure.getFuture()));
self->addActor.send(runGRVChecks(self));
state Future<Void> selfRemoved = monitorRemoval(self);
TraceEvent("BlobWorkerInit", self->id).log();
try {
loop choose {
when(BlobGranuleFileRequest req = waitNext(bwInterf.blobGranuleFileRequest.getFuture())) {
++self->stats.readRequests;
++self->stats.activeReadRequests;
self->addActor.send(handleBlobGranuleFileRequest(self, req));
}
when(state GranuleStatusStreamRequest req = waitNext(bwInterf.granuleStatusStreamRequest.getFuture())) {
if (self->managerEpochOk(req.managerEpoch)) {
if (BW_DEBUG) {
fmt::print("Worker {0} got new granule status endpoint {1} from BM {2}\n",
self->id.toString(),
req.reply.getEndpoint().token.toString().c_str(),
req.managerEpoch);
}
// send an error to the old stream before closing it, so it doesn't get broken_promise and mark this
// endpoint as failed
self->currentManagerStatusStream.get().sendError(connection_failed());
// TODO: pick a reasonable byte limit instead of just piggy-backing
req.reply.setByteLimit(SERVER_KNOBS->BLOBWORKERSTATUSSTREAM_LIMIT_BYTES);
self->statusStreamInitialized = true;
self->currentManagerStatusStream.set(req.reply);
} else {
req.reply.sendError(blob_manager_replaced());
}
}
when(AssignBlobRangeRequest _req = waitNext(bwInterf.assignBlobRangeRequest.getFuture())) {
++self->stats.rangeAssignmentRequests;
state AssignBlobRangeRequest assignReq = _req;
if (BW_DEBUG) {
fmt::print("Worker {0} assigned range [{1} - {2}) @ ({3}, {4}):\n type={5}\n",
self->id.toString(),
assignReq.keyRange.begin.printable(),
assignReq.keyRange.end.printable(),
assignReq.managerEpoch,
assignReq.managerSeqno,
assignReq.type);
}
if (self->managerEpochOk(assignReq.managerEpoch)) {
self->addActor.send(handleRangeAssign(self, assignReq, false));
} else {
assignReq.reply.sendError(blob_manager_replaced());
}
}
when(RevokeBlobRangeRequest _req = waitNext(bwInterf.revokeBlobRangeRequest.getFuture())) {
state RevokeBlobRangeRequest revokeReq = _req;
if (BW_DEBUG) {
fmt::print("Worker {0} revoked range [{1} - {2}) @ ({3}, {4}):\n dispose={5}\n",
self->id.toString(),
revokeReq.keyRange.begin.printable(),
revokeReq.keyRange.end.printable(),
revokeReq.managerEpoch,
revokeReq.managerSeqno,
revokeReq.dispose ? "T" : "F");
}
if (self->managerEpochOk(revokeReq.managerEpoch)) {
self->addActor.send(handleRangeRevoke(self, revokeReq));
} else {
revokeReq.reply.sendError(blob_manager_replaced());
}
}
when(AssignBlobRangeRequest granuleToReassign = waitNext(self->granuleUpdateErrors.getFuture())) {
self->addActor.send(handleRangeAssign(self, granuleToReassign, true));
}
when(GetGranuleAssignmentsRequest req = waitNext(bwInterf.granuleAssignmentsRequest.getFuture())) {
if (self->managerEpochOk(req.managerEpoch)) {
if (BW_DEBUG) {
fmt::print("Worker {0} got granule assignments request from BM {1}\n",
self->id.toString(),
req.managerEpoch);
}
handleGetGranuleAssignmentsRequest(self, req);
} else {
req.reply.sendError(blob_manager_replaced());
}
}
when(HaltBlobWorkerRequest req = waitNext(bwInterf.haltBlobWorker.getFuture())) {
if (self->managerEpochOk(req.managerEpoch)) {
TraceEvent("BlobWorkerHalted", self->id)
.detail("ReqID", req.requesterID)
.detail("ManagerEpoch", req.managerEpoch);
if (BW_DEBUG) {
fmt::print("BW {0} was halted by manager {1}\n", bwInterf.id().toString(), req.managerEpoch);
}
req.reply.send(Void());
break;
} else {
req.reply.sendError(blob_manager_replaced());
}
}
when(wait(collection)) {
TraceEvent("BlobWorkerActorCollectionError", self->id);
ASSERT(false);
throw internal_error();
}
when(wait(selfRemoved)) {
if (BW_DEBUG) {
printf("Blob worker detected removal. Exiting...\n");
}
TraceEvent("BlobWorkerRemoved", self->id);
break;
}
when(wait(self->fatalError.getFuture())) {
TraceEvent(SevError, "BlobWorkerActorCollectionFatalErrorNotError", self->id);
ASSERT(false);
}
}
} catch (Error& e) {
if (e.code() == error_code_operation_cancelled) {
self->granuleMetadata.clear();
throw;
}
if (BW_DEBUG) {
printf("Blob worker got error %s. Exiting...\n", e.name());
}
TraceEvent("BlobWorkerDied", self->id).errorUnsuppressed(e);
}
wait(self->granuleMetadata.clearAsync());
return Void();
}
// TODO add unit tests for assign/revoke range, especially version ordering