foundationdb/fdbserver/masterserver.actor.cpp

1421 lines
60 KiB
C++

/*
* masterserver.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "flow/ActorCollection.h"
#include "fdbrpc/PerfMetric.h"
#include "flow/Trace.h"
#include "fdbrpc/FailureMonitor.h"
#include "fdbclient/NativeAPI.h"
#include "fdbclient/Notified.h"
#include "fdbclient/SystemData.h"
#include "fdbserver/ConflictSet.h"
#include "fdbserver/DataDistribution.h"
#include "fdbserver/Knobs.h"
#include <iterator>
#include "fdbserver/WaitFailure.h"
#include "fdbserver/WorkerInterface.h"
#include "fdbserver/Ratekeeper.h"
#include "fdbserver/ClusterRecruitmentInterface.h"
#include "fdbserver/ServerDBInfo.h"
#include "fdbserver/CoordinatedState.h"
#include "fdbserver/CoordinationInterface.h" // copy constructors for ServerCoordinators class
#include "fdbrpc/sim_validation.h"
#include "fdbserver/DBCoreState.h"
#include "fdbserver/LogSystem.h"
#include "fdbserver/LogSystemDiskQueueAdapter.h"
#include "fdbserver/IKeyValueStore.h"
#include "fdbserver/ApplyMetadataMutation.h"
#include "fdbserver/RecoveryState.h"
#include "flow/actorcompiler.h" // This must be the last #include.
using std::vector;
using std::min;
using std::max;
struct ProxyVersionReplies {
std::map<uint64_t, GetCommitVersionReply> replies;
NotifiedVersion latestRequestNum;
ProxyVersionReplies(ProxyVersionReplies&& r) noexcept(true) : replies(std::move(r.replies)), latestRequestNum(std::move(r.latestRequestNum)) {}
void operator=(ProxyVersionReplies&& r) noexcept(true) { replies = std::move(r.replies); latestRequestNum = std::move(r.latestRequestNum); }
ProxyVersionReplies() : latestRequestNum(0) {}
};
ACTOR Future<Void> masterTerminateOnConflict( UID dbgid, Promise<Void> fullyRecovered, Future<Void> onConflict, Future<Void> switchedState ) {
choose {
when( wait(onConflict) ) {
if (!fullyRecovered.isSet()) {
TraceEvent("MasterTerminated", dbgid).detail("Reason", "Conflict");
TEST(true); // Coordinated state conflict, master dying
throw worker_removed();
}
return Void();
}
when( wait(switchedState) ) {
return Void();
}
}
}
class ReusableCoordinatedState : NonCopyable {
public:
Promise<Void> fullyRecovered;
DBCoreState prevDBState;
DBCoreState myDBState;
bool finalWriteStarted;
Future<Void> previousWrite;
ReusableCoordinatedState( ServerCoordinators const& coordinators, PromiseStream<Future<Void>> const& addActor, UID const& dbgid ) : coordinators(coordinators), cstate(coordinators), addActor(addActor), dbgid(dbgid), finalWriteStarted(false), previousWrite(Void()) {}
Future<Void> read() {
return _read(this);
}
Future<Void> write(DBCoreState newState, bool finalWrite = false) {
previousWrite = _write(this, newState, finalWrite);
return previousWrite;
}
Future<Void> move( ClusterConnectionString const& nc ) {
return cstate.move(nc);
}
private:
MovableCoordinatedState cstate;
ServerCoordinators coordinators;
PromiseStream<Future<Void>> addActor;
Promise<Void> switchedState;
UID dbgid;
ACTOR Future<Void> _read(ReusableCoordinatedState* self) {
Value prevDBStateRaw = wait( self->cstate.read() );
Future<Void> onConflict = masterTerminateOnConflict( self->dbgid, self->fullyRecovered, self->cstate.onConflict(), self->switchedState.getFuture() );
if(onConflict.isReady() && onConflict.isError()) {
throw onConflict.getError();
}
self->addActor.send( onConflict );
if( prevDBStateRaw.size() ) {
self->prevDBState = BinaryReader::fromStringRef<DBCoreState>(prevDBStateRaw, IncludeVersion());
self->myDBState = self->prevDBState;
}
return Void();
}
ACTOR Future<Void> _write(ReusableCoordinatedState* self, DBCoreState newState, bool finalWrite) {
if(self->finalWriteStarted) {
wait( Future<Void>(Never()) );
}
if(finalWrite) {
self->finalWriteStarted = true;
}
try {
wait( self->cstate.setExclusive( BinaryWriter::toValue(newState, IncludeVersion()) ) );
} catch (Error& e) {
TEST(true); // Master displaced during writeMasterState
throw;
}
self->myDBState = newState;
if(!finalWrite) {
self->switchedState.send(Void());
self->cstate = MovableCoordinatedState(self->coordinators);
Value rereadDBStateRaw = wait( self->cstate.read() );
DBCoreState readState;
if( rereadDBStateRaw.size() )
readState = BinaryReader::fromStringRef<DBCoreState>(rereadDBStateRaw, IncludeVersion());
if( readState != newState ) {
TraceEvent("MasterTerminated", self->dbgid).detail("Reason", "CStateChanged");
TEST(true); // Coordinated state changed between writing and reading, master dying
throw worker_removed();
}
self->switchedState = Promise<Void>();
self->addActor.send( masterTerminateOnConflict( self->dbgid, self->fullyRecovered, self->cstate.onConflict(), self->switchedState.getFuture() ) );
} else {
self->fullyRecovered.send(Void());
}
return Void();
}
};
struct MasterData : NonCopyable, ReferenceCounted<MasterData> {
UID dbgid;
AsyncTrigger registrationTrigger;
Version lastEpochEnd, // The last version in the old epoch not (to be) rolled back in this recovery
recoveryTransactionVersion; // The first version in this epoch
double lastCommitTime;
DatabaseConfiguration originalConfiguration;
DatabaseConfiguration configuration;
std::vector<Optional<Key>> primaryDcId;
std::vector<Optional<Key>> remoteDcIds;
bool hasConfiguration;
ServerCoordinators coordinators;
Reference< ILogSystem > logSystem;
Version version; // The last version assigned to a proxy by getVersion()
double lastVersionTime;
LogSystemDiskQueueAdapter* txnStateLogAdapter;
IKeyValueStore* txnStateStore;
int64_t memoryLimit;
std::map<Optional<Value>,int8_t> dcId_locality;
std::vector<Tag> allTags;
int8_t getNextLocality() {
int8_t maxLocality = -1;
for(auto it : dcId_locality) {
maxLocality = std::max(maxLocality, it.second);
}
return maxLocality + 1;
}
vector< MasterProxyInterface > proxies;
vector< MasterProxyInterface > provisionalProxies;
vector< ResolverInterface > resolvers;
std::map<UID, ProxyVersionReplies> lastProxyVersionReplies;
Standalone<StringRef> dbId;
MasterInterface myInterface;
ClusterControllerFullInterface clusterController; // If the cluster controller changes, this master will die, so this is immutable.
ReusableCoordinatedState cstate;
Promise<Void> cstateUpdated;
Reference<AsyncVar<ServerDBInfo>> dbInfo;
int64_t registrationCount; // Number of different MasterRegistrationRequests sent to clusterController
RecoveryState recoveryState;
AsyncVar<Standalone<VectorRef<ResolverMoveRef>>> resolverChanges;
Version resolverChangesVersion;
std::set<UID> resolverNeedingChanges;
PromiseStream<Future<Void>> addActor;
Reference<AsyncVar<bool>> recruitmentStalled;
bool forceRecovery;
bool neverCreated;
MasterData(
Reference<AsyncVar<ServerDBInfo>> const& dbInfo,
MasterInterface const& myInterface,
ServerCoordinators const& coordinators,
ClusterControllerFullInterface const& clusterController,
Standalone<StringRef> const& dbId,
PromiseStream<Future<Void>> const& addActor,
bool forceRecovery
)
: dbgid(myInterface.id()),
myInterface(myInterface),
dbInfo(dbInfo),
cstate(coordinators, addActor, dbgid),
coordinators(coordinators),
clusterController(clusterController),
dbId(dbId),
forceRecovery(forceRecovery),
neverCreated(false),
lastEpochEnd(invalidVersion),
recoveryTransactionVersion(invalidVersion),
lastCommitTime(0),
registrationCount(0),
version(invalidVersion),
lastVersionTime(0),
txnStateStore(0),
memoryLimit(2e9),
addActor(addActor),
hasConfiguration(false),
recruitmentStalled( Reference<AsyncVar<bool>>( new AsyncVar<bool>() ) )
{
}
~MasterData() { if(txnStateStore) txnStateStore->close(); }
};
ACTOR Future<Void> newProxies( Reference<MasterData> self, RecruitFromConfigurationReply recr ) {
vector<Future<MasterProxyInterface>> initializationReplies;
for( int i = 0; i < recr.proxies.size(); i++ ) {
InitializeMasterProxyRequest req;
req.master = self->myInterface;
req.recoveryCount = self->cstate.myDBState.recoveryCount + 1;
req.recoveryTransactionVersion = self->recoveryTransactionVersion;
req.firstProxy = i == 0;
TraceEvent("ProxyReplies",self->dbgid).detail("WorkerID", recr.proxies[i].id());
initializationReplies.push_back( transformErrors( throwErrorOr( recr.proxies[i].masterProxy.getReplyUnlessFailedFor( req, SERVER_KNOBS->TLOG_TIMEOUT, SERVER_KNOBS->MASTER_FAILURE_SLOPE_DURING_RECOVERY ) ), master_recovery_failed() ) );
}
vector<MasterProxyInterface> newRecruits = wait( getAll( initializationReplies ) );
// It is required for the correctness of COMMIT_ON_FIRST_PROXY that self->proxies[0] is the firstProxy.
self->proxies = newRecruits;
return Void();
}
ACTOR Future<Void> newResolvers( Reference<MasterData> self, RecruitFromConfigurationReply recr ) {
vector<Future<ResolverInterface>> initializationReplies;
for( int i = 0; i < recr.resolvers.size(); i++ ) {
InitializeResolverRequest req;
req.recoveryCount = self->cstate.myDBState.recoveryCount + 1;
req.proxyCount = recr.proxies.size();
req.resolverCount = recr.resolvers.size();
TraceEvent("ResolverReplies",self->dbgid).detail("WorkerID", recr.resolvers[i].id());
initializationReplies.push_back( transformErrors( throwErrorOr( recr.resolvers[i].resolver.getReplyUnlessFailedFor( req, SERVER_KNOBS->TLOG_TIMEOUT, SERVER_KNOBS->MASTER_FAILURE_SLOPE_DURING_RECOVERY ) ), master_recovery_failed() ) );
}
vector<ResolverInterface> newRecruits = wait( getAll( initializationReplies ) );
self->resolvers = newRecruits;
return Void();
}
ACTOR Future<Void> newTLogServers( Reference<MasterData> self, RecruitFromConfigurationReply recr, Reference<ILogSystem> oldLogSystem, vector<Standalone<CommitTransactionRef>>* initialConfChanges ) {
if(self->configuration.usableRegions > 1) {
state Optional<Key> remoteDcId = self->remoteDcIds.size() ? self->remoteDcIds[0] : Optional<Key>();
if( !self->dcId_locality.count(recr.dcId) ) {
int8_t loc = self->getNextLocality();
Standalone<CommitTransactionRef> tr;
tr.set(tr.arena(), tagLocalityListKeyFor(recr.dcId), tagLocalityListValue(loc));
initialConfChanges->push_back(tr);
self->dcId_locality[recr.dcId] = loc;
TraceEvent(SevWarn, "UnknownPrimaryDCID", self->dbgid).detail("PrimaryId", printable(recr.dcId)).detail("Loc", loc);
}
if( !self->dcId_locality.count(remoteDcId) ) {
int8_t loc = self->getNextLocality();
Standalone<CommitTransactionRef> tr;
tr.set(tr.arena(), tagLocalityListKeyFor(remoteDcId), tagLocalityListValue(loc));
initialConfChanges->push_back(tr);
self->dcId_locality[remoteDcId] = loc;
TraceEvent(SevWarn, "UnknownRemoteDCID", self->dbgid).detail("RemoteId", printable(remoteDcId)).detail("Loc", loc);
}
Future<RecruitRemoteFromConfigurationReply> fRemoteWorkers = brokenPromiseToNever( self->clusterController.recruitRemoteFromConfiguration.getReply( RecruitRemoteFromConfigurationRequest( self->configuration, remoteDcId, recr.tLogs.size() * std::max<int>(1, self->configuration.desiredLogRouterCount / std::max<int>(1, recr.tLogs.size())) ) ) );
Reference<ILogSystem> newLogSystem = wait( oldLogSystem->newEpoch( recr, fRemoteWorkers, self->configuration, self->cstate.myDBState.recoveryCount + 1, self->dcId_locality[recr.dcId], self->dcId_locality[remoteDcId], self->allTags, self->recruitmentStalled ) );
self->logSystem = newLogSystem;
} else {
Reference<ILogSystem> newLogSystem = wait( oldLogSystem->newEpoch( recr, Never(), self->configuration, self->cstate.myDBState.recoveryCount + 1, tagLocalitySpecial, tagLocalitySpecial, self->allTags, self->recruitmentStalled ) );
self->logSystem = newLogSystem;
}
return Void();
}
ACTOR Future<Void> newSeedServers( Reference<MasterData> self, RecruitFromConfigurationReply recruits, vector<StorageServerInterface>* servers ) {
// This is only necessary if the database is at version 0
servers->clear();
if (self->lastEpochEnd) return Void();
state int idx = 0;
state std::map<Optional<Value>, Tag> dcId_tags;
state int8_t nextLocality = 0;
while( idx < recruits.storageServers.size() ) {
TraceEvent("MasterRecruitingInitialStorageServer", self->dbgid)
.detail("CandidateWorker", recruits.storageServers[idx].locality.toString());
InitializeStorageRequest isr;
isr.seedTag = dcId_tags.count(recruits.storageServers[idx].locality.dcId()) ? dcId_tags[recruits.storageServers[idx].locality.dcId()] : Tag(nextLocality, 0);
isr.storeType = self->configuration.storageServerStoreType;
isr.reqId = g_random->randomUniqueID();
isr.interfaceId = g_random->randomUniqueID();
ErrorOr<InitializeStorageReply> newServer = wait( recruits.storageServers[idx].storage.tryGetReply( isr ) );
if( newServer.isError() ) {
if( !newServer.isError( error_code_recruitment_failed ) && !newServer.isError( error_code_request_maybe_delivered ) )
throw newServer.getError();
TEST( true ); // masterserver initial storage recuitment loop failed to get new server
wait( delay(SERVER_KNOBS->STORAGE_RECRUITMENT_DELAY) );
}
else {
if(!dcId_tags.count(recruits.storageServers[idx].locality.dcId())) {
dcId_tags[recruits.storageServers[idx].locality.dcId()] = Tag(nextLocality, 0);
nextLocality++;
}
Tag& tag = dcId_tags[recruits.storageServers[idx].locality.dcId()];
tag.id++;
idx++;
servers->push_back( newServer.get().interf );
}
}
self->dcId_locality.clear();
for(auto& it : dcId_tags) {
self->dcId_locality[it.first] = it.second.locality;
}
TraceEvent("MasterRecruitedInitialStorageServers", self->dbgid)
.detail("TargetCount", self->configuration.storageTeamSize)
.detail("Servers", describe(*servers));
return Void();
}
Future<Void> waitProxyFailure( vector<MasterProxyInterface> const& proxies ) {
vector<Future<Void>> failed;
for(int i=0; i<proxies.size(); i++)
failed.push_back( waitFailureClient( proxies[i].waitFailure, SERVER_KNOBS->TLOG_TIMEOUT, -SERVER_KNOBS->TLOG_TIMEOUT/SERVER_KNOBS->SECONDS_BEFORE_NO_FAILURE_DELAY ) );
ASSERT( failed.size() >= 1 );
return tagError<Void>(quorum( failed, 1 ), master_proxy_failed());
}
Future<Void> waitResolverFailure( vector<ResolverInterface> const& resolvers ) {
vector<Future<Void>> failed;
for(int i=0; i<resolvers.size(); i++)
failed.push_back( waitFailureClient( resolvers[i].waitFailure, SERVER_KNOBS->TLOG_TIMEOUT, -SERVER_KNOBS->TLOG_TIMEOUT/SERVER_KNOBS->SECONDS_BEFORE_NO_FAILURE_DELAY ) );
ASSERT( failed.size() >= 1 );
return tagError<Void>(quorum( failed, 1 ), master_resolver_failed());
}
ACTOR Future<Void> updateLogsValue( Reference<MasterData> self, Database cx ) {
state Transaction tr(cx);
loop {
try {
Optional<Standalone<StringRef>> value = wait( tr.get(logsKey) );
ASSERT(value.present());
auto logs = decodeLogsValue(value.get());
std::set<UID> logIds;
for(auto& log : logs.first) {
logIds.insert(log.first);
}
bool found = false;
for(auto& logSet : self->logSystem->getLogSystemConfig().tLogs) {
for(auto& log : logSet.tLogs) {
if(logIds.count(log.id())) {
found = true;
break;
}
}
if(found) {
break;
}
}
if(!found) {
TEST(true); //old master attempted to change logsKey
return Void();
}
tr.set(logsKey, self->logSystem->getLogsValue());
wait( tr.commit() );
return Void();
} catch( Error &e ) {
wait( tr.onError(e) );
}
}
}
Future<Void> sendMasterRegistration( MasterData* self, LogSystemConfig const& logSystemConfig, vector<MasterProxyInterface> proxies, vector<ResolverInterface> resolvers, DBRecoveryCount recoveryCount, vector<UID> priorCommittedLogServers ) {
RegisterMasterRequest masterReq;
masterReq.id = self->myInterface.id();
masterReq.mi = self->myInterface.locality;
masterReq.logSystemConfig = logSystemConfig;
masterReq.proxies = proxies;
masterReq.resolvers = resolvers;
masterReq.recoveryCount = recoveryCount;
if(self->hasConfiguration) masterReq.configuration = self->configuration;
masterReq.registrationCount = ++self->registrationCount;
masterReq.priorCommittedLogServers = priorCommittedLogServers;
masterReq.recoveryState = self->recoveryState;
masterReq.recoveryStalled = self->recruitmentStalled->get();
return brokenPromiseToNever( self->clusterController.registerMaster.getReply( masterReq ) );
}
ACTOR Future<Void> updateRegistration( Reference<MasterData> self, Reference<ILogSystem> logSystem ) {
state Database cx = openDBOnServer(self->dbInfo, TaskDefaultEndpoint, true, true);
state Future<Void> trigger = self->registrationTrigger.onTrigger();
state Future<Void> updateLogsKey;
loop {
wait( trigger );
wait( delay( .001 ) ); // Coalesce multiple changes
trigger = self->registrationTrigger.onTrigger();
TraceEvent("MasterUpdateRegistration", self->dbgid).detail("RecoveryCount", self->cstate.myDBState.recoveryCount).detail("Logs", describe(logSystem->getLogSystemConfig().tLogs));
if (!self->cstateUpdated.isSet()) {
wait(sendMasterRegistration(self.getPtr(), logSystem->getLogSystemConfig(), self->provisionalProxies, self->resolvers, self->cstate.myDBState.recoveryCount, self->cstate.prevDBState.getPriorCommittedLogServers() ));
} else {
updateLogsKey = updateLogsValue(self, cx);
wait( sendMasterRegistration( self.getPtr(), logSystem->getLogSystemConfig(), self->proxies, self->resolvers, self->cstate.myDBState.recoveryCount, vector<UID>() ) );
}
}
}
ACTOR Future<Standalone<CommitTransactionRef>> provisionalMaster( Reference<MasterData> parent, Future<Void> activate ) {
wait(activate);
// Register a fake master proxy (to be provided right here) to make ourselves available to clients
parent->provisionalProxies = vector<MasterProxyInterface>(1);
parent->provisionalProxies[0].locality = parent->myInterface.locality;
state Future<Void> waitFailure = waitFailureServer(parent->provisionalProxies[0].waitFailure.getFuture());
parent->registrationTrigger.trigger();
auto lockedKey = parent->txnStateStore->readValue(databaseLockedKey).get();
state bool locked = lockedKey.present() && lockedKey.get().size();
// We respond to a minimal subset of the master proxy protocol. Our sole purpose is to receive a single write-only transaction
// which might repair our configuration, and return it.
loop choose {
when ( GetReadVersionRequest req = waitNext( parent->provisionalProxies[0].getConsistentReadVersion.getFuture() ) ) {
if ( req.flags & GetReadVersionRequest::FLAG_CAUSAL_READ_RISKY && parent->lastEpochEnd ) {
GetReadVersionReply rep;
rep.version = parent->lastEpochEnd;
rep.locked = locked;
req.reply.send( rep );
} else
req.reply.send(Never()); // We can't perform causally consistent reads without recovering
}
when ( CommitTransactionRequest req = waitNext( parent->provisionalProxies[0].commit.getFuture() ) ) {
req.reply.send(Never()); // don't reply (clients always get commit_unknown_result)
auto t = &req.transaction;
if (t->read_snapshot == parent->lastEpochEnd && //< So no transactions can fall between the read snapshot and the recovery transaction this (might) be merged with
// vvv and also the changes we will make in the recovery transaction (most notably to lastEpochEndKey) BEFORE we merge initialConfChanges won't conflict
!std::any_of(t->read_conflict_ranges.begin(), t->read_conflict_ranges.end(), [](KeyRangeRef const& r){return r.contains(lastEpochEndKey);}))
{
for(auto m = t->mutations.begin(); m != t->mutations.end(); ++m) {
TraceEvent("PM_CTM", parent->dbgid).detail("MType", m->type).detail("Param1", printable(m->param1)).detail("Param2", printable(m->param2));
if (isMetadataMutation(*m)) {
// We keep the mutations and write conflict ranges from this transaction, but not its read conflict ranges
Standalone<CommitTransactionRef> out;
out.read_snapshot = invalidVersion;
out.mutations.append_deep(out.arena(), t->mutations.begin(), t->mutations.size());
out.write_conflict_ranges.append_deep(out.arena(), t->write_conflict_ranges.begin(), t->write_conflict_ranges.size());
return out;
}
}
}
}
when ( GetKeyServerLocationsRequest req = waitNext( parent->provisionalProxies[0].getKeyServersLocations.getFuture() ) ) {
req.reply.send(Never());
}
when ( wait( waitFailure ) ) { throw worker_removed(); }
}
}
ACTOR Future<vector<Standalone<CommitTransactionRef>>> recruitEverything( Reference<MasterData> self, vector<StorageServerInterface>* seedServers, Reference<ILogSystem> oldLogSystem ) {
if (!self->configuration.isValid()) {
RecoveryStatus::RecoveryStatus status;
if (self->configuration.initialized) {
status = RecoveryStatus::configuration_invalid;
} else if (!self->cstate.prevDBState.tLogs.size()) {
status = RecoveryStatus::configuration_never_created;
self->neverCreated = true;
} else {
status = RecoveryStatus::configuration_missing;
}
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", status)
.detail("Status", RecoveryStatus::names[status])
.trackLatest("MasterRecoveryState");
return Never();
} else
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", RecoveryStatus::recruiting_transaction_servers)
.detail("Status", RecoveryStatus::names[RecoveryStatus::recruiting_transaction_servers])
.detail("RequiredTLogs", self->configuration.tLogReplicationFactor)
.detail("DesiredTLogs", self->configuration.getDesiredLogs())
.detail("RequiredProxies", 1)
.detail("DesiredProxies", self->configuration.getDesiredProxies())
.detail("RequiredResolvers", 1)
.detail("DesiredResolvers", self->configuration.getDesiredResolvers())
.detail("StoreType", self->configuration.storageServerStoreType)
.trackLatest("MasterRecoveryState");
//FIXME: we only need log routers for the same locality as the master
int maxLogRouters = self->cstate.prevDBState.logRouterTags;
for(auto& old : self->cstate.prevDBState.oldTLogData) {
maxLogRouters = std::max(maxLogRouters, old.logRouterTags);
}
state RecruitFromConfigurationReply recruits = wait(
brokenPromiseToNever( self->clusterController.recruitFromConfiguration.getReply(
RecruitFromConfigurationRequest( self->configuration, self->lastEpochEnd==0, maxLogRouters ) ) ) );
self->primaryDcId.clear();
self->remoteDcIds.clear();
if(recruits.dcId.present()) {
self->primaryDcId.push_back(recruits.dcId);
if(self->configuration.regions.size() > 1) {
self->remoteDcIds.push_back(recruits.dcId.get() == self->configuration.regions[0].dcId ? self->configuration.regions[1].dcId : self->configuration.regions[0].dcId);
}
}
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", RecoveryStatus::initializing_transaction_servers)
.detail("Status", RecoveryStatus::names[RecoveryStatus::initializing_transaction_servers])
.detail("Proxies", recruits.proxies.size())
.detail("TLogs", recruits.tLogs.size())
.detail("Resolvers", recruits.resolvers.size())
.trackLatest("MasterRecoveryState");
// Actually, newSeedServers does both the recruiting and initialization of the seed servers; so if this is a brand new database we are sort of lying that we are
// past the recruitment phase. In a perfect world we would split that up so that the recruitment part happens above (in parallel with recruiting the transaction servers?).
wait( newSeedServers( self, recruits, seedServers ) );
state vector<Standalone<CommitTransactionRef>> confChanges;
wait( newProxies( self, recruits ) && newResolvers( self, recruits ) && newTLogServers( self, recruits, oldLogSystem, &confChanges ) );
return confChanges;
}
ACTOR Future<Void> updateLocalityForDcId(Optional<Key> dcId, Reference<ILogSystem> oldLogSystem, Reference<AsyncVar<std::pair<int8_t,Version>>> locality) {
loop {
int8_t loc = oldLogSystem->getLogSystemConfig().getLocalityForDcId(dcId);
Version ver = locality->get().second;
if(ver == invalidVersion || loc != locality->get().first) {
ver = oldLogSystem->getKnownCommittedVersion(loc);
}
locality->set( std::make_pair(loc,ver) );
TraceEvent("UpdatedLocalityForDcId").detail("DcId", printable(dcId)).detail("Locality", loc).detail("Version", ver);
wait( oldLogSystem->onLogSystemConfigChange() || oldLogSystem->onKnownCommittedVersionChange(loc) );
}
}
ACTOR Future<Void> readTransactionSystemState( Reference<MasterData> self, Reference<ILogSystem> oldLogSystem ) {
state Reference<AsyncVar<std::pair<int8_t,Version>>> myLocality = Reference<AsyncVar<std::pair<int8_t,Version>>>( new AsyncVar<std::pair<int8_t,Version>>(std::make_pair(tagLocalityInvalid, invalidVersion) ) );
state Future<Void> localityUpdater = updateLocalityForDcId(self->myInterface.locality.dcId(), oldLogSystem, myLocality);
// Peek the txnStateTag in oldLogSystem and recover self->txnStateStore
// For now, we also obtain the recovery metadata that the log system obtained during the end_epoch process for comparison
// Sets self->lastEpochEnd and self->recoveryTransactionVersion
// Sets self->configuration to the configuration (FF/conf/ keys) at self->lastEpochEnd
// Recover transaction state store
if(self->txnStateStore) self->txnStateStore->close();
self->txnStateLogAdapter = openDiskQueueAdapter( oldLogSystem, txsTag, myLocality );
self->txnStateStore = keyValueStoreLogSystem( self->txnStateLogAdapter, self->dbgid, self->memoryLimit, false, false, true );
// Versionstamped operations (particularly those applied from DR) define a minimum commit version
// that we may recover to, as they embed the version in user-readable data and require that no
// transactions will be committed at a lower version.
Optional<Standalone<StringRef>> requiredCommitVersion = wait(self->txnStateStore->readValue( minRequiredCommitVersionKey ));
Version minRequiredCommitVersion = -1;
if (requiredCommitVersion.present()) {
minRequiredCommitVersion = BinaryReader::fromStringRef<Version>(requiredCommitVersion.get(), Unversioned());
}
// Recover version info
self->lastEpochEnd = oldLogSystem->getEnd() - 1;
if (self->lastEpochEnd == 0) {
self->recoveryTransactionVersion = 1;
} else {
if(self->forceRecovery) {
self->recoveryTransactionVersion = self->lastEpochEnd + SERVER_KNOBS->MAX_VERSIONS_IN_FLIGHT_FORCED;
} else {
self->recoveryTransactionVersion = self->lastEpochEnd + SERVER_KNOBS->MAX_VERSIONS_IN_FLIGHT;
}
if(BUGGIFY) {
self->recoveryTransactionVersion += g_random->randomInt64(0, SERVER_KNOBS->MAX_VERSIONS_IN_FLIGHT);
}
if ( self->recoveryTransactionVersion < minRequiredCommitVersion ) self->recoveryTransactionVersion = minRequiredCommitVersion;
}
TraceEvent("MasterRecovering", self->dbgid).detail("LastEpochEnd", self->lastEpochEnd).detail("RecoveryTransactionVersion", self->recoveryTransactionVersion);
Standalone<VectorRef<KeyValueRef>> rawConf = wait( self->txnStateStore->readRange( configKeys ) );
self->configuration.fromKeyValues( rawConf );
self->originalConfiguration = self->configuration;
self->hasConfiguration = true;
TraceEvent("MasterRecoveredConfig", self->dbgid).detail("Conf", self->configuration.toString()).trackLatest("RecoveredConfig");
Standalone<VectorRef<KeyValueRef>> rawLocalities = wait( self->txnStateStore->readRange( tagLocalityListKeys ) );
self->dcId_locality.clear();
for(auto& kv : rawLocalities) {
self->dcId_locality[decodeTagLocalityListKey(kv.key)] = decodeTagLocalityListValue(kv.value);
}
Standalone<VectorRef<KeyValueRef>> rawTags = wait( self->txnStateStore->readRange( serverTagKeys ) );
self->allTags.clear();
if(self->lastEpochEnd > 0) {
self->allTags.push_back(txsTag);
}
if(self->forceRecovery) {
int8_t usableLocality = oldLogSystem->getLogSystemConfig().tLogs[0].locality;
for(auto& kv : rawTags) {
Tag tag = decodeServerTagValue( kv.value );
if(tag.locality == usableLocality) {
self->allTags.push_back(tag);
}
}
} else {
for(auto& kv : rawTags) {
self->allTags.push_back(decodeServerTagValue( kv.value ));
}
}
Standalone<VectorRef<KeyValueRef>> rawHistoryTags = wait( self->txnStateStore->readRange( serverTagHistoryKeys ) );
for(auto& kv : rawHistoryTags) {
self->allTags.push_back(decodeServerTagValue( kv.value ));
}
uniquify(self->allTags);
//auto kvs = self->txnStateStore->readRange( systemKeys );
//for( auto & kv : kvs.get() )
// TraceEvent("MasterRecoveredTXS", self->dbgid).detail("K", printable(kv.key)).detail("V", printable(kv.value));
self->txnStateLogAdapter->setNextVersion( oldLogSystem->getEnd() ); //< FIXME: (1) the log adapter should do this automatically after recovery; (2) if we make KeyValueStoreMemory guarantee immediate reads, we should be able to get rid of the discardCommit() below and not need a writable log adapter
TraceEvent("RTSSComplete", self->dbgid);
return Void();
}
ACTOR Future<Void> sendInitialCommitToResolvers( Reference<MasterData> self ) {
state KeyRange txnKeys = allKeys;
state Sequence txnSequence = 0;
ASSERT(self->recoveryTransactionVersion);
state Standalone<VectorRef<KeyValueRef>> data = self->txnStateStore->readRange(txnKeys, BUGGIFY ? 3 : SERVER_KNOBS->DESIRED_TOTAL_BYTES, SERVER_KNOBS->DESIRED_TOTAL_BYTES).get();
state vector<Future<Void>> txnReplies;
state int64_t dataOutstanding = 0;
loop {
if(!data.size()) break;
((KeyRangeRef&)txnKeys) = KeyRangeRef( keyAfter(data.back().key, txnKeys.arena()), txnKeys.end );
Standalone<VectorRef<KeyValueRef>> nextData = self->txnStateStore->readRange(txnKeys, BUGGIFY ? 3 : SERVER_KNOBS->DESIRED_TOTAL_BYTES, SERVER_KNOBS->DESIRED_TOTAL_BYTES).get();
for(auto& r : self->proxies) {
TxnStateRequest req;
req.arena = data.arena();
req.data = data;
req.sequence = txnSequence;
req.last = !nextData.size();
txnReplies.push_back( brokenPromiseToNever( r.txnState.getReply( req ) ) );
dataOutstanding += data.arena().getSize();
}
data = nextData;
txnSequence++;
if(dataOutstanding > SERVER_KNOBS->MAX_TXS_SEND_MEMORY) {
wait( waitForAll(txnReplies) );
txnReplies = vector<Future<Void>>();
dataOutstanding = 0;
}
wait(yield());
}
wait( waitForAll(txnReplies) );
vector<Future<ResolveTransactionBatchReply>> replies;
for(auto& r : self->resolvers) {
ResolveTransactionBatchRequest req;
req.prevVersion = -1;
req.version = self->lastEpochEnd;
req.lastReceivedVersion = -1;
replies.push_back( brokenPromiseToNever( r.resolve.getReply( req ) ) );
}
wait(waitForAll(replies));
return Void();
}
ACTOR Future<Void> triggerUpdates( Reference<MasterData> self, Reference<ILogSystem> oldLogSystem ) {
loop {
wait( oldLogSystem->onLogSystemConfigChange() || self->cstate.fullyRecovered.getFuture() || self->recruitmentStalled->onChange() );
if(self->cstate.fullyRecovered.isSet())
return Void();
self->registrationTrigger.trigger();
}
}
ACTOR Future<Void> discardCommit(IKeyValueStore* store, LogSystemDiskQueueAdapter* adapter) {
state Future<LogSystemDiskQueueAdapter::CommitMessage> fcm = adapter->getCommitMessage();
state Future<Void> committed = store->commit();
LogSystemDiskQueueAdapter::CommitMessage cm = wait(fcm);
ASSERT(!committed.isReady());
cm.acknowledge.send(Void());
ASSERT(committed.isReady());
return Void();
}
ACTOR Future<Void> recoverFrom( Reference<MasterData> self, Reference<ILogSystem> oldLogSystem, vector<StorageServerInterface>* seedServers, vector<Standalone<CommitTransactionRef>>* initialConfChanges ) {
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", RecoveryStatus::reading_transaction_system_state)
.detail("Status", RecoveryStatus::names[RecoveryStatus::reading_transaction_system_state])
.trackLatest("MasterRecoveryState");
self->hasConfiguration = false;
if(BUGGIFY)
wait( delay(10.0) );
wait( readTransactionSystemState( self, oldLogSystem ) );
for (auto& itr : *initialConfChanges) {
for(auto& m : itr.mutations) {
self->configuration.applyMutation( m );
}
}
debug_checkMaxRestoredVersion( UID(), self->lastEpochEnd, "DBRecovery" );
// Ordinarily we pass through this loop once and recover. We go around the loop if recovery stalls for more than a second,
// a provisional master is initialized, and an "emergency transaction" is submitted that might change the configuration so that we can
// finish recovery.
state std::map<Optional<Value>,int8_t> originalLocalityMap = self->dcId_locality;
state Future<vector<Standalone<CommitTransactionRef>>> recruitments = recruitEverything( self, seedServers, oldLogSystem );
loop {
state Future<Standalone<CommitTransactionRef>> provisional = provisionalMaster(self, delay(1.0));
choose {
when (vector<Standalone<CommitTransactionRef>> confChanges = wait( recruitments )) {
initialConfChanges->insert( initialConfChanges->end(), confChanges.begin(), confChanges.end() );
provisional.cancel();
break;
}
when (Standalone<CommitTransactionRef> _req = wait( provisional )) {
state Standalone<CommitTransactionRef> req = _req; // mutable
TEST(true); // Emergency transaction processing during recovery
TraceEvent("EmergencyTransaction", self->dbgid);
for (auto m = req.mutations.begin(); m != req.mutations.end(); ++m)
TraceEvent("EmergencyTransactionMutation", self->dbgid).detail("MType", m->type).detail("P1", printable(m->param1)).detail("P2", printable(m->param2));
DatabaseConfiguration oldConf = self->configuration;
self->configuration = self->originalConfiguration;
for(auto& m : req.mutations)
self->configuration.applyMutation( m );
initialConfChanges->clear();
if(self->originalConfiguration.isValid() && self->configuration.usableRegions != self->originalConfiguration.usableRegions) {
TraceEvent(SevWarnAlways, "CannotChangeUsableRegions", self->dbgid);
self->configuration = self->originalConfiguration;
} else {
initialConfChanges->push_back(req);
}
if(self->configuration != oldConf) { //confChange does not trigger when including servers
self->dcId_locality = originalLocalityMap;
recruitments = recruitEverything( self, seedServers, oldLogSystem );
}
}
}
provisional.cancel();
}
return Void();
}
ACTOR Future<Void> getVersion(Reference<MasterData> self, GetCommitVersionRequest req) {
state std::map<UID, ProxyVersionReplies>::iterator proxyItr = self->lastProxyVersionReplies.find(req.requestingProxy); // lastProxyVersionReplies never changes
if (proxyItr == self->lastProxyVersionReplies.end()) {
// Request from invalid proxy (e.g. from duplicate recruitment request)
req.reply.send(Never());
return Void();
}
TEST(proxyItr->second.latestRequestNum.get() < req.requestNum - 1); // Commit version request queued up
wait(proxyItr->second.latestRequestNum.whenAtLeast(req.requestNum-1));
auto itr = proxyItr->second.replies.find(req.requestNum);
if (itr != proxyItr->second.replies.end()) {
TEST(true); // Duplicate request for sequence
req.reply.send(itr->second);
}
else if(req.requestNum <= proxyItr->second.latestRequestNum.get()) {
TEST(true); // Old request for previously acknowledged sequence - may be impossible with current FlowTransport implementation
ASSERT( req.requestNum < proxyItr->second.latestRequestNum.get() ); // The latest request can never be acknowledged
req.reply.send(Never());
}
else {
GetCommitVersionReply rep;
if(self->version == invalidVersion) {
self->lastVersionTime = now();
self->version = self->recoveryTransactionVersion;
rep.prevVersion = self->lastEpochEnd;
}
else {
double t1 = now();
if(BUGGIFY) {
t1 = self->lastVersionTime;
}
rep.prevVersion = self->version;
self->version += std::max<Version>(1, std::min<Version>(SERVER_KNOBS->MAX_READ_TRANSACTION_LIFE_VERSIONS, SERVER_KNOBS->VERSIONS_PER_SECOND*(t1-self->lastVersionTime)));
TEST( self->version - rep.prevVersion == 1 ); // Minimum possible version gap
TEST( self->version - rep.prevVersion == SERVER_KNOBS->MAX_READ_TRANSACTION_LIFE_VERSIONS ); // Maximum possible version gap
self->lastVersionTime = t1;
if(self->resolverNeedingChanges.count(req.requestingProxy)) {
rep.resolverChanges = self->resolverChanges.get();
rep.resolverChangesVersion = self->resolverChangesVersion;
self->resolverNeedingChanges.erase(req.requestingProxy);
if(self->resolverNeedingChanges.empty())
self->resolverChanges.set(Standalone<VectorRef<ResolverMoveRef>>());
}
}
rep.version = self->version;
rep.requestNum = req.requestNum;
proxyItr->second.replies.erase(proxyItr->second.replies.begin(), proxyItr->second.replies.upper_bound(req.mostRecentProcessedRequestNum));
proxyItr->second.replies[req.requestNum] = rep;
ASSERT(rep.prevVersion >= 0);
req.reply.send(rep);
ASSERT(proxyItr->second.latestRequestNum.get() == req.requestNum - 1);
proxyItr->second.latestRequestNum.set(req.requestNum);
}
return Void();
}
ACTOR Future<Void> provideVersions(Reference<MasterData> self) {
state ActorCollection versionActors(false);
for (auto& p : self->proxies)
self->lastProxyVersionReplies[p.id()] = ProxyVersionReplies();
loop {
choose {
when(GetCommitVersionRequest req = waitNext(self->myInterface.getCommitVersion.getFuture())) {
versionActors.add(getVersion(self, req));
}
when(wait(versionActors.getResult())) { }
}
}
}
ACTOR Future<Void> provideRecoveryInfo( Reference<MasterData> self ) {
loop choose {
when( GetRecoveryInfoRequest req = waitNext(self->myInterface.getRecoveryInfo.getFuture()) ) {
TraceEvent("MasterGetRecoveryInfo", self->dbgid).detail("ReqID", req.reqId);
GetRecoveryInfoReply reply(self->recoveryTransactionVersion, self->configuration);
req.reply.send( reply );
}
}
}
std::pair<KeyRangeRef, bool> findRange( CoalescedKeyRangeMap<int>& key_resolver, Standalone<VectorRef<ResolverMoveRef>>& movedRanges, int src, int dest ) {
auto ranges = key_resolver.ranges();
auto prev = ranges.begin();
auto it = ranges.begin();
++it;
if(it==ranges.end()) {
if(ranges.begin().value() != src || std::find(movedRanges.begin(), movedRanges.end(), ResolverMoveRef(ranges.begin()->range(), dest)) != movedRanges.end())
throw operation_failed();
return std::make_pair(ranges.begin().range(), true);
}
std::set<int> borders;
//If possible expand an existing boundary between the two resolvers
for(; it != ranges.end(); ++it) {
if(it->value() == src && prev->value() == dest && std::find(movedRanges.begin(), movedRanges.end(), ResolverMoveRef(it->range(), dest)) == movedRanges.end()) {
return std::make_pair(it->range(), true);
}
if(it->value() == dest && prev->value() == src && std::find(movedRanges.begin(), movedRanges.end(), ResolverMoveRef(prev->range(), dest)) == movedRanges.end()) {
return std::make_pair(prev->range(), false);
}
if(it->value() == dest)
borders.insert(prev->value());
if(prev->value() == dest)
borders.insert(it->value());
++prev;
}
prev = ranges.begin();
it = ranges.begin();
++it;
//If possible create a new boundry which doesn't exist yet
for(; it != ranges.end(); ++it) {
if(it->value() == src && !borders.count(prev->value()) && std::find(movedRanges.begin(), movedRanges.end(), ResolverMoveRef(it->range(), dest)) == movedRanges.end()) {
return std::make_pair(it->range(), true);
}
if(prev->value() == src && !borders.count(it->value()) && std::find(movedRanges.begin(), movedRanges.end(), ResolverMoveRef(prev->range(), dest)) == movedRanges.end()) {
return std::make_pair(prev->range(), false);
}
++prev;
}
it = ranges.begin();
for(; it != ranges.end(); ++it) {
if(it->value() == src && std::find(movedRanges.begin(), movedRanges.end(), ResolverMoveRef(it->range(), dest)) == movedRanges.end()) {
return std::make_pair(it->range(), true);
}
}
throw operation_failed(); //we are already attempting to move all of the data one resolver is assigned, so do not move anything
}
ACTOR Future<Void> resolutionBalancing(Reference<MasterData> self) {
state CoalescedKeyRangeMap<int> key_resolver;
key_resolver.insert(allKeys, 0);
loop {
wait(delay(SERVER_KNOBS->MIN_BALANCE_TIME, TaskResolutionMetrics));
while(self->resolverChanges.get().size())
wait(self->resolverChanges.onChange());
state std::vector<Future<int64_t>> futures;
for (auto& p : self->resolvers)
futures.push_back(brokenPromiseToNever(p.metrics.getReply(ResolutionMetricsRequest(), TaskResolutionMetrics)));
wait( waitForAll(futures) );
state IndexedSet<std::pair<int64_t, int>, NoMetric> metrics;
int64_t total = 0;
for (int i = 0; i < futures.size(); i++) {
total += futures[i].get();
metrics.insert(std::make_pair(futures[i].get(), i), NoMetric());
//TraceEvent("ResolverMetric").detail("I", i).detail("Metric", futures[i].get());
}
if( metrics.lastItem()->first - metrics.begin()->first > SERVER_KNOBS->MIN_BALANCE_DIFFERENCE ) {
try {
state int src = metrics.lastItem()->second;
state int dest = metrics.begin()->second;
state int64_t amount = std::min( metrics.lastItem()->first - total/self->resolvers.size(), total/self->resolvers.size() - metrics.begin()->first ) / 2;
state Standalone<VectorRef<ResolverMoveRef>> movedRanges;
loop {
state std::pair<KeyRangeRef, bool> range = findRange( key_resolver, movedRanges, src, dest );
ResolutionSplitRequest req;
req.front = range.second;
req.offset = amount;
req.range = range.first;
ResolutionSplitReply split = wait( brokenPromiseToNever(self->resolvers[metrics.lastItem()->second].split.getReply(req, TaskResolutionMetrics)) );
KeyRangeRef moveRange = range.second ? KeyRangeRef( range.first.begin, split.key ) : KeyRangeRef( split.key, range.first.end );
movedRanges.push_back_deep(movedRanges.arena(), ResolverMoveRef(moveRange, dest));
TraceEvent("MovingResolutionRange").detail("Src", src).detail("Dest", dest).detail("Amount", amount).detail("StartRange", printable(range.first)).detail("MoveRange", printable(moveRange)).detail("Used", split.used).detail("KeyResolverRanges", key_resolver.size());
amount -= split.used;
if(moveRange != range.first || amount <= 0 )
break;
}
for(auto& it : movedRanges)
key_resolver.insert(it.range, it.dest);
//for(auto& it : key_resolver.ranges())
// TraceEvent("KeyResolver").detail("Range", printable(it.range())).detail("Value", it.value());
self->resolverChangesVersion = self->version + 1;
for (auto& p : self->proxies)
self->resolverNeedingChanges.insert(p.id());
self->resolverChanges.set(movedRanges);
} catch( Error&e ) {
if(e.code() != error_code_operation_failed)
throw;
}
}
}
}
static std::set<int> const& normalMasterErrors() {
static std::set<int> s;
if (s.empty()) {
s.insert( error_code_tlog_stopped );
s.insert( error_code_master_tlog_failed );
s.insert( error_code_master_proxy_failed );
s.insert( error_code_master_resolver_failed );
s.insert( error_code_recruitment_failed );
s.insert( error_code_no_more_servers );
s.insert( error_code_master_recovery_failed );
s.insert( error_code_coordinated_state_conflict );
s.insert( error_code_master_max_versions_in_flight );
s.insert( error_code_worker_removed );
s.insert( error_code_new_coordinators_timed_out );
s.insert( error_code_broken_promise );
}
return s;
}
ACTOR Future<Void> changeCoordinators( Reference<MasterData> self ) {
loop {
ChangeCoordinatorsRequest req = waitNext( self->myInterface.changeCoordinators.getFuture() );
state ChangeCoordinatorsRequest changeCoordinatorsRequest = req;
while( !self->cstate.previousWrite.isReady() ) {
wait( self->cstate.previousWrite );
wait( delay(0) ); //if a new core state is ready to be written, have that take priority over our finalizing write;
}
if(!self->cstate.fullyRecovered.isSet()) {
wait( self->cstate.write(self->cstate.myDBState, true) );
}
try {
wait( self->cstate.move( ClusterConnectionString( changeCoordinatorsRequest.newConnectionString.toString() ) ) );
}
catch(Error &e) {
if(e.code() != error_code_actor_cancelled)
changeCoordinatorsRequest.reply.sendError(e);
throw;
}
throw internal_error();
}
}
ACTOR Future<Void> rejoinRequestHandler( Reference<MasterData> self ) {
loop {
TLogRejoinRequest req = waitNext( self->myInterface.tlogRejoin.getFuture() );
req.reply.send(true);
}
}
ACTOR Future<Void> trackTlogRecovery( Reference<MasterData> self, Reference<AsyncVar<Reference<ILogSystem>>> oldLogSystems, Promise<Void> remoteRecovered ) {
state Future<Void> rejoinRequests = Never();
state DBRecoveryCount recoverCount = self->cstate.myDBState.recoveryCount + 1;
loop {
state DBCoreState newState;
self->logSystem->toCoreState( newState );
newState.recoveryCount = recoverCount;
state Future<Void> changed = self->logSystem->onCoreStateChanged();
ASSERT( newState.tLogs[0].tLogWriteAntiQuorum == self->configuration.tLogWriteAntiQuorum && newState.tLogs[0].tLogReplicationFactor == self->configuration.tLogReplicationFactor );
state bool allLogs = newState.tLogs.size() == self->configuration.expectedLogSets(self->primaryDcId.size() ? self->primaryDcId[0] : Optional<Key>());
state bool finalUpdate = !newState.oldTLogData.size() && allLogs;
wait( self->cstate.write(newState, finalUpdate) );
self->logSystem->coreStateWritten(newState);
if(self->cstateUpdated.canBeSet()) {
self->cstateUpdated.send(Void());
}
if( finalUpdate ) {
self->recoveryState = RecoveryState::FULLY_RECOVERED;
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", RecoveryStatus::fully_recovered)
.detail("Status", RecoveryStatus::names[RecoveryStatus::fully_recovered])
.trackLatest("MasterRecoveryState");
} else if( !newState.oldTLogData.size() && self->recoveryState < RecoveryState::STORAGE_RECOVERED ) {
self->recoveryState = RecoveryState::STORAGE_RECOVERED;
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", RecoveryStatus::storage_recovered)
.detail("Status", RecoveryStatus::names[RecoveryStatus::storage_recovered])
.trackLatest("MasterRecoveryState");
} else if( allLogs && self->recoveryState < RecoveryState::ALL_LOGS_RECRUITED ) {
self->recoveryState = RecoveryState::ALL_LOGS_RECRUITED;
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", RecoveryStatus::all_logs_recruited)
.detail("Status", RecoveryStatus::names[RecoveryStatus::all_logs_recruited])
.trackLatest("MasterRecoveryState");
}
if(newState.oldTLogData.size() && self->configuration.repopulateRegionAntiQuorum > 0 && self->logSystem->remoteStorageRecovered()) {
TraceEvent(SevWarnAlways, "RecruitmentStalled_RemoteStorageRecovered", self->dbgid);
self->recruitmentStalled->set(true);
}
self->registrationTrigger.trigger();
if(allLogs && remoteRecovered.canBeSet()) {
remoteRecovered.send(Void());
}
if( finalUpdate ) {
oldLogSystems->get()->stopRejoins();
rejoinRequests = rejoinRequestHandler(self);
return Void();
}
wait( changed );
}
}
ACTOR Future<Void> configurationMonitor( Reference<MasterData> self ) {
state Database cx = openDBOnServer(self->dbInfo, TaskDefaultEndpoint, true, true);
loop {
state ReadYourWritesTransaction tr(cx);
loop {
try {
tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
Standalone<RangeResultRef> results = wait( tr.getRange( configKeys, CLIENT_KNOBS->TOO_MANY ) );
ASSERT( !results.more && results.size() < CLIENT_KNOBS->TOO_MANY );
DatabaseConfiguration conf;
conf.fromKeyValues((VectorRef<KeyValueRef>) results);
if(conf != self->configuration) {
if(self->recoveryState != RecoveryState::ALL_LOGS_RECRUITED && self->recoveryState != RecoveryState::FULLY_RECOVERED) {
throw master_recovery_failed();
}
self->configuration = conf;
self->registrationTrigger.trigger();
}
state Future<Void> watchFuture = tr.watch(excludedServersVersionKey);
wait(tr.commit());
wait(watchFuture);
break;
} catch (Error& e) {
wait( tr.onError(e) );
}
}
}
}
ACTOR Future<Void> masterCore( Reference<MasterData> self ) {
state TraceInterval recoveryInterval("MasterRecovery");
state double recoverStartTime = now();
self->addActor.send( waitFailureServer(self->myInterface.waitFailure.getFuture()) );
TraceEvent( recoveryInterval.begin(), self->dbgid );
self->recoveryState = RecoveryState::READING_CSTATE;
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", RecoveryStatus::reading_coordinated_state)
.detail("Status", RecoveryStatus::names[RecoveryStatus::reading_coordinated_state])
.trackLatest("MasterRecoveryState");
wait( self->cstate.read() );
self->recoveryState = RecoveryState::LOCKING_CSTATE;
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", RecoveryStatus::locking_coordinated_state)
.detail("Status", RecoveryStatus::names[RecoveryStatus::locking_coordinated_state])
.detail("TLogs", self->cstate.prevDBState.tLogs.size())
.detail("MyRecoveryCount", self->cstate.prevDBState.recoveryCount+2)
.trackLatest("MasterRecoveryState");
state Reference<AsyncVar<Reference<ILogSystem>>> oldLogSystems( new AsyncVar<Reference<ILogSystem>> );
state Future<Void> recoverAndEndEpoch = ILogSystem::recoverAndEndEpoch(oldLogSystems, self->dbgid, self->cstate.prevDBState, self->myInterface.tlogRejoin.getFuture(), self->myInterface.locality, self->forceRecovery);
DBCoreState newState = self->cstate.myDBState;
newState.recoveryCount++;
wait( self->cstate.write(newState) || recoverAndEndEpoch );
self->recoveryState = RecoveryState::RECRUITING;
state vector<StorageServerInterface> seedServers;
state vector<Standalone<CommitTransactionRef>> initialConfChanges;
state Future<Void> logChanges;
loop {
Reference<ILogSystem> oldLogSystem = oldLogSystems->get();
if(oldLogSystem) logChanges = triggerUpdates(self, oldLogSystem);
state Future<Void> reg = oldLogSystem ? updateRegistration(self, oldLogSystem) : Never();
self->registrationTrigger.trigger();
choose {
when (wait( oldLogSystem ? recoverFrom(self, oldLogSystem, &seedServers, &initialConfChanges) : Never() )) { reg.cancel(); break; }
when (wait( oldLogSystems->onChange() )) {}
when (wait( reg )) { throw internal_error(); }
when (wait( recoverAndEndEpoch )) {}
}
}
if(self->neverCreated) {
recoverStartTime = now();
}
recoverAndEndEpoch.cancel();
ASSERT( self->proxies.size() <= self->configuration.getDesiredProxies() );
ASSERT( self->resolvers.size() <= self->configuration.getDesiredResolvers() );
self->recoveryState = RecoveryState::RECOVERY_TRANSACTION;
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", RecoveryStatus::recovery_transaction)
.detail("Status", RecoveryStatus::names[RecoveryStatus::recovery_transaction])
.trackLatest("MasterRecoveryState");
// Recovery transaction
state bool debugResult = debug_checkMinRestoredVersion( UID(), self->lastEpochEnd, "DBRecovery", SevWarn );
CommitTransactionRequest recoveryCommitRequest;
recoveryCommitRequest.flags = recoveryCommitRequest.flags | CommitTransactionRequest::FLAG_IS_LOCK_AWARE;
CommitTransactionRef &tr = recoveryCommitRequest.transaction;
int mmApplied = 0; // The number of mutations in tr.mutations that have been applied to the txnStateStore so far
if (self->lastEpochEnd != 0) {
// This transaction sets \xff/lastEpochEnd, which the shard servers can use to roll back speculatively
// processed semi-committed transactions from the previous epoch.
// It also guarantees the shard servers and tlog servers eventually get versions in the new epoch, which
// clients might rely on.
// This transaction is by itself in a batch (has its own version number), which simplifies storage servers slightly (they assume there are no modifications to serverKeys in the same batch)
// The proxy also expects the lastEpochEndKey mutation to be first in the transaction
BinaryWriter bw(Unversioned());
tr.set(recoveryCommitRequest.arena, lastEpochEndKey, (bw << self->lastEpochEnd).toStringRef());
} else {
// Recruit and seed initial shard servers
// This transaction must be the very first one in the database (version 1)
seedShardServers(recoveryCommitRequest.arena, tr, seedServers);
}
// initialConfChanges have not been conflict checked against any earlier writes in the recovery transaction, so do this as early as possible in the recovery transaction
// but see above comments as to why it can't be absolutely first. Theoretically emergency transactions should conflict check against the lastEpochEndKey.
for (auto& itr : initialConfChanges) {
tr.mutations.append_deep(recoveryCommitRequest.arena, itr.mutations.begin(), itr.mutations.size());
tr.write_conflict_ranges.append_deep(recoveryCommitRequest.arena, itr.write_conflict_ranges.begin(), itr.write_conflict_ranges.size());
}
tr.set(recoveryCommitRequest.arena, backupVersionKey, backupVersionValue);
tr.set(recoveryCommitRequest.arena, coordinatorsKey, self->coordinators.ccf->getConnectionString().toString());
tr.set(recoveryCommitRequest.arena, logsKey, self->logSystem->getLogsValue());
tr.set(recoveryCommitRequest.arena, primaryDatacenterKey, self->myInterface.locality.dcId().present() ? self->myInterface.locality.dcId().get() : StringRef());
tr.clear(recoveryCommitRequest.arena, tLogDatacentersKeys);
for(auto& dc : self->primaryDcId) {
tr.set(recoveryCommitRequest.arena, tLogDatacentersKeyFor(dc), StringRef());
}
if(self->configuration.usableRegions > 1) {
for(auto& dc : self->remoteDcIds) {
tr.set(recoveryCommitRequest.arena, tLogDatacentersKeyFor(dc), StringRef());
}
}
applyMetadataMutations(self->dbgid, recoveryCommitRequest.arena, tr.mutations.slice(mmApplied, tr.mutations.size()), self->txnStateStore, NULL, NULL);
mmApplied = tr.mutations.size();
tr.read_snapshot = self->recoveryTransactionVersion; // lastEpochEnd would make more sense, but isn't in the initial window of the resolver(s)
TraceEvent("MasterRecoveryCommit", self->dbgid);
state Future<ErrorOr<CommitID>> recoveryCommit = self->proxies[0].commit.tryGetReply(recoveryCommitRequest);
self->addActor.send( self->logSystem->onError() );
self->addActor.send( waitResolverFailure( self->resolvers ) );
self->addActor.send( waitProxyFailure( self->proxies ) );
self->addActor.send( provideVersions(self) );
self->addActor.send( reportErrors(updateRegistration(self, self->logSystem), "UpdateRegistration", self->dbgid) );
self->registrationTrigger.trigger();
wait(discardCommit(self->txnStateStore, self->txnStateLogAdapter));
// Wait for the recovery transaction to complete.
// SOMEDAY: For faster recovery, do this and setDBState asynchronously and don't wait for them
// unless we want to change TLogs
wait((success(recoveryCommit) && sendInitialCommitToResolvers(self)) );
if(recoveryCommit.isReady() && recoveryCommit.get().isError()) {
TEST(true); // Master recovery failed because of the initial commit failed
throw master_recovery_failed();
}
ASSERT( self->recoveryTransactionVersion != 0 );
self->recoveryState = RecoveryState::WRITING_CSTATE;
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", RecoveryStatus::writing_coordinated_state)
.detail("Status", RecoveryStatus::names[RecoveryStatus::writing_coordinated_state])
.detail("TLogList", self->logSystem->describe())
.trackLatest("MasterRecoveryState");
// Multiple masters prevent conflicts between themselves via CoordinatedState (self->cstate)
// 1. If SetMaster succeeds, then by CS's contract, these "new" Tlogs are the immediate
// successors of the "old" ones we are replacing
// 2. logSystem->recoverAndEndEpoch ensured that a co-quorum of the "old" tLogs were stopped at
// versions <= self->lastEpochEnd, so no versions > self->lastEpochEnd could be (fully) committed to them.
// 3. No other master will attempt to commit anything to our "new" Tlogs
// because it didn't recruit them
// 4. Therefore, no full commit can come between self->lastEpochEnd and the first commit
// we made to the new Tlogs (self->recoveryTransactionVersion), and only our own semi-commits can come between our
// first commit and the next new TLogs
state Promise<Void> remoteRecovered;
self->addActor.send( trackTlogRecovery(self, oldLogSystems, remoteRecovered) );
debug_advanceMaxCommittedVersion(UID(), self->recoveryTransactionVersion);
wait(self->cstateUpdated.getFuture());
debug_advanceMinCommittedVersion(UID(), self->recoveryTransactionVersion);
if( debugResult ) {
TraceEvent(self->forceRecovery ? SevWarn : SevError, "DBRecoveryDurabilityError");
}
TraceEvent("MasterCommittedTLogs", self->dbgid).detail("TLogs", self->logSystem->describe()).detail("RecoveryCount", self->cstate.myDBState.recoveryCount).detail("RecoveryTransactionVersion", self->recoveryTransactionVersion);
TraceEvent(recoveryInterval.end(), self->dbgid).detail("RecoveryTransactionVersion", self->recoveryTransactionVersion);
self->recoveryState = RecoveryState::ACCEPTING_COMMITS;
double recoveryDuration = now() - recoverStartTime;
TraceEvent((recoveryDuration > 4 && !g_network->isSimulated()) ? SevWarnAlways : SevInfo, "MasterRecoveryDuration", self->dbgid)
.detail("RecoveryDuration", recoveryDuration)
.trackLatest("MasterRecoveryDuration");
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", RecoveryStatus::accepting_commits)
.detail("Status", RecoveryStatus::names[RecoveryStatus::accepting_commits])
.detail("StoreType", self->configuration.storageServerStoreType)
.detail("RecoveryDuration", recoveryDuration)
.trackLatest("MasterRecoveryState");
self->addActor.send( provideRecoveryInfo(self) );
if( self->resolvers.size() > 1 )
self->addActor.send( resolutionBalancing(self) );
self->addActor.send( changeCoordinators(self) );
self->addActor.send( configurationMonitor( self ) );
wait( Future<Void>(Never()) );
throw internal_error();
}
ACTOR Future<Void> masterServer( MasterInterface mi, Reference<AsyncVar<ServerDBInfo>> db, ServerCoordinators coordinators, LifetimeToken lifetime, bool forceRecovery )
{
state Future<Void> onDBChange = Void();
state PromiseStream<Future<Void>> addActor;
state Reference<MasterData> self( new MasterData( db, mi, coordinators, db->get().clusterInterface, LiteralStringRef(""), addActor, forceRecovery ) );
state Future<Void> collection = actorCollection( self->addActor.getFuture() );
TEST( !lifetime.isStillValid( db->get().masterLifetime, mi.id()==db->get().master.id() ) ); // Master born doomed
TraceEvent("MasterLifetime", self->dbgid).detail("LifetimeToken", lifetime.toString());
try {
state Future<Void> core = masterCore( self );
loop choose {
when (wait( core )) { break; }
when (wait( onDBChange )) {
onDBChange = db->onChange();
if (!lifetime.isStillValid( db->get().masterLifetime, mi.id()==db->get().master.id() )) {
TraceEvent("MasterTerminated", mi.id()).detail("Reason", "LifetimeToken").detail("MyToken", lifetime.toString()).detail("CurrentToken", db->get().masterLifetime.toString());
TEST(true); // Master replaced, dying
if (BUGGIFY) wait( delay(5) );
throw worker_removed();
}
}
when (wait(collection) ) { ASSERT(false); throw internal_error(); }
}
} catch (Error& e) {
state Error err = e;
if(e.code() != error_code_actor_cancelled) {
wait(delay(0.0));
}
while(!self->addActor.isEmpty()) {
self->addActor.getFuture().pop();
}
TEST(err.code() == error_code_master_tlog_failed); // Master: terminated because of a tLog failure
TEST(err.code() == error_code_master_proxy_failed); // Master: terminated because of a proxy failure
TEST(err.code() == error_code_master_resolver_failed); // Master: terminated because of a resolver failure
if (normalMasterErrors().count(err.code()))
{
TraceEvent("MasterTerminated", mi.id()).error(err);
return Void();
}
throw err;
}
return Void();
}