foundationdb/fdbrpc/AsyncFileNonDurable.actor.h

872 lines
36 KiB
C++

/*
* AsyncFileNonDurable.actor.h
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
// When actually compiled (NO_INTELLISENSE), include the generated version of this file. In intellisense use the source
// version.
#if defined(NO_INTELLISENSE) && !defined(FLOW_ASYNCFILENONDURABLE_ACTOR_G_H)
#define FLOW_ASYNCFILENONDURABLE_ACTOR_G_H
#include "fdbrpc/AsyncFileNonDurable.actor.g.h"
#elif !defined(FLOW_ASYNCFILENONDURABLE_ACTOR_H)
#define FLOW_ASYNCFILENONDURABLE_ACTOR_H
#include "flow/flow.h"
#include "fdbrpc/IAsyncFile.h"
#include "flow/ActorCollection.h"
#include "fdbrpc/simulator.h"
#include "fdbrpc/TraceFileIO.h"
#include "fdbrpc/RangeMap.h"
#include "flow/actorcompiler.h" // This must be the last #include.
#undef max
#undef min
ACTOR Future<Void> sendOnProcess(ISimulator::ProcessInfo* process, Promise<Void> promise, TaskPriority taskID);
ACTOR Future<Void> sendErrorOnProcess(ISimulator::ProcessInfo* process,
Promise<Void> promise,
Error e,
TaskPriority taskID);
ACTOR template <class T>
Future<T> sendErrorOnShutdown(Future<T> in) {
choose {
when(wait(success(g_simulator.getCurrentProcess()->shutdownSignal.getFuture()))) {
throw io_error().asInjectedFault();
}
when(T rep = wait(in)) { return rep; }
}
}
class AsyncFileDetachable final : public IAsyncFile, public ReferenceCounted<AsyncFileDetachable> {
private:
Reference<IAsyncFile> file;
Future<Void> shutdown;
public:
explicit AsyncFileDetachable(Reference<IAsyncFile> file) : file(file) { shutdown = doShutdown(this); }
ACTOR Future<Void> doShutdown(AsyncFileDetachable* self) {
wait(success(g_simulator.getCurrentProcess()->shutdownSignal.getFuture()));
self->file = Reference<IAsyncFile>();
return Void();
}
ACTOR static Future<Reference<IAsyncFile>> open(Future<Reference<IAsyncFile>> wrappedFile) {
choose {
when(wait(success(g_simulator.getCurrentProcess()->shutdownSignal.getFuture()))) {
throw io_error().asInjectedFault();
}
when(Reference<IAsyncFile> f = wait(wrappedFile)) { return makeReference<AsyncFileDetachable>(f); }
}
}
void addref() override { ReferenceCounted<AsyncFileDetachable>::addref(); }
void delref() override { ReferenceCounted<AsyncFileDetachable>::delref(); }
Future<int> read(void* data, int length, int64_t offset) override {
if (!file.getPtr() || g_simulator.getCurrentProcess()->shutdownSignal.getFuture().isReady())
return io_error().asInjectedFault();
return sendErrorOnShutdown(file->read(data, length, offset));
}
Future<Void> write(void const* data, int length, int64_t offset) override {
if (!file.getPtr() || g_simulator.getCurrentProcess()->shutdownSignal.getFuture().isReady())
return io_error().asInjectedFault();
return sendErrorOnShutdown(file->write(data, length, offset));
}
Future<Void> truncate(int64_t size) override {
if (!file.getPtr() || g_simulator.getCurrentProcess()->shutdownSignal.getFuture().isReady())
return io_error().asInjectedFault();
return sendErrorOnShutdown(file->truncate(size));
}
Future<Void> sync() override {
if (!file.getPtr() || g_simulator.getCurrentProcess()->shutdownSignal.getFuture().isReady())
return io_error().asInjectedFault();
return sendErrorOnShutdown(file->sync());
}
Future<int64_t> size() const override {
if (!file.getPtr() || g_simulator.getCurrentProcess()->shutdownSignal.getFuture().isReady())
return io_error().asInjectedFault();
return sendErrorOnShutdown(file->size());
}
int64_t debugFD() const override {
if (!file.getPtr())
throw io_error().asInjectedFault();
return file->debugFD();
}
std::string getFilename() const override {
if (!file.getPtr())
throw io_error().asInjectedFault();
return file->getFilename();
}
};
// An async file implementation which wraps another async file and will randomly destroy sectors that it is writing when
// killed This is used to simulate a power failure which prevents all written data from being persisted to disk
class AsyncFileNonDurable final : public IAsyncFile, public ReferenceCounted<AsyncFileNonDurable> {
public:
UID id;
std::string filename;
// For files that use atomic write and create, they are initially created with an extra suffix
std::string initialFilename;
// An approximation of the size of the file; .size() should be used instead of this variable in most cases
mutable int64_t approximateSize;
// The address of the machine that opened the file
NetworkAddress openedAddress;
bool aio;
private:
// The wrapped IAsyncFile
Reference<IAsyncFile> file;
// The maximum amount of time a write is delayed before being passed along to the underlying file
double maxWriteDelay;
// Modifications which haven't been pushed to file, mapped by the location in the file that is being modified.
// Be sure to update minSizeAfterPendingModifications when modifying pendingModifications.
RangeMap<uint64_t, Future<Void>> pendingModifications;
// The size of the file after the set of pendingModifications completes,
// (the set pending at the time of reading this member). Must be updated in
// lockstep with any inserts into the pendingModifications map. Tracking
// this variable is necessary so that we can know the range of the file a
// truncate is modifying, so we can insert it into the pendingModifications
// map. Until minSizeAfterPendingModificationsIsExact is true, this is only a lower bound.
mutable int64_t minSizeAfterPendingModifications = 0;
mutable bool minSizeAfterPendingModificationsIsExact = false;
// Will be blocked whenever kill is running
Promise<Void> killed;
Promise<Void> killComplete;
// Used by sync (and kill) to force writes which have not yet been passed along.
// If true is sent, then writes will be durable. If false, then they may not be durable.
Promise<bool> startSyncPromise;
// The performance parameters of the simulated disk
Reference<DiskParameters> diskParameters;
// Set to true the first time sync is called on the file
bool hasBeenSynced;
// Used to describe what corruption is allowed by the file as well as the type of corruption being used on a
// particular page
enum KillMode { NO_CORRUPTION = 0, DROP_ONLY = 1, FULL_CORRUPTION = 2 };
// Limits what types of corruption are applied to writes from this file
KillMode killMode;
ActorCollection
reponses; // cannot call getResult on this actor collection, since the actors will be on different processes
AsyncFileNonDurable(const std::string& filename,
const std::string& initialFilename,
Reference<IAsyncFile> file,
Reference<DiskParameters> diskParameters,
NetworkAddress openedAddress,
bool aio)
: filename(filename), initialFilename(initialFilename), approximateSize(0), openedAddress(openedAddress),
aio(aio), file(file), pendingModifications(uint64_t(-1)), diskParameters(diskParameters), reponses(false) {
// This is only designed to work in simulation
ASSERT(g_network->isSimulated());
this->id = deterministicRandom()->randomUniqueID();
//TraceEvent("AsyncFileNonDurable_Create", id).detail("Filename", filename);
maxWriteDelay = FLOW_KNOBS->NON_DURABLE_MAX_WRITE_DELAY;
hasBeenSynced = false;
killMode = (KillMode)deterministicRandom()->randomInt(1, 3);
//TraceEvent("AsyncFileNonDurable_CreateEnd", id).detail("Filename", filename).backtrace();
}
public:
static std::map<std::string, Future<Void>> filesBeingDeleted;
// Creates a new AsyncFileNonDurable which wraps the provided IAsyncFile
ACTOR static Future<Reference<IAsyncFile>> open(std::string filename,
std::string actualFilename,
Future<Reference<IAsyncFile>> wrappedFile,
Reference<DiskParameters> diskParameters,
bool aio) {
state ISimulator::ProcessInfo* currentProcess = g_simulator.getCurrentProcess();
state TaskPriority currentTaskID = g_network->getCurrentTask();
state Future<Void> shutdown = success(currentProcess->shutdownSignal.getFuture());
//TraceEvent("AsyncFileNonDurableOpenBegin").detail("Filename", filename).detail("Addr", g_simulator.getCurrentProcess()->address);
wait(g_simulator.onMachine(currentProcess));
try {
wait(success(wrappedFile) || shutdown);
if (shutdown.isReady())
throw io_error().asInjectedFault();
state Reference<IAsyncFile> file = wrappedFile.get();
// If we are in the process of deleting a file, we can't let someone else modify it at the same time. We
// therefore block the creation of new files until deletion is complete
state std::map<std::string, Future<Void>>::iterator deletedFile = filesBeingDeleted.find(filename);
if (deletedFile != filesBeingDeleted.end()) {
//TraceEvent("AsyncFileNonDurableOpenWaitOnDelete1").detail("Filename", filename);
wait(deletedFile->second || shutdown);
//TraceEvent("AsyncFileNonDurableOpenWaitOnDelete2").detail("Filename", filename);
if (shutdown.isReady())
throw io_error().asInjectedFault();
wait(g_simulator.onProcess(currentProcess, currentTaskID));
}
state Reference<AsyncFileNonDurable> nonDurableFile(
new AsyncFileNonDurable(filename, actualFilename, file, diskParameters, currentProcess->address, aio));
// Causes the approximateSize member to be set
state Future<int64_t> sizeFuture = nonDurableFile->size();
wait(success(sizeFuture) || shutdown);
if (shutdown.isReady())
throw io_error().asInjectedFault();
//TraceEvent("AsyncFileNonDurableOpenComplete").detail("Filename", filename);
wait(g_simulator.onProcess(currentProcess, currentTaskID));
return nonDurableFile;
} catch (Error& e) {
state Error err = e;
std::string currentFilename =
(wrappedFile.isReady() && !wrappedFile.isError()) ? wrappedFile.get()->getFilename() : actualFilename;
currentProcess->machine->openFiles.erase(currentFilename);
//TraceEvent("AsyncFileNonDurableOpenError").error(e, true).detail("Filename", filename).detail("Address", currentProcess->address).detail("Addr", g_simulator.getCurrentProcess()->address);
wait(g_simulator.onProcess(currentProcess, currentTaskID));
throw err;
}
}
~AsyncFileNonDurable() override {
//TraceEvent("AsyncFileNonDurable_Destroy", id).detail("Filename", filename);
}
void addref() override { ReferenceCounted<AsyncFileNonDurable>::addref(); }
void delref() override {
if (delref_no_destroy()) {
if (filesBeingDeleted.count(filename) == 0) {
//TraceEvent("AsyncFileNonDurable_StartDelete", id).detail("Filename", filename);
Future<Void> deleteFuture = deleteFile(this);
if (!deleteFuture.isReady())
filesBeingDeleted[filename] = deleteFuture;
}
removeOpenFile(filename, this);
if (initialFilename != filename) {
removeOpenFile(initialFilename, this);
}
}
}
// Removes a file from the openFiles map
static void removeOpenFile(std::string filename, AsyncFileNonDurable* file) {
auto& openFiles = g_simulator.getCurrentProcess()->machine->openFiles;
auto iter = openFiles.find(filename);
// Various actions (e.g. simulated delete) can remove a file from openFiles prematurely, so it may already
// be gone. Renamed files (from atomic write and create) will also be present under only one of the two
// names.
if (iter != openFiles.end()) {
// even if the filename exists, it doesn't mean that it references the same file. It could be that the
// file was renamed and later a file with the same name was opened.
if (iter->second.getPtrIfReady().orDefault(nullptr) == file) {
openFiles.erase(iter);
}
}
}
// Passes along reads straight to the underlying file, waiting for any outstanding changes that could affect the
// results
Future<int> read(void* data, int length, int64_t offset) override { return read(this, data, length, offset); }
// Writes data to the file. Writes are delayed a random amount of time before being
// passed to the underlying file
Future<Void> write(void const* data, int length, int64_t offset) override {
//TraceEvent("AsyncFileNonDurable_Write", id).detail("Filename", filename).detail("Offset", offset).detail("Length", length);
if (length == 0) {
TraceEvent(SevWarnAlways, "AsyncFileNonDurable_EmptyModification", id).detail("Filename", filename);
return Void();
}
debugFileSet("AsyncFileNonDurableWrite", filename, data, offset, length);
Promise<Void> writeStarted;
Promise<Future<Void>> writeEnded;
writeEnded.send(write(this, writeStarted, writeEnded.getFuture(), data, length, offset));
return writeStarted.getFuture();
}
// Truncates the file. Truncates are delayed a random amount of time before being
// passed to the underlying file
Future<Void> truncate(int64_t size) override {
//TraceEvent("AsyncFileNonDurable_Truncate", id).detail("Filename", filename).detail("Offset", size);
debugFileTruncate("AsyncFileNonDurableTruncate", filename, size);
Promise<Void> truncateStarted;
Promise<Future<Void>> truncateEnded;
truncateEnded.send(truncate(this, truncateStarted, truncateEnded.getFuture(), size));
return truncateStarted.getFuture();
}
// Fsyncs the file. This allows all delayed modifications to the file to complete before
// syncing the underlying file
Future<Void> sync() override {
//TraceEvent("AsyncFileNonDurable_Sync", id).detail("Filename", filename);
Future<Void> syncFuture = sync(this, true);
reponses.add(syncFuture);
return syncFuture;
}
// Passes along size requests to the underlying file, augmenting with any writes past the end of the file
Future<int64_t> size() const override { return size(this); }
int64_t debugFD() const override { return file->debugFD(); }
std::string getFilename() const override { return file->getFilename(); }
// Forces a non-durable sync (some writes are not made or made incorrectly)
// This is used when the file should 'die' without first completing its operations
//(e.g. to simulate power failure)
Future<Void> kill() {
TraceEvent("AsyncFileNonDurable_Kill", id).detail("Filename", filename);
TEST(true); // AsyncFileNonDurable was killed
return sync(this, false);
}
private:
// Returns a future that is used to ensure the waiter ends up on the main thread
Future<Void> returnToMainThread() {
Promise<Void> p;
Future<Void> f = p.getFuture();
g_network->onMainThread(std::move(p), g_network->getCurrentTask());
return f;
}
// Gets existing modifications that overlap the specified range. Optionally inserts a new modification into the map
std::vector<Future<Void>> getModificationsAndInsert(int64_t offset,
int64_t length,
bool insertModification = false,
Future<Void> value = Void()) {
auto modification = RangeMapRange<uint64_t>(offset, length >= 0 ? offset + length : uint64_t(-1));
auto priorModifications = pendingModifications.intersectingRanges(modification);
// Aggregate existing modifications in this range
std::vector<Future<Void>> modificationFutures;
for (auto itr = priorModifications.begin(); itr != priorModifications.end(); ++itr) {
if (itr.value().isValid() && (!itr.value().isReady() || itr.value().isError())) {
modificationFutures.push_back(itr.value());
}
}
// Add the modification if we are doing a write or truncate
if (insertModification)
pendingModifications.insert(modification, value);
return modificationFutures;
}
// Checks if the file is killed. If so, then the current sync is completed if running and then an error is thrown
ACTOR static Future<Void> checkKilled(AsyncFileNonDurable const* self, std::string context) {
if (self->killed.isSet()) {
//TraceEvent("AsyncFileNonDurable_KilledInCheck", self->id).detail("In", context).detail("Filename", self->filename);
wait(self->killComplete.getFuture());
TraceEvent("AsyncFileNonDurable_KilledFileOperation", self->id)
.detail("In", context)
.detail("Filename", self->filename);
TEST(true); // AsyncFileNonDurable operation killed
throw io_error().asInjectedFault();
}
return Void();
}
// Passes along reads straight to the underlying file, waiting for any outstanding changes that could affect the
// results
ACTOR Future<int> onRead(AsyncFileNonDurable* self, void* data, int length, int64_t offset) {
wait(checkKilled(self, "Read"));
vector<Future<Void>> priorModifications = self->getModificationsAndInsert(offset, length);
wait(waitForAll(priorModifications));
state Future<int> readFuture = self->file->read(data, length, offset);
wait(success(readFuture) || self->killed.getFuture());
// throws if we were killed
wait(checkKilled(self, "ReadEnd"));
debugFileCheck("AsyncFileNonDurableRead", self->filename, data, offset, length);
// if(g_simulator.getCurrentProcess()->rebooting)
//TraceEvent("AsyncFileNonDurable_ReadEnd", self->id).detail("Filename", self->filename);
return readFuture.get();
}
ACTOR Future<int> read(AsyncFileNonDurable* self, void* data, int length, int64_t offset) {
state ISimulator::ProcessInfo* currentProcess = g_simulator.getCurrentProcess();
state TaskPriority currentTaskID = g_network->getCurrentTask();
wait(g_simulator.onMachine(currentProcess));
try {
state int rep = wait(self->onRead(self, data, length, offset));
wait(g_simulator.onProcess(currentProcess, currentTaskID));
return rep;
} catch (Error& e) {
state Error err = e;
wait(g_simulator.onProcess(currentProcess, currentTaskID));
throw err;
}
}
// Delays writes a random amount of time before passing them through to the underlying file.
// If a kill interrupts the delay, then the output could be the correct write, part of the write,
// or none of the write. It may also corrupt parts of sectors which have not been written correctly
ACTOR Future<Void> write(AsyncFileNonDurable* self,
Promise<Void> writeStarted,
Future<Future<Void>> ownFuture,
void const* data,
int length,
int64_t offset) {
state ISimulator::ProcessInfo* currentProcess = g_simulator.getCurrentProcess();
state TaskPriority currentTaskID = g_network->getCurrentTask();
wait(g_simulator.onMachine(currentProcess));
state double delayDuration =
g_simulator.speedUpSimulation ? 0.0001 : (deterministicRandom()->random01() * self->maxWriteDelay);
state Standalone<StringRef> dataCopy(StringRef((uint8_t*)data, length));
state Future<bool> startSyncFuture = self->startSyncPromise.getFuture();
try {
//TraceEvent("AsyncFileNonDurable_Write", self->id).detail("Delay", delayDuration).detail("Filename", self->filename).detail("WriteLength", length).detail("Offset", offset);
wait(checkKilled(self, "Write"));
Future<Void> writeEnded = wait(ownFuture);
std::vector<Future<Void>> priorModifications =
self->getModificationsAndInsert(offset, length, true, writeEnded);
self->minSizeAfterPendingModifications = std::max(self->minSizeAfterPendingModifications, offset + length);
if (BUGGIFY_WITH_PROB(0.001) && !g_simulator.speedUpSimulation)
priorModifications.push_back(
delay(deterministicRandom()->random01() * FLOW_KNOBS->MAX_PRIOR_MODIFICATION_DELAY) ||
self->killed.getFuture());
else
priorModifications.push_back(waitUntilDiskReady(self->diskParameters, length) ||
self->killed.getFuture());
wait(waitForAll(priorModifications));
self->approximateSize = std::max(self->approximateSize, length + offset);
self->reponses.add(sendOnProcess(currentProcess, writeStarted, currentTaskID));
} catch (Error& e) {
self->reponses.add(sendErrorOnProcess(currentProcess, writeStarted, e, currentTaskID));
throw;
}
//TraceEvent("AsyncFileNonDurable_WriteDoneWithPreviousMods", self->id).detail("Delay", delayDuration).detail("Filename", self->filename).detail("WriteLength", length).detail("Offset", offset);
// Wait a random amount of time or until a sync/kill is issued
state bool saveDurable = true;
choose {
when(wait(delay(delayDuration))) {}
when(bool durable = wait(startSyncFuture)) { saveDurable = durable; }
}
debugFileCheck("AsyncFileNonDurableWriteAfterWait", self->filename, dataCopy.begin(), offset, length);
// In AIO mode, only page-aligned writes are supported
ASSERT(!self->aio || (offset % 4096 == 0 && length % 4096 == 0));
// Non-durable writes should introduce errors at the page level and corrupt at the sector level
// Otherwise, we can perform the entire write at once
int diskPageLength = saveDurable ? length : 4096;
int diskSectorLength = saveDurable ? length : 512;
vector<Future<Void>> writeFutures;
for (int writeOffset = 0; writeOffset < length;) {
// Number of bytes until the next diskPageLength file offset within the write or the end of the write.
int pageLength = diskPageLength;
if (!self->aio && !saveDurable) {
// If not in AIO mode, and the save is not durable, then we can't perform the entire write all at once
// and the first and last pages touched by the write could be partial.
pageLength = std::min<int64_t>((int64_t)length - writeOffset,
diskPageLength - ((offset + writeOffset) % diskPageLength));
}
// choose a random action to perform on this page write (write correctly, corrupt, or don't write)
KillMode pageKillMode = (KillMode)deterministicRandom()->randomInt(0, self->killMode + 1);
for (int pageOffset = 0; pageOffset < pageLength;) {
// Number of bytes until the next diskSectorLength file offset within the write or the end of the write.
int sectorLength = diskSectorLength;
if (!self->aio && !saveDurable) {
// If not in AIO mode, and the save is not durable, then we can't perform the entire write all at
// once and the first and last sectors touched by the write could be partial.
sectorLength =
std::min<int64_t>((int64_t)length - (writeOffset + pageOffset),
diskSectorLength - ((offset + writeOffset + pageOffset) % diskSectorLength));
}
// If saving durable, then perform the write correctly. Otherwise, perform the write correcly with a
// probability of 1/3. If corrupting the write, then this sector will be written correctly with a 1/4
// chance
if (saveDurable || pageKillMode == NO_CORRUPTION ||
(pageKillMode == FULL_CORRUPTION && deterministicRandom()->random01() < 0.25)) {
// if (!saveDurable) TraceEvent(SevInfo, "AsyncFileNonDurableWrite", self->id).detail("Filename",
// self->filename).detail("Offset", offset+writeOffset+pageOffset).detail("Length", sectorLength);
writeFutures.push_back(self->file->write(
dataCopy.begin() + writeOffset + pageOffset, sectorLength, offset + writeOffset + pageOffset));
}
// If the write is not durable, then the write will either be corrupted or not written at all. If
// corrupted, there is 1/4 chance that a given sector will not be written
else if (pageKillMode == FULL_CORRUPTION && deterministicRandom()->random01() < 0.66667) {
// The incorrect part of the write can be the rightmost bytes (side = 0), the leftmost bytes (side =
// 1), or the entire write (side = 2)
int side = deterministicRandom()->randomInt(0, 3);
// There is a 1/2 chance that a bad write will have garbage written into its bad portion
// The chance is increased to 1 if the entire write is bad
bool garbage = side == 2 || deterministicRandom()->random01() < 0.5;
int64_t goodStart = 0;
int64_t goodEnd = sectorLength;
int64_t badStart = 0;
int64_t badEnd = sectorLength;
if (side == 0) {
goodEnd = deterministicRandom()->randomInt(0, sectorLength);
badStart = goodEnd;
} else if (side == 1) {
badEnd = deterministicRandom()->randomInt(0, sectorLength);
goodStart = badEnd;
} else
goodEnd = 0;
// Write randomly generated bytes, if required
if (garbage && badStart != badEnd) {
uint8_t* badData = const_cast<uint8_t*>(&dataCopy.begin()[badStart + writeOffset + pageOffset]);
for (int i = 0; i < badEnd - badStart; i += sizeof(uint32_t)) {
uint32_t val = deterministicRandom()->randomUInt32();
memcpy(&badData[i], &val, std::min(badEnd - badStart - i, (int64_t)sizeof(uint32_t)));
}
writeFutures.push_back(self->file->write(dataCopy.begin() + writeOffset + pageOffset,
sectorLength,
offset + writeOffset + pageOffset));
debugFileSet("AsyncFileNonDurableBadWrite",
self->filename,
dataCopy.begin() + writeOffset + pageOffset,
offset + writeOffset + pageOffset,
sectorLength);
} else if (goodStart != goodEnd)
writeFutures.push_back(
self->file->write(dataCopy.begin() + goodStart + writeOffset + pageOffset,
goodEnd - goodStart,
goodStart + offset + writeOffset + pageOffset));
TraceEvent("AsyncFileNonDurable_BadWrite", self->id)
.detail("Offset", offset + writeOffset + pageOffset)
.detail("Length", sectorLength)
.detail("GoodStart", goodStart)
.detail("GoodEnd", goodEnd)
.detail("HasGarbage", garbage)
.detail("Side", side)
.detail("Filename", self->filename);
TEST(true); // AsyncFileNonDurable bad write
} else {
TraceEvent("AsyncFileNonDurable_DroppedWrite", self->id)
.detail("Offset", offset + writeOffset + pageOffset)
.detail("Length", sectorLength)
.detail("Filename", self->filename);
TEST(true); // AsyncFileNonDurable dropped write
}
pageOffset += sectorLength;
}
writeOffset += pageLength;
}
wait(waitForAll(writeFutures));
//TraceEvent("AsyncFileNonDurable_WriteDone", self->id).detail("Delay", delayDuration).detail("Filename", self->filename).detail("WriteLength", length).detail("Offset", offset);
return Void();
}
// Delays truncates a random amount of time before passing them through to the underlying file.
// If a kill interrupts the delay, then the truncate may or may not be performed
ACTOR Future<Void> truncate(AsyncFileNonDurable* self,
Promise<Void> truncateStarted,
Future<Future<Void>> ownFuture,
int64_t size) {
state ISimulator::ProcessInfo* currentProcess = g_simulator.getCurrentProcess();
state TaskPriority currentTaskID = g_network->getCurrentTask();
wait(g_simulator.onMachine(currentProcess));
state double delayDuration =
g_simulator.speedUpSimulation ? 0.0001 : (deterministicRandom()->random01() * self->maxWriteDelay);
state Future<bool> startSyncFuture = self->startSyncPromise.getFuture();
try {
//TraceEvent("AsyncFileNonDurable_Truncate", self->id).detail("Delay", delayDuration).detail("Filename", self->filename);
wait(checkKilled(self, "Truncate"));
state Future<Void> truncateEnded = wait(ownFuture);
// Need to know the size of the file directly before this truncate
// takes effect to see what range it modifies.
if (!self->minSizeAfterPendingModificationsIsExact) {
wait(success(self->size()));
}
ASSERT(self->minSizeAfterPendingModificationsIsExact);
int64_t beginModifiedRange = std::min(size, self->minSizeAfterPendingModifications);
self->minSizeAfterPendingModifications = size;
std::vector<Future<Void>> priorModifications =
self->getModificationsAndInsert(beginModifiedRange, /*through end of file*/ -1, true, truncateEnded);
if (BUGGIFY_WITH_PROB(0.001))
priorModifications.push_back(
delay(deterministicRandom()->random01() * FLOW_KNOBS->MAX_PRIOR_MODIFICATION_DELAY) ||
self->killed.getFuture());
else
priorModifications.push_back(waitUntilDiskReady(self->diskParameters, 0) || self->killed.getFuture());
wait(waitForAll(priorModifications));
self->approximateSize = size;
self->reponses.add(sendOnProcess(currentProcess, truncateStarted, currentTaskID));
} catch (Error& e) {
self->reponses.add(sendErrorOnProcess(currentProcess, truncateStarted, e, currentTaskID));
throw;
}
// Wait a random amount of time or until a sync/kill is issued
state bool saveDurable = true;
choose {
when(wait(delay(delayDuration))) {}
when(bool durable = wait(startSyncFuture)) { saveDurable = durable; }
}
if (g_network->check_yield(TaskPriority::DefaultYield)) {
wait(delay(0, TaskPriority::DefaultYield));
}
// If performing a durable truncate, then pass it through to the file. Otherwise, pass it through with a 1/2
// chance
if (saveDurable || self->killMode == NO_CORRUPTION || deterministicRandom()->random01() < 0.5)
wait(self->file->truncate(size));
else {
TraceEvent("AsyncFileNonDurable_DroppedTruncate", self->id).detail("Size", size);
TEST(true); // AsyncFileNonDurable dropped truncate
}
return Void();
}
// Waits for delayed modifications to the file to complete and then syncs the underlying file
// If durable is false, then some of the delayed modifications will not be applied or will be
// applied incorrectly
ACTOR Future<Void> onSync(AsyncFileNonDurable* self, bool durable) {
//TraceEvent("AsyncFileNonDurable_ImplSync", self->id).detail("Filename", self->filename).detail("Durable", durable);
ASSERT(durable || !self->killed.isSet()); // this file is kill()ed only once
if (durable) {
self->hasBeenSynced = true;
wait(waitUntilDiskReady(self->diskParameters, 0, true) || self->killed.getFuture());
}
wait(checkKilled(self, durable ? "Sync" : "Kill"));
if (!durable)
self->killed.send(Void());
// Get all outstanding modifications
std::vector<Future<Void>> outstandingModifications;
std::vector<RangeMapRange<uint64_t>> stillPendingModifications;
auto rangeItr = self->pendingModifications.ranges();
for (auto itr = rangeItr.begin(); itr != rangeItr.end(); ++itr) {
if (itr.value().isValid() && (!itr->value().isReady() || itr->value().isError())) {
outstandingModifications.push_back(itr->value());
if (!itr.value().isReady())
stillPendingModifications.push_back(itr->range());
}
}
Future<Void> allModifications = waitForAll(outstandingModifications);
// Clear out the pending modifications map of all completed modifications
self->pendingModifications.insert(RangeMapRange<uint64_t>(0, -1), Void());
for (auto itr = stillPendingModifications.begin(); itr != stillPendingModifications.end(); ++itr)
self->pendingModifications.insert(
*itr, success(allModifications)); // waitForAll cannot wait on the same future more than once, so wrap
// the future with success
// Signal all modifications to end their delay and reset the startSyncPromise
Promise<bool> startSyncPromise = self->startSyncPromise;
self->startSyncPromise = Promise<bool>();
// Writes will be durable in a kill with a 10% probability
state bool writeDurable = durable || deterministicRandom()->random01() < 0.1;
startSyncPromise.send(writeDurable);
// Wait for outstanding writes to complete
if (durable)
wait(allModifications);
else
wait(success(errorOr(allModifications)));
if (!durable) {
// Sometimes sync the file if writes were made durably. Before a file is first synced, it is stored in a
// temporary file and then renamed to the correct location once sync is called. By not calling sync, we
// simulate a failure to fsync the directory storing the file
if (self->hasBeenSynced && writeDurable && deterministicRandom()->random01() < 0.5) {
TEST(true); // AsyncFileNonDurable kill was durable and synced
wait(success(errorOr(self->file->sync())));
}
// Setting this promise could trigger the deletion of the AsyncFileNonDurable; after this none of its
// members should be used
//TraceEvent("AsyncFileNonDurable_ImplSyncEnd", self->id).detail("Filename", self->filename).detail("Durable", durable);
self->killComplete.send(Void());
}
// A killed file cannot be allowed to report that it successfully synced
else {
wait(checkKilled(self, "SyncEnd"));
wait(self->file->sync());
//TraceEvent("AsyncFileNonDurable_ImplSyncEnd", self->id).detail("Filename", self->filename).detail("Durable", durable);
}
return Void();
}
ACTOR Future<Void> sync(AsyncFileNonDurable* self, bool durable) {
state ISimulator::ProcessInfo* currentProcess = g_simulator.getCurrentProcess();
state TaskPriority currentTaskID = g_network->getCurrentTask();
wait(g_simulator.onMachine(currentProcess));
try {
wait(self->onSync(self, durable));
wait(g_simulator.onProcess(currentProcess, currentTaskID));
return Void();
} catch (Error& e) {
state Error err = e;
wait(g_simulator.onProcess(currentProcess, currentTaskID));
throw err;
}
}
// Passes along size requests to the underlying file, augmenting with any writes past the end of the file
ACTOR static Future<int64_t> onSize(AsyncFileNonDurable const* self) {
//TraceEvent("AsyncFileNonDurable_Size", self->id).detail("Filename", self->filename);
wait(checkKilled(self, "Size"));
state Future<int64_t> sizeFuture = self->file->size();
wait(success(sizeFuture) || self->killed.getFuture());
wait(checkKilled(self, "SizeEnd"));
// Include any modifications which extend past the end of the file
self->approximateSize = self->minSizeAfterPendingModifications =
std::max<int64_t>(sizeFuture.get(), self->minSizeAfterPendingModifications);
self->minSizeAfterPendingModificationsIsExact = true;
return self->approximateSize;
}
ACTOR static Future<int64_t> size(AsyncFileNonDurable const* self) {
state ISimulator::ProcessInfo* currentProcess = g_simulator.getCurrentProcess();
state TaskPriority currentTaskID = g_network->getCurrentTask();
wait(g_simulator.onMachine(currentProcess));
try {
state int64_t rep = wait(onSize(self));
wait(g_simulator.onProcess(currentProcess, currentTaskID));
return rep;
} catch (Error& e) {
state Error err = e;
wait(g_simulator.onProcess(currentProcess, currentTaskID));
throw err;
}
}
// Finishes all outstanding actors on an AsyncFileNonDurable and then deletes it
ACTOR Future<Void> deleteFile(AsyncFileNonDurable* self) {
state ISimulator::ProcessInfo* currentProcess = g_simulator.getCurrentProcess();
state TaskPriority currentTaskID = g_network->getCurrentTask();
state std::string filename = self->filename;
wait(g_simulator.onMachine(currentProcess));
try {
// Make sure all writes have gone through.
Promise<bool> startSyncPromise = self->startSyncPromise;
self->startSyncPromise = Promise<bool>();
startSyncPromise.send(true);
std::vector<Future<Void>> outstandingModifications;
for (auto itr = self->pendingModifications.ranges().begin();
itr != self->pendingModifications.ranges().end();
++itr)
if (itr->value().isValid() && !itr->value().isReady())
outstandingModifications.push_back(itr->value());
// Ignore errors here so that all modifications can finish
wait(waitForAllReady(outstandingModifications));
// Make sure we aren't in the process of killing the file
if (self->killed.isSet())
wait(self->killComplete.getFuture());
// Remove this file from the filesBeingDeleted map so that new files can be created with this filename
g_simulator.getMachineByNetworkAddress(self->openedAddress)->closingFiles.erase(self->getFilename());
g_simulator.getMachineByNetworkAddress(self->openedAddress)->deletingFiles.erase(self->getFilename());
AsyncFileNonDurable::filesBeingDeleted.erase(self->filename);
//TraceEvent("AsyncFileNonDurable_FinishDelete", self->id).detail("Filename", self->filename);
delete self;
return Void();
} catch (Error& e) {
state Error err = e;
throw err;
}
}
};
#include "flow/unactorcompiler.h"
#endif