foundationdb/flow/ThreadHelper.actor.h

633 lines
16 KiB
C++

/*
* ThreadHelper.actor.h
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
// When actually compiled (NO_INTELLISENSE), include the generated
// version of this file. In intellisense use the source version.
#if defined(NO_INTELLISENSE) && !defined(FLOW_THREADHELPER_ACTOR_G_H)
#define FLOW_THREADHELPER_ACTOR_G_H
#include "ThreadHelper.actor.g.h"
#elif !defined(FLOW_THREADHELPER_ACTOR_H)
#define FLOW_THREADHELPER_ACTOR_H
#include "flow/flow.h"
// template <class F>
// void onMainThreadVoid( F f ) {
// Promise<Void> signal;
// doOnMainThreadVoid( signal.getFuture(), f );
// g_network->onMainThread( std::move(signal), TaskDefaultOnMainThread );
// }
template <class F>
void onMainThreadVoid( F f, Error* err, int taskID = TaskDefaultOnMainThread ) {
Promise<Void> signal;
doOnMainThreadVoid( signal.getFuture(), f, err );
g_network->onMainThread( std::move(signal), taskID );
}
struct ThreadCallback {
virtual bool canFire(int notMadeActive) = 0;
virtual void fire(const Void &unused, int& userParam) = 0;
virtual void error(const Error&, int& userParam) = 0;
virtual ThreadCallback* addCallback(ThreadCallback *cb);
virtual bool contains(ThreadCallback *cb) {
return false;
}
virtual void clearCallback(ThreadCallback *cb) {
// If this is the only registered callback this will be called with (possibly) arbitrary pointers
}
virtual void destroy() {
UNSTOPPABLE_ASSERT(false);
}
virtual bool isMultiCallback() const {
return false;
}
};
class ThreadMultiCallback : public ThreadCallback, public FastAllocated<ThreadMultiCallback> {
public:
ThreadMultiCallback() { }
virtual ThreadCallback* addCallback(ThreadCallback *callback) {
UNSTOPPABLE_ASSERT(callbackMap.count(callback) == 0); //May be triggered by a waitForAll on a vector with the same future in it more than once
callbackMap[callback] = callbacks.size();
callbacks.push_back(callback);
return (ThreadCallback*)this;
}
virtual bool contains(ThreadCallback *cb) {
return callbackMap.count(cb) != 0;
}
virtual void clearCallback(ThreadCallback *callback) {
auto it = callbackMap.find(callback);
if (it == callbackMap.end())
return;
UNSTOPPABLE_ASSERT(it->second < callbacks.size() && it->second >= 0);
if (it->second != callbacks.size() - 1) {
callbacks[it->second] = callbacks.back();
callbackMap[callbacks[it->second]] = it->second;
}
callbacks.pop_back();
callbackMap.erase(it);
}
virtual bool canFire(int notMadeActive) {
return true;
}
virtual void fire(const Void& value, int& loopDepth) {
if (callbacks.size() > 10000)
TraceEvent(SevWarn, "LargeMultiCallback").detail("CallbacksSize", callbacks.size());
UNSTOPPABLE_ASSERT(loopDepth == 0);
while (callbacks.size()) {
auto cb = callbacks.back();
callbacks.pop_back();
callbackMap.erase(cb);
if (cb->canFire(0)) {
int ld = 0;
cb->fire(value, ld);
}
}
}
virtual void error(const Error& err, int& loopDepth) {
if (callbacks.size() > 10000)
TraceEvent(SevWarn, "LargeMultiCallback").detail("CallbacksSize", callbacks.size());
UNSTOPPABLE_ASSERT(loopDepth == 0);
while (callbacks.size()) {
auto cb = callbacks.back();
callbacks.pop_back();
callbackMap.erase(cb);
if (cb->canFire(0)) {
int ld = 0;
cb->error(err, ld);
}
}
}
virtual void destroy() {
UNSTOPPABLE_ASSERT(callbacks.empty());
delete this;
}
virtual bool isMultiCallback() const {
return true;
}
private:
std::vector<ThreadCallback*> callbacks;
std::unordered_map<ThreadCallback*, int> callbackMap;
};
struct SetCallbackResult {
enum Result { FIRED, CANNOT_FIRE, CALLBACK_SET };
};
class ThreadSingleAssignmentVarBase {
public:
enum Status { Unset, NeverSet, Set, ErrorSet }; // order is important
// volatile long referenceCount;
ThreadSpinLock mutex;
Status status;
Error error;
ThreadCallback *callback;
bool isReady() {
ThreadSpinLockHolder holder(mutex);
return isReadyUnsafe();
}
bool isError() {
ThreadSpinLockHolder holder(mutex);
return isErrorUnsafe();
}
int getErrorCode() {
ThreadSpinLockHolder holder(mutex);
if (!isReadyUnsafe()) return error_code_future_not_set;
if (!isErrorUnsafe()) return error_code_success;
return error.code();
}
bool canBeSet() {
ThreadSpinLockHolder holder(mutex);
return canBeSetUnsafe();
}
class BlockCallback : public ThreadCallback {
public:
Event ev;
BlockCallback( ThreadSingleAssignmentVarBase& sav ) { int ignore=0; sav.callOrSetAsCallback(this,ignore,0); ev.block(); }
virtual bool canFire(int notMadeActive) { return true; }
virtual void fire(const Void &unused, int& userParam) { ev.set(); }
virtual void error(const Error&, int& userParam) { ev.set(); }
};
void blockUntilReady() {
if(isReadyUnsafe()) {
ThreadSpinLockHolder holder(mutex);
ASSERT(isReadyUnsafe());
}
else {
BlockCallback cb( *this );
}
}
ThreadSingleAssignmentVarBase() : status(Unset), callback(NULL), valueReferenceCount(0) {} //, referenceCount(1) {}
~ThreadSingleAssignmentVarBase() {
this->mutex.assertNotEntered();
if(callback)
callback->destroy();
}
virtual void addref( ) = 0;
virtual void delref( ) = 0;
void send(Never) {
if (TRACE_SAMPLE()) TraceEvent(SevSample, "Promise_sendNever");
ThreadSpinLockHolder holder(mutex);
if (!canBeSetUnsafe())
ASSERT(false); // Promise fulfilled twice
this->status = NeverSet;
}
void sendError(const Error& err) {
if (TRACE_SAMPLE()) TraceEvent(SevSample, "Promise_sendError").detail("ErrorCode", err.code());
this->mutex.enter();
if (!canBeSetUnsafe()) {
this->mutex.leave();
ASSERT(false); // Promise fulfilled twice
}
error = err;
status = ErrorSet;
if (!callback) {
this->mutex.leave();
return;
}
auto func = callback;
if (!callback->isMultiCallback())
callback = NULL;
if (!func->canFire(0)) {
this->mutex.leave();
} else {
this->mutex.leave();
//Thread safe because status is now ErrorSet and callback is NULL, meaning than callback cannot change
int userParam = 0;
func->error(err, userParam);
}
}
SetCallbackResult::Result callOrSetAsCallback( ThreadCallback* callback, int& userParam1, int notMadeActive ) {
this->mutex.enter();
if (isReadyUnsafe()) {
if (callback->canFire(notMadeActive)) {
this->mutex.leave();
//Thread safe because the Future is ready, meaning that status and this->error will not change
if (status == ErrorSet) {
auto error = this->error; // Since callback might free this
callback->error( error, userParam1 );
} else {
callback->fire( Void(), userParam1 );
}
return SetCallbackResult::FIRED;
} else {
this->mutex.leave();
return SetCallbackResult::CANNOT_FIRE;
}
} else {
if (this->callback)
this->callback = this->callback->addCallback( callback );
else
this->callback = callback;
this->mutex.leave();
return SetCallbackResult::CALLBACK_SET;
}
}
// If this function returns false, then this SAV has already been set and the callback has been or will be called.
// If this function returns true, then the callback has not and will not be called by this SAV (unless it is set later).
// This doesn't clear callbacks that are nested multiple levels inside of multi-callbacks
bool clearCallback( ThreadCallback* cb ) {
this->mutex.enter();
//If another thread is calling fire in send/sendError, it would be unsafe to clear the callback
if (isReadyUnsafe()) {
this->mutex.leave();
return false;
}
// Only clear the callback if it belongs to the caller, because
// another actor could be waiting on it now!
if (callback == cb)
callback = NULL;
else if (callback != NULL)
callback->clearCallback( cb );
this->mutex.leave();
return true;
}
void setCancel( Future<Void> && cf ) {
cancelFuture = std::move(cf);
}
virtual void cancel() {
// Cancels the action and decrements the reference count by 1
// The if statement is just an optimization. It's ok if we take the wrong path due to a race
if(isReadyUnsafe())
delref();
else
onMainThreadVoid( [this](){ this->cancelFuture.cancel(); this->delref(); }, NULL );
}
void releaseMemory() {
ThreadSpinLockHolder holder(mutex);
if (--valueReferenceCount == 0)
cleanupUnsafe();
}
private:
Future<Void> cancelFuture;
int32_t valueReferenceCount;
protected:
bool isReadyUnsafe() const { return status >= Set; }
bool isErrorUnsafe() const { return status == ErrorSet; }
bool canBeSetUnsafe() const { return status == Unset; }
void addValueReferenceUnsafe() {
++valueReferenceCount;
}
virtual void cleanupUnsafe() {
if(status != ErrorSet) {
error = future_released();
status = ErrorSet;
}
valueReferenceCount = 0;
this->addref();
cancel();
}
};
template <class T>
class ThreadSingleAssignmentVar : public ThreadSingleAssignmentVarBase, /* public FastAllocated<ThreadSingleAssignmentVar<T>>,*/ public ThreadSafeReferenceCounted<ThreadSingleAssignmentVar<T>>
{
public:
virtual ~ThreadSingleAssignmentVar() {}
T value;
T get() {
ThreadSpinLockHolder holder(mutex);
if( !isReadyUnsafe() )
throw future_not_set();
if ( isErrorUnsafe() )
throw error;
addValueReferenceUnsafe();
return value;
}
virtual void addref( ) {
ThreadSafeReferenceCounted<ThreadSingleAssignmentVar<T>>::addref( );
}
virtual void delref( ) {
ThreadSafeReferenceCounted<ThreadSingleAssignmentVar<T>>::delref( );
}
void send(const T& value) {
if (TRACE_SAMPLE()) TraceEvent(SevSample, "Promise_send");
this->mutex.enter();
if (!canBeSetUnsafe()) {
this->mutex.leave();
ASSERT(false); // Promise fulfilled twice
}
this->value = value; //< Danger: polymorphic operation inside lock
this->status = Set;
if (!callback) {
this->mutex.leave();
return;
}
auto func = callback;
if(!callback->isMultiCallback())
callback = NULL;
if (!func->canFire(0)) {
this->mutex.leave();
} else {
this->mutex.leave();
//Thread safe because status is now Set and callback is NULL, meaning than callback cannot change
int userParam = 0;
func->fire(Void(), userParam);
}
}
virtual void cleanupUnsafe() {
value = T();
ThreadSingleAssignmentVarBase::cleanupUnsafe();
}
};
template <class T>
class ThreadFuture
{
public:
T get() { return sav->get(); }
T getBlocking() {
sav->blockUntilReady();
return sav->get();
}
void blockUntilReady() {
sav->blockUntilReady();
}
bool isValid() const {
return sav != 0;
}
bool isReady() {
return sav->isReady();
}
bool isError() {
return sav->isError();
}
Error& getError() {
if( !isError() )
throw future_not_error();
return sav->error;
}
SetCallbackResult::Result callOrSetAsCallback( ThreadCallback* callback, int& userParam1, int notMadeActive ) {
return sav->callOrSetAsCallback(callback, userParam1, notMadeActive);
}
bool clearCallback(ThreadCallback* cb) {
return sav->clearCallback(cb);
}
void cancel() {
extractPtr()->cancel();
}
ThreadFuture() : sav(0) {}
explicit ThreadFuture( ThreadSingleAssignmentVar<T> * sav ) : sav(sav) {
// sav->addref();
}
ThreadFuture( const ThreadFuture<T>& rhs ) : sav(rhs.sav) {
if (sav) sav->addref();
}
ThreadFuture(ThreadFuture<T>&& rhs) noexcept(true) : sav(rhs.sav) {
rhs.sav = 0;
}
ThreadFuture( const T& presentValue )
: sav(new ThreadSingleAssignmentVar<T>())
{
sav->send(presentValue);
}
ThreadFuture( Never )
: sav(new ThreadSingleAssignmentVar<T>())
{
}
ThreadFuture( const Error& error )
: sav(new ThreadSingleAssignmentVar<T>())
{
sav->sendError(error);
}
~ThreadFuture() {
if (sav) sav->delref();
}
void operator=(const ThreadFuture<T>& rhs) {
if (rhs.sav) rhs.sav->addref();
if (sav) sav->delref();
sav = rhs.sav;
}
void operator=(ThreadFuture<T>&& rhs) noexcept(true) {
if (sav != rhs.sav) {
if (sav) sav->delref();
sav = rhs.sav;
rhs.sav = 0;
}
}
bool operator == (const ThreadFuture& rhs) { return rhs.sav == sav; }
bool operator != (const ThreadFuture& rhs) { return rhs.sav != sav; }
ThreadSingleAssignmentVarBase* getPtr() const { return sav; }
ThreadSingleAssignmentVarBase* extractPtr() { auto *p = sav; sav = NULL; return p; }
private:
ThreadSingleAssignmentVar<T>* sav;
};
//A callback class used to convert a ThreadFuture into a Future
template<class T>
struct CompletionCallback : public ThreadCallback, ReferenceCounted<CompletionCallback<T>> {
//The thread future being waited on
ThreadFuture<T> threadFuture;
//The promise whose future we are triggering when this callback gets called
Promise<T> promise;
//Unused
int userParam;
//Holds own reference to prevent deletion until callback is fired
Reference<CompletionCallback<T>> self;
CompletionCallback(ThreadFuture<T> threadFuture) {
this->threadFuture = threadFuture;
}
bool canFire(int notMadeActive) {
return true;
}
//Trigger the promise
void fire(const Void& unused, int& userParam) {
promise.send(threadFuture.get());
self.clear();
}
//Send the error through the promise
void error(const Error& e, int& userParam) {
promise.sendError(e);
self.clear();
}
};
//Converts a ThreadFuture into a Future
//WARNING: This is not actually thread safe! It can only be safely used from the main thread, on futures which are being set on the main thread
//FIXME: does not support cancellation
template<class T>
Future<T> unsafeThreadFutureToFuture(ThreadFuture<T> threadFuture) {
Reference<CompletionCallback<T>> callback = Reference<CompletionCallback<T>>(new CompletionCallback<T>(threadFuture));
callback->self = callback;
threadFuture.callOrSetAsCallback(callback.getPtr(), callback->userParam, 0);
return callback->promise.getFuture();
}
ACTOR template <class R, class F> Future<Void> doOnMainThread( Future<Void> signal, F f, ThreadSingleAssignmentVar<R> *result ) {
try {
Void _ = wait( signal );
R r = wait( f() );
result->send(r);
} catch (Error& e) {
if(!result->canBeSet()) {
TraceEvent(SevError, "OnMainThreadSetTwice").error(e,true);
}
result->sendError(e);
}
ThreadFuture<R> destroyResultAfterReturning(result); // Call result->delref(), but only after our return promise is no longer referenced on this thread
return Void();
}
ACTOR template <class F> void doOnMainThreadVoid( Future<Void> signal, F f, Error *err ) {
Void _ = wait( signal );
if (err && err->code() != invalid_error_code)
return;
try {
f();
} catch (Error& e) {
if (err)
*err = e;
}
}
template <class F> ThreadFuture< decltype(fake<F>()().getValue()) > onMainThread( F f ) {
Promise<Void> signal;
auto returnValue = new ThreadSingleAssignmentVar< decltype(fake<F>()().getValue()) >();
returnValue->addref(); // For the ThreadFuture we return
Future<Void> cancelFuture = doOnMainThread<decltype(fake<F>()().getValue()), F>( signal.getFuture(), f, returnValue );
returnValue->setCancel( std::move(cancelFuture) );
g_network->onMainThread( std::move(signal), TaskDefaultOnMainThread );
return ThreadFuture<decltype(fake<F>()().getValue())>( returnValue );
}
template <class V>
class ThreadSafeAsyncVar : NonCopyable, public ThreadSafeReferenceCounted<ThreadSafeAsyncVar<V>> {
public:
struct State {
State(V value, ThreadFuture<Void> onChange) : value(value), onChange(onChange) {}
V value;
ThreadFuture<Void> onChange;
};
ThreadSafeAsyncVar() : value(), nextChange(new ThreadSingleAssignmentVar<Void>()) {}
ThreadSafeAsyncVar(V const& v) : value(v), nextChange(new ThreadSingleAssignmentVar<Void>()) {}
State get() {
ThreadSpinLockHolder holder(lock);
nextChange->addref();
return State(value, ThreadFuture<Void>(nextChange.getPtr()));
}
void set(V const& v, bool triggerIfSame = false) {
Reference<ThreadSingleAssignmentVar<Void>> trigger(new ThreadSingleAssignmentVar<Void>());
lock.enter();
bool changed = this->value != v;
if(changed || triggerIfSame) {
std::swap(this->nextChange, trigger);
this->value = v;
}
lock.leave();
if(changed || triggerIfSame) {
trigger->send(Void());
}
}
private:
V value;
Reference<ThreadSingleAssignmentVar<Void>> nextChange;
ThreadSpinLock lock;
};
#endif