foundationdb/fdbserver/workloads/Watches.actor.cpp

250 lines
8.6 KiB
C++

/*
* Watches.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "flow/actorcompiler.h"
#include "fdbrpc/ContinuousSample.h"
#include "fdbclient/NativeAPI.h"
#include "fdbserver/TesterInterface.h"
#include "flow/DeterministicRandom.h"
#include "workloads.h"
const int sampleSize = 10000;
struct WatchesWorkload : TestWorkload {
int nodes, keyBytes, extraPerNode;
double testDuration;
vector<Future<Void>> clients;
PerfIntCounter cycles;
ContinuousSample<double> cycleLatencies;
std::vector<int> nodeOrder;
WatchesWorkload(WorkloadContext const& wcx)
: TestWorkload(wcx), cycles("Cycles"), cycleLatencies( sampleSize )
{
testDuration = getOption( options, LiteralStringRef("testDuration"), 600.0 );
nodes = getOption( options, LiteralStringRef("nodeCount"), 100 );
extraPerNode = getOption( options, LiteralStringRef("extraPerNode"), 1000 );
keyBytes = std::max( getOption( options, LiteralStringRef("keyBytes"), 16 ), 16 );
for(int i=0; i<nodes+1; i++)
nodeOrder.push_back(i);
DeterministicRandom tempRand(1);
tempRand.randomShuffle( nodeOrder );
}
virtual std::string description() { return "Watches"; }
virtual Future<Void> setup( Database const& cx ) {
return _setup(cx, this);
}
virtual Future<Void> start( Database const& cx ) {
if( clientId == 0 )
return watchesWorker( cx, this );
return Void();
}
virtual Future<bool> check( Database const& cx ) {
bool ok = true;
for( int i = 0; i < clients.size(); i++ )
if( clients[i].isError() )
ok = false;
clients.clear();
return ok;
}
virtual void getMetrics( vector<PerfMetric>& m ) {
if( clientId == 0 ) {
m.push_back( cycles.getMetric() );
m.push_back( PerfMetric( "Mean Latency (ms)", 1000 * cycleLatencies.mean() / nodes, true ) );
}
}
Key keyForIndex( uint64_t index ) {
Key result = makeString( keyBytes );
uint8_t* data = mutateString( result );
memset(data, '.', keyBytes);
double d = double(index) / nodes;
emplaceIndex( data, 0, *(int64_t*)&d );
return result;
}
ACTOR Future<Void> _setup( Database cx, WatchesWorkload* self) {
vector<Future<Void>> setupActors;
for(int i=0; i<self->nodes; i++)
if( i % self->clientCount == self->clientId )
setupActors.push_back( self->watcherInit( cx, self->keyForIndex(self->nodeOrder[i]), self->keyForIndex(self->nodeOrder[i+1]), self->extraPerNode ) );
Void _ = wait( waitForAll( setupActors ) );
for(int i=0; i<self->nodes; i++)
if( i % self->clientCount == self->clientId )
self->clients.push_back( self->watcher( cx, self->keyForIndex(self->nodeOrder[i]), self->keyForIndex(self->nodeOrder[i+1]), self->extraPerNode ) );
return Void();
}
ACTOR static Future<Void> watcherInit( Database cx, Key watchKey, Key setKey, int extraNodes ) {
state Transaction tr( cx );
state int extraLoc = 0;
while( extraLoc < extraNodes ) {
try {
for( int i = 0; i < 1000 && extraLoc+i < extraNodes; i++ ) {
Key extraKey = KeyRef(watchKey.toString() + format( "%d", extraLoc+i ));
Value extraValue = ValueRef(std::string( 100, '.' ));
tr.set(extraKey, extraValue);
//TraceEvent("WatcherInitialSetupExtra").detail("Key", printable(extraKey)).detail("Value", printable(extraValue));
}
Void _ = wait( tr.commit() );
extraLoc += 1000;
//TraceEvent("WatcherInitialSetup").detail("Watch", printable(watchKey)).detail("Ver", tr.getCommittedVersion());
} catch( Error &e ) {
//TraceEvent("WatcherInitialSetupError").error(e).detail("ExtraLoc", extraLoc);
Void _ = wait( tr.onError(e) );
}
}
return Void();
}
ACTOR static Future<Void> watcher( Database cx, Key watchKey, Key setKey, int extraNodes ) {
state Optional<Optional<Value>> lastValue;
loop {
state Transaction tr( cx );
loop {
try {
state Future<Optional<Value>> setValueFuture = tr.get( setKey );
state Optional<Value> watchValue = wait( tr.get( watchKey ) );
Optional<Value> setValue = wait( setValueFuture );
if( lastValue.present() && lastValue.get() == watchValue) {
TraceEvent(SevError, "WatcherTriggeredWithoutChanging").detail("WatchKey", printable( watchKey )).detail("SetKey", printable( setKey )).detail("WatchValue", printable( watchValue )).detail("SetValue", printable( setValue )).detail("ReadVersion", tr.getReadVersion().get());
}
lastValue = Optional<Optional<Value>>();
if( watchValue != setValue ) {
if( watchValue.present() )
tr.set( setKey, watchValue.get() );
else
tr.clear( setKey );
//TraceEvent("WatcherSetStart").detail("Watch", printable(watchKey)).detail("Set", printable(setKey)).detail("Value", printable( watchValue ) );
Void _ = wait( tr.commit() );
//TraceEvent("WatcherSetFinish").detail("Watch", printable(watchKey)).detail("Set", printable(setKey)).detail("Value", printable( watchValue ) ).detail("Ver", tr.getCommittedVersion());
} else {
//TraceEvent("WatcherWatch").detail("Watch", printable(watchKey));
state Future<Void> watchFuture = tr.watch( Reference<Watch>( new Watch(watchKey, watchValue) ) );
Void _ = wait( tr.commit() );
Void _ = wait( watchFuture );
if( watchValue.present() )
lastValue = watchValue;
}
break;
} catch( Error &e ) {
Void _ = wait( tr.onError(e) );
}
}
}
}
ACTOR static Future<Void> watchesWorker( Database cx, WatchesWorkload* self ) {
state Key startKey = self->keyForIndex(self->nodeOrder[0]);
state Key endKey = self->keyForIndex(self->nodeOrder[self->nodes]);
state Optional<Value> expectedValue;
state Optional<Value> startValue;
state double startTime = now();
state double chainStartTime;
loop {
state Transaction tr( cx );
state bool isValue = g_random->random01() > 0.5;
state Value assignedValue = Value( g_random->randomUniqueID().toString() );
state bool firstAttempt = true;
loop {
try {
state Version readVer = wait( tr.getReadVersion() );
Optional<Value> _startValue = wait( tr.get( startKey ) );
if( firstAttempt ) {
startValue = _startValue;
firstAttempt = false;
}
expectedValue = Optional<Value>();
if( startValue.present() ) {
if( isValue )
expectedValue = assignedValue;
} else
expectedValue = assignedValue;
if( expectedValue.present() )
tr.set( startKey, expectedValue.get() );
else
tr.clear( startKey );
Void _ = wait( tr.commit() );
//TraceEvent("WatcherInitialSet").detail("Start", printable(startKey)).detail("End", printable(endKey)).detail("Value", printable( expectedValue ) ).detail("Ver", tr.getCommittedVersion()).detail("ReadVer", readVer);
break;
} catch( Error &e ) {
Void _ = wait( tr.onError(e) );
}
}
chainStartTime = now();
firstAttempt = true;
loop {
state Transaction tr2( cx );
state bool finished = false;
loop {
try {
state Optional<Value> endValue = wait( tr2.get( endKey ) );
if( endValue == expectedValue ) {
finished = true;
break;
}
if( !firstAttempt || endValue != startValue ) {
TraceEvent(SevError, "WatcherError").detail("FirstAttempt", firstAttempt).detail("StartValue", printable( startValue )).detail("EndValue", printable( endValue )).detail("ExpectedValue", printable(expectedValue)).detail("EndVersion", tr2.getReadVersion().get());
}
state Future<Void> watchFuture = tr2.watch( Reference<Watch>( new Watch(endKey, startValue) ) );
Void _ = wait( tr2.commit() );
Void _ = wait( watchFuture );
firstAttempt = false;
break;
} catch( Error &e ) {
Void _ = wait( tr2.onError(e) );
}
}
if( finished )
break;
}
self->cycleLatencies.addSample(now() - chainStartTime);
++self->cycles;
if( g_network->isSimulated() )
Void _ = wait( delay( g_random->random01() < 0.5 ? 0 : g_random->random01() * 60 ) );
if( now() - startTime > self->testDuration )
break;
}
return Void();
}
};
WorkloadFactory<WatchesWorkload> WatchesWorkloadFactory("Watches");