foundationdb/fdbclient/BackupAgent.actor.h

989 lines
42 KiB
C++

/*
* BackupAgent.actor.h
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#if defined(NO_INTELLISENSE) && !defined(FDBCLIENT_BACKUP_AGENT_ACTOR_G_H)
#define FDBCLIENT_BACKUP_AGENT_ACTOR_G_H
#include "fdbclient/BackupAgent.actor.g.h"
#elif !defined(FDBCLIENT_BACKUP_AGENT_ACTOR_H)
#define FDBCLIENT_BACKUP_AGENT_ACTOR_H
#include "flow/flow.h"
#include "fdbclient/NativeAPI.actor.h"
#include "fdbclient/TaskBucket.h"
#include "fdbclient/Notified.h"
#include "fdbrpc/IAsyncFile.h"
#include "fdbclient/KeyBackedTypes.h"
#include <ctime>
#include <climits>
#include "fdbclient/BackupContainer.h"
#include "flow/actorcompiler.h" // has to be last include
DECLARE_BOOLEAN_PARAM(LockDB);
DECLARE_BOOLEAN_PARAM(UnlockDB);
DECLARE_BOOLEAN_PARAM(StopWhenDone);
DECLARE_BOOLEAN_PARAM(Verbose);
DECLARE_BOOLEAN_PARAM(WaitForComplete);
DECLARE_BOOLEAN_PARAM(ForceAction);
DECLARE_BOOLEAN_PARAM(Terminator);
DECLARE_BOOLEAN_PARAM(IncrementalBackupOnly);
DECLARE_BOOLEAN_PARAM(UsePartitionedLog);
DECLARE_BOOLEAN_PARAM(OnlyApplyMutationLogs);
DECLARE_BOOLEAN_PARAM(InconsistentSnapshotOnly);
DECLARE_BOOLEAN_PARAM(ShowErrors);
DECLARE_BOOLEAN_PARAM(AbortOldBackup);
DECLARE_BOOLEAN_PARAM(DstOnly); // TODO: More descriptive name?
DECLARE_BOOLEAN_PARAM(WaitForDestUID);
DECLARE_BOOLEAN_PARAM(CheckBackupUID);
DECLARE_BOOLEAN_PARAM(DeleteData);
DECLARE_BOOLEAN_PARAM(SetValidation);
DECLARE_BOOLEAN_PARAM(PartialBackup);
class BackupAgentBase : NonCopyable {
public:
// Time formatter for anything backup or restore related
static std::string formatTime(int64_t epochs);
static int64_t parseTime(std::string timestamp);
static std::string timeFormat() { return "YYYY/MM/DD.HH:MI:SS[+/-]HHMM"; }
enum class EnumState {
STATE_ERRORED = 0,
STATE_SUBMITTED = 1,
STATE_RUNNING = 2,
STATE_RUNNING_DIFFERENTIAL = 3,
STATE_COMPLETED = 4,
STATE_NEVERRAN = 5,
STATE_ABORTED = 6,
STATE_PARTIALLY_ABORTED = 7
};
static const Key keyFolderId;
static const Key keyBeginVersion;
static const Key keyEndVersion;
static const Key keyPrevBeginVersion;
static const Key keyConfigBackupTag;
static const Key keyConfigLogUid;
static const Key keyConfigBackupRanges;
static const Key keyConfigStopWhenDoneKey;
static const Key keyStateStatus;
static const Key keyStateStop;
static const Key keyLastUid;
static const Key keyBeginKey;
static const Key keyEndKey;
static const Key keyDrVersion;
static const Key destUid;
static const Key backupStartVersion;
static const Key keyTagName;
static const Key keyStates;
static const Key keyConfig;
static const Key keyErrors;
static const Key keyRanges;
static const Key keyTasks;
static const Key keyFutures;
static const Key keySourceStates;
static const Key keySourceTagName;
static constexpr int logHeaderSize = 12;
// Convert the status text to an enumerated value
static EnumState getState(std::string const& stateText);
// Convert the status enum to a text description
static const char* getStateText(EnumState enState);
// Convert the status enum to a name
static const char* getStateName(EnumState enState);
// Determine if the specified state is runnable
static bool isRunnable(EnumState enState);
static KeyRef getDefaultTag() { return StringRef(defaultTagName); }
static std::string getDefaultTagName() { return defaultTagName; }
// This is only used for automatic backup name generation
static Standalone<StringRef> getCurrentTime();
protected:
static const std::string defaultTagName;
};
class FileBackupAgent : public BackupAgentBase {
public:
FileBackupAgent();
FileBackupAgent(FileBackupAgent&& r) noexcept
: subspace(std::move(r.subspace)), config(std::move(r.config)), lastRestorable(std::move(r.lastRestorable)),
taskBucket(std::move(r.taskBucket)), futureBucket(std::move(r.futureBucket)) {}
void operator=(FileBackupAgent&& r) noexcept {
subspace = std::move(r.subspace);
config = std::move(r.config);
lastRestorable = std::move(r.lastRestorable), taskBucket = std::move(r.taskBucket);
futureBucket = std::move(r.futureBucket);
}
KeyBackedProperty<Key> lastBackupTimestamp() { return config.pack(LiteralStringRef(__FUNCTION__)); }
Future<Void> run(Database cx, double pollDelay, int maxConcurrentTasks) {
return taskBucket->run(cx, futureBucket, std::make_shared<double const>(pollDelay), maxConcurrentTasks);
}
Future<Void> run(Database cx, std::shared_ptr<double const> pollDelay, int maxConcurrentTasks) {
return taskBucket->run(cx, futureBucket, pollDelay, maxConcurrentTasks);
}
/** RESTORE **/
enum ERestoreState { UNITIALIZED = 0, QUEUED = 1, STARTING = 2, RUNNING = 3, COMPLETED = 4, ABORTED = 5 };
static StringRef restoreStateText(ERestoreState id);
static Key getPauseKey();
// parallel restore
Future<Void> parallelRestoreFinish(Database cx, UID randomUID, UnlockDB = UnlockDB::TRUE);
Future<Void> submitParallelRestore(Database cx,
Key backupTag,
Standalone<VectorRef<KeyRangeRef>> backupRanges,
Key bcUrl,
Version targetVersion,
LockDB lockDB,
UID randomUID,
Key addPrefix,
Key removePrefix);
Future<Void> atomicParallelRestore(Database cx,
Key tagName,
Standalone<VectorRef<KeyRangeRef>> ranges,
Key addPrefix,
Key removePrefix);
// restore() will
// - make sure that url is readable and appears to be a complete backup
// - make sure the requested TargetVersion is valid
// - submit a restore on the given tagName
// - Optionally wait for the restore's completion. Will restore_error if restore fails or is aborted.
// restore() will return the targetVersion which will be either the valid version passed in or the max restorable
// version for the given url.
Future<Version> restore(Database cx,
Optional<Database> cxOrig,
Key tagName,
Key url,
Standalone<VectorRef<KeyRangeRef>> ranges,
WaitForComplete = WaitForComplete::TRUE,
Version targetVersion = ::invalidVersion,
Verbose = Verbose::TRUE,
Key addPrefix = Key(),
Key removePrefix = Key(),
LockDB = LockDB::TRUE,
OnlyApplyMutationLogs = OnlyApplyMutationLogs::FALSE,
InconsistentSnapshotOnly = InconsistentSnapshotOnly::FALSE,
Version beginVersion = ::invalidVersion,
Optional<std::string> const& encryptionKeyFileName = {});
Future<Version> restore(Database cx,
Optional<Database> cxOrig,
Key tagName,
Key url,
WaitForComplete waitForComplete = WaitForComplete::TRUE,
Version targetVersion = ::invalidVersion,
Verbose verbose = Verbose::TRUE,
KeyRange range = normalKeys,
Key addPrefix = Key(),
Key removePrefix = Key(),
LockDB lockDB = LockDB::TRUE,
OnlyApplyMutationLogs onlyApplyMutationLogs = OnlyApplyMutationLogs::FALSE,
InconsistentSnapshotOnly inconsistentSnapshotOnly = InconsistentSnapshotOnly::FALSE,
Version beginVersion = ::invalidVersion,
Optional<std::string> const& encryptionKeyFileName = {}) {
Standalone<VectorRef<KeyRangeRef>> rangeRef;
rangeRef.push_back_deep(rangeRef.arena(), range);
return restore(cx,
cxOrig,
tagName,
url,
rangeRef,
waitForComplete,
targetVersion,
verbose,
addPrefix,
removePrefix,
lockDB,
onlyApplyMutationLogs,
inconsistentSnapshotOnly,
beginVersion,
encryptionKeyFileName);
}
Future<Version> atomicRestore(Database cx,
Key tagName,
Standalone<VectorRef<KeyRangeRef>> ranges,
Key addPrefix = Key(),
Key removePrefix = Key());
Future<Version> atomicRestore(Database cx,
Key tagName,
KeyRange range = normalKeys,
Key addPrefix = Key(),
Key removePrefix = Key()) {
Standalone<VectorRef<KeyRangeRef>> rangeRef;
rangeRef.push_back_deep(rangeRef.arena(), range);
return atomicRestore(cx, tagName, rangeRef, addPrefix, removePrefix);
}
// Tries to abort the restore for a tag. Returns the final (stable) state of the tag.
Future<ERestoreState> abortRestore(Reference<ReadYourWritesTransaction> tr, Key tagName);
Future<ERestoreState> abortRestore(Database cx, Key tagName);
// Waits for a restore tag to reach a final (stable) state.
Future<ERestoreState> waitRestore(Database cx, Key tagName, Verbose);
// Get a string describing the status of a tag
Future<std::string> restoreStatus(Reference<ReadYourWritesTransaction> tr, Key tagName);
Future<std::string> restoreStatus(Database cx, Key tagName) {
return runRYWTransaction(cx,
[=](Reference<ReadYourWritesTransaction> tr) { return restoreStatus(tr, tagName); });
}
/** BACKUP METHODS **/
Future<Void> submitBackup(Reference<ReadYourWritesTransaction> tr,
Key outContainer,
int initialSnapshotIntervalSeconds,
int snapshotIntervalSeconds,
std::string const& tagName,
Standalone<VectorRef<KeyRangeRef>> backupRanges,
StopWhenDone = StopWhenDone::TRUE,
UsePartitionedLog = UsePartitionedLog::FALSE,
IncrementalBackupOnly = IncrementalBackupOnly::FALSE,
Optional<std::string> const& encryptionKeyFileName = {});
Future<Void> submitBackup(Database cx,
Key outContainer,
int initialSnapshotIntervalSeconds,
int snapshotIntervalSeconds,
std::string const& tagName,
Standalone<VectorRef<KeyRangeRef>> backupRanges,
StopWhenDone stopWhenDone = StopWhenDone::TRUE,
UsePartitionedLog partitionedLog = UsePartitionedLog::FALSE,
IncrementalBackupOnly incrementalBackupOnly = IncrementalBackupOnly::FALSE,
Optional<std::string> const& encryptionKeyFileName = {}) {
return runRYWTransactionFailIfLocked(cx, [=](Reference<ReadYourWritesTransaction> tr) {
return submitBackup(tr,
outContainer,
initialSnapshotIntervalSeconds,
snapshotIntervalSeconds,
tagName,
backupRanges,
stopWhenDone,
partitionedLog,
incrementalBackupOnly,
encryptionKeyFileName);
});
}
Future<Void> discontinueBackup(Reference<ReadYourWritesTransaction> tr, Key tagName);
Future<Void> discontinueBackup(Database cx, Key tagName) {
return runRYWTransaction(
cx, [=](Reference<ReadYourWritesTransaction> tr) { return discontinueBackup(tr, tagName); });
}
// Terminate an ongoing backup, without waiting for the backup to finish.
// Preconditions:
// A backup is running with the tag of `tagName`.
// Otherwise `backup_unneeded` will be thrown indicating that the backup never existed or already finished.
// Postconditions:
// No more tasks will be spawned to backup ranges of the database.
// logRangesRange and backupLogKeys will be cleared for this backup.
Future<Void> abortBackup(Reference<ReadYourWritesTransaction> tr, std::string tagName);
Future<Void> abortBackup(Database cx, std::string tagName) {
return runRYWTransaction(cx, [=](Reference<ReadYourWritesTransaction> tr) { return abortBackup(tr, tagName); });
}
Future<std::string> getStatus(Database cx, ShowErrors, std::string tagName);
Future<std::string> getStatusJSON(Database cx, std::string tagName);
Future<Optional<Version>> getLastRestorable(Reference<ReadYourWritesTransaction> tr,
Key tagName,
Snapshot = Snapshot::FALSE);
void setLastRestorable(Reference<ReadYourWritesTransaction> tr, Key tagName, Version version);
// stopWhenDone will return when the backup is stopped, if enabled. Otherwise, it
// will return when the backup directory is restorable.
Future<EnumState> waitBackup(Database cx,
std::string tagName,
StopWhenDone = StopWhenDone::TRUE,
Reference<IBackupContainer>* pContainer = nullptr,
UID* pUID = nullptr);
static const Key keyLastRestorable;
Future<int64_t> getTaskCount(Reference<ReadYourWritesTransaction> tr) { return taskBucket->getTaskCount(tr); }
Future<int64_t> getTaskCount(Database cx) { return taskBucket->getTaskCount(cx); }
Future<Void> watchTaskCount(Reference<ReadYourWritesTransaction> tr) { return taskBucket->watchTaskCount(tr); }
Future<bool> checkActive(Database cx) { return taskBucket->checkActive(cx); }
// If "pause" is true, pause all backups; otherwise, resume all.
Future<Void> changePause(Database db, bool pause);
friend class FileBackupAgentImpl;
static const int dataFooterSize;
Subspace subspace;
Subspace config;
Subspace lastRestorable;
Reference<TaskBucket> taskBucket;
Reference<FutureBucket> futureBucket;
};
template <>
inline Tuple Codec<FileBackupAgent::ERestoreState>::pack(FileBackupAgent::ERestoreState const& val) {
return Tuple().append(val);
}
template <>
inline FileBackupAgent::ERestoreState Codec<FileBackupAgent::ERestoreState>::unpack(Tuple const& val) {
return (FileBackupAgent::ERestoreState)val.getInt(0);
}
class DatabaseBackupAgent : public BackupAgentBase {
public:
DatabaseBackupAgent();
explicit DatabaseBackupAgent(Database src);
DatabaseBackupAgent(DatabaseBackupAgent&& r) noexcept
: subspace(std::move(r.subspace)), states(std::move(r.states)), config(std::move(r.config)),
errors(std::move(r.errors)), ranges(std::move(r.ranges)), tagNames(std::move(r.tagNames)),
taskBucket(std::move(r.taskBucket)), futureBucket(std::move(r.futureBucket)),
sourceStates(std::move(r.sourceStates)), sourceTagNames(std::move(r.sourceTagNames)) {}
void operator=(DatabaseBackupAgent&& r) noexcept {
subspace = std::move(r.subspace);
states = std::move(r.states);
config = std::move(r.config);
errors = std::move(r.errors);
ranges = std::move(r.ranges);
tagNames = std::move(r.tagNames);
taskBucket = std::move(r.taskBucket);
futureBucket = std::move(r.futureBucket);
sourceStates = std::move(r.sourceStates);
sourceTagNames = std::move(r.sourceTagNames);
}
Future<Void> run(Database cx, double pollDelay, int maxConcurrentTasks) {
return taskBucket->run(cx, futureBucket, std::make_shared<double const>(pollDelay), maxConcurrentTasks);
}
Future<Void> run(Database cx, std::shared_ptr<double const> pollDelay, int maxConcurrentTasks) {
return taskBucket->run(cx, futureBucket, pollDelay, maxConcurrentTasks);
}
Future<Void> atomicSwitchover(Database dest,
Key tagName,
Standalone<VectorRef<KeyRangeRef>> backupRanges,
Key addPrefix,
Key removePrefix,
ForceAction = ForceAction::FALSE);
Future<Void> unlockBackup(Reference<ReadYourWritesTransaction> tr, Key tagName);
Future<Void> unlockBackup(Database cx, Key tagName) {
return runRYWTransaction(cx,
[=](Reference<ReadYourWritesTransaction> tr) { return unlockBackup(tr, tagName); });
}
// Specifies the action to take on the backup's destination key range
// before the backup begins.
enum PreBackupAction {
NONE = 0, // No action is taken
VERIFY = 1, // Verify the key range being restored to is empty.
CLEAR = 2 // Clear the key range being restored to.
};
Future<Void> submitBackup(Reference<ReadYourWritesTransaction> tr,
Key tagName,
Standalone<VectorRef<KeyRangeRef>> backupRanges,
StopWhenDone = StopWhenDone::TRUE,
Key addPrefix = StringRef(),
Key removePrefix = StringRef(),
LockDB lockDatabase = LockDB::FALSE,
PreBackupAction backupAction = PreBackupAction::VERIFY);
Future<Void> submitBackup(Database cx,
Key tagName,
Standalone<VectorRef<KeyRangeRef>> backupRanges,
StopWhenDone stopWhenDone = StopWhenDone::TRUE,
Key addPrefix = StringRef(),
Key removePrefix = StringRef(),
LockDB lockDatabase = LockDB::FALSE,
PreBackupAction backupAction = PreBackupAction::VERIFY) {
return runRYWTransaction(cx, [=](Reference<ReadYourWritesTransaction> tr) {
return submitBackup(
tr, tagName, backupRanges, stopWhenDone, addPrefix, removePrefix, lockDatabase, backupAction);
});
}
Future<Void> discontinueBackup(Reference<ReadYourWritesTransaction> tr, Key tagName);
Future<Void> discontinueBackup(Database cx, Key tagName) {
return runRYWTransaction(
cx, [=](Reference<ReadYourWritesTransaction> tr) { return discontinueBackup(tr, tagName); });
}
Future<Void> abortBackup(Database cx,
Key tagName,
PartialBackup = PartialBackup::FALSE,
AbortOldBackup = AbortOldBackup::FALSE,
DstOnly = DstOnly::FALSE,
WaitForDestUID = WaitForDestUID::FALSE);
Future<std::string> getStatus(Database cx, int errorLimit, Key tagName);
Future<EnumState> getStateValue(Reference<ReadYourWritesTransaction> tr, UID logUid, Snapshot = Snapshot::FALSE);
Future<EnumState> getStateValue(Database cx, UID logUid) {
return runRYWTransaction(cx,
[=](Reference<ReadYourWritesTransaction> tr) { return getStateValue(tr, logUid); });
}
Future<UID> getDestUid(Reference<ReadYourWritesTransaction> tr, UID logUid, Snapshot = Snapshot::FALSE);
Future<UID> getDestUid(Database cx, UID logUid) {
return runRYWTransaction(cx, [=](Reference<ReadYourWritesTransaction> tr) { return getDestUid(tr, logUid); });
}
Future<UID> getLogUid(Reference<ReadYourWritesTransaction> tr, Key tagName, Snapshot = Snapshot::FALSE);
Future<UID> getLogUid(Database cx, Key tagName) {
return runRYWTransaction(cx, [=](Reference<ReadYourWritesTransaction> tr) { return getLogUid(tr, tagName); });
}
Future<int64_t> getRangeBytesWritten(Reference<ReadYourWritesTransaction> tr,
UID logUid,
Snapshot = Snapshot::FALSE);
Future<int64_t> getLogBytesWritten(Reference<ReadYourWritesTransaction> tr, UID logUid, Snapshot = Snapshot::FALSE);
// stopWhenDone will return when the backup is stopped, if enabled. Otherwise, it
// will return when the backup directory is restorable.
Future<EnumState> waitBackup(Database cx, Key tagName, StopWhenDone = StopWhenDone::TRUE);
Future<EnumState> waitSubmitted(Database cx, Key tagName);
Future<Void> waitUpgradeToLatestDrVersion(Database cx, Key tagName);
static const Key keyAddPrefix;
static const Key keyRemovePrefix;
static const Key keyRangeVersions;
static const Key keyCopyStop;
static const Key keyDatabasesInSync;
static const int LATEST_DR_VERSION;
Future<int64_t> getTaskCount(Reference<ReadYourWritesTransaction> tr) { return taskBucket->getTaskCount(tr); }
Future<int64_t> getTaskCount(Database cx) { return taskBucket->getTaskCount(cx); }
Future<Void> watchTaskCount(Reference<ReadYourWritesTransaction> tr) { return taskBucket->watchTaskCount(tr); }
Future<bool> checkActive(Database cx) { return taskBucket->checkActive(cx); }
friend class DatabaseBackupAgentImpl;
Subspace subspace;
Subspace states;
Subspace config;
Subspace errors;
Subspace ranges;
Subspace tagNames;
Subspace sourceStates;
Subspace sourceTagNames;
Reference<TaskBucket> taskBucket;
Reference<FutureBucket> futureBucket;
};
using RangeResultWithVersion = std::pair<RangeResult, Version>;
struct RCGroup {
RangeResult items;
Version version;
uint64_t groupKey;
RCGroup() : version(-1), groupKey(ULLONG_MAX){};
template <class Ar>
void serialize(Ar& ar) {
serializer(ar, items, version, groupKey);
}
};
bool copyParameter(Reference<Task> source, Reference<Task> dest, Key key);
Version getVersionFromString(std::string const& value);
Standalone<VectorRef<KeyRangeRef>> getLogRanges(Version beginVersion,
Version endVersion,
Key destUidValue,
int blockSize = CLIENT_KNOBS->LOG_RANGE_BLOCK_SIZE);
Standalone<VectorRef<KeyRangeRef>> getApplyRanges(Version beginVersion, Version endVersion, Key backupUid);
Future<Void> eraseLogData(Reference<ReadYourWritesTransaction> tr,
Key logUidValue,
Key destUidValue,
Optional<Version> endVersion = Optional<Version>(),
CheckBackupUID = CheckBackupUID::FALSE,
Version backupUid = 0);
Key getApplyKey(Version version, Key backupUid);
Version getLogKeyVersion(Key key);
std::pair<Version, uint32_t> decodeBKMutationLogKey(Key key);
Future<Void> logError(Database cx, Key keyErrors, const std::string& message);
Future<Void> logError(Reference<ReadYourWritesTransaction> tr, Key keyErrors, const std::string& message);
Future<Void> checkVersion(Reference<ReadYourWritesTransaction> const& tr);
ACTOR Future<Void> readCommitted(Database cx,
PromiseStream<RangeResultWithVersion> results,
Reference<FlowLock> lock,
KeyRangeRef range,
Terminator terminator = Terminator::TRUE,
AccessSystemKeys systemAccess = AccessSystemKeys::FALSE,
LockAware lockAware = LockAware::FALSE);
ACTOR Future<Void> readCommitted(Database cx,
PromiseStream<RCGroup> results,
Future<Void> active,
Reference<FlowLock> lock,
KeyRangeRef range,
std::function<std::pair<uint64_t, uint32_t>(Key key)> groupBy,
Terminator terminator = Terminator::TRUE,
AccessSystemKeys systemAccess = AccessSystemKeys::FALSE,
LockAware lockAware = LockAware::FALSE);
ACTOR Future<Void> applyMutations(Database cx,
Key uid,
Key addPrefix,
Key removePrefix,
Version beginVersion,
Version* endVersion,
RequestStream<CommitTransactionRequest> commit,
NotifiedVersion* committedVersion,
Reference<KeyRangeMap<Version>> keyVersion);
ACTOR Future<Void> cleanupBackup(Database cx, DeleteData deleteData);
using EBackupState = BackupAgentBase::EnumState;
template <>
inline Tuple Codec<EBackupState>::pack(EBackupState const& val) {
return Tuple().append(static_cast<int>(val));
}
template <>
inline EBackupState Codec<EBackupState>::unpack(Tuple const& val) {
return static_cast<EBackupState>(val.getInt(0));
}
// Key backed tags are a single-key slice of the TagUidMap, defined below.
// The Value type of the key is a UidAndAbortedFlagT which is a pair of {UID, aborted_flag}
// All tasks on the UID will have a validation key/value that requires aborted_flag to be
// false, so changing that value, such as changing the UID or setting aborted_flag to true,
// will kill all of the active tasks on that backup/restore UID.
typedef std::pair<UID, bool> UidAndAbortedFlagT;
class KeyBackedTag : public KeyBackedProperty<UidAndAbortedFlagT> {
public:
KeyBackedTag() : KeyBackedProperty(StringRef()) {}
KeyBackedTag(std::string tagName, StringRef tagMapPrefix);
Future<Void> cancel(Reference<ReadYourWritesTransaction> tr) {
std::string tag = tagName;
Key _tagMapPrefix = tagMapPrefix;
return map(get(tr), [tag, _tagMapPrefix, tr](Optional<UidAndAbortedFlagT> up) -> Void {
if (up.present()) {
// Set aborted flag to true
up.get().second = true;
KeyBackedTag(tag, _tagMapPrefix).set(tr, up.get());
}
return Void();
});
}
std::string tagName;
Key tagMapPrefix;
};
typedef KeyBackedMap<std::string, UidAndAbortedFlagT> TagMap;
// Map of tagName to {UID, aborted_flag} located in the fileRestorePrefixRange keyspace.
class TagUidMap : public KeyBackedMap<std::string, UidAndAbortedFlagT> {
ACTOR static Future<std::vector<KeyBackedTag>> getAll_impl(TagUidMap* tagsMap,
Reference<ReadYourWritesTransaction> tr,
Snapshot snapshot);
public:
TagUidMap(const StringRef& prefix) : TagMap(LiteralStringRef("tag->uid/").withPrefix(prefix)), prefix(prefix) {}
Future<std::vector<KeyBackedTag>> getAll(Reference<ReadYourWritesTransaction> tr,
Snapshot snapshot = Snapshot::FALSE) {
return getAll_impl(this, tr, snapshot);
}
Key prefix;
};
static inline KeyBackedTag makeRestoreTag(std::string tagName) {
return KeyBackedTag(tagName, fileRestorePrefixRange.begin);
}
static inline KeyBackedTag makeBackupTag(std::string tagName) {
return KeyBackedTag(tagName, fileBackupPrefixRange.begin);
}
static inline Future<std::vector<KeyBackedTag>> getAllRestoreTags(Reference<ReadYourWritesTransaction> tr,
Snapshot snapshot = Snapshot::FALSE) {
return TagUidMap(fileRestorePrefixRange.begin).getAll(tr, snapshot);
}
static inline Future<std::vector<KeyBackedTag>> getAllBackupTags(Reference<ReadYourWritesTransaction> tr,
Snapshot snapshot = Snapshot::FALSE) {
return TagUidMap(fileBackupPrefixRange.begin).getAll(tr, snapshot);
}
class KeyBackedConfig {
public:
static struct {
static TaskParam<UID> uid() { return LiteralStringRef(__FUNCTION__); }
} TaskParams;
KeyBackedConfig(StringRef prefix, UID uid = UID())
: uid(uid), prefix(prefix), configSpace(uidPrefixKey(LiteralStringRef("uid->config/").withPrefix(prefix), uid)) {}
KeyBackedConfig(StringRef prefix, Reference<Task> task) : KeyBackedConfig(prefix, TaskParams.uid().get(task)) {}
Future<Void> toTask(Reference<ReadYourWritesTransaction> tr,
Reference<Task> task,
SetValidation setValidation = SetValidation::TRUE) {
// Set the uid task parameter
TaskParams.uid().set(task, uid);
if (!setValidation) {
return Void();
}
// Set the validation condition for the task which is that the restore uid's tag's uid is the same as the
// restore uid. Get this uid's tag, then get the KEY for the tag's uid but don't read it. That becomes the
// validation key which TaskBucket will check, and its value must be this restore config's uid.
UID u = uid; // 'this' could be invalid in lambda
Key p = prefix;
return map(tag().get(tr), [u, p, task](Optional<std::string> const& tag) -> Void {
if (!tag.present())
throw restore_error();
// Validation contition is that the uidPair key must be exactly {u, false}
TaskBucket::setValidationCondition(
task, KeyBackedTag(tag.get(), p).key, Codec<UidAndAbortedFlagT>::pack({ u, false }).pack());
return Void();
});
}
KeyBackedProperty<std::string> tag() { return configSpace.pack(LiteralStringRef(__FUNCTION__)); }
UID getUid() { return uid; }
Key getUidAsKey() { return BinaryWriter::toValue(uid, Unversioned()); }
void clear(Reference<ReadYourWritesTransaction> tr) { tr->clear(configSpace.range()); }
// lastError is a pair of error message and timestamp expressed as an int64_t
KeyBackedProperty<std::pair<std::string, Version>> lastError() {
return configSpace.pack(LiteralStringRef(__FUNCTION__));
}
KeyBackedMap<int64_t, std::pair<std::string, Version>> lastErrorPerType() {
return configSpace.pack(LiteralStringRef(__FUNCTION__));
}
// Updates the error per type map and the last error property
Future<Void> updateErrorInfo(Database cx, Error e, std::string message) {
// Avoid capture of this ptr
auto& copy = *this;
return runRYWTransaction(cx, [=](Reference<ReadYourWritesTransaction> tr) mutable {
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr->setOption(FDBTransactionOptions::LOCK_AWARE);
return map(tr->getReadVersion(), [=](Version v) mutable {
copy.lastError().set(tr, { message, v });
copy.lastErrorPerType().set(tr, e.code(), { message, v });
return Void();
});
});
}
protected:
UID uid;
Key prefix;
Subspace configSpace;
};
template <>
inline Tuple Codec<Reference<IBackupContainer>>::pack(Reference<IBackupContainer> const& bc) {
return Tuple().append(StringRef(bc->getURL()));
}
template <>
inline Reference<IBackupContainer> Codec<Reference<IBackupContainer>>::unpack(Tuple const& val) {
return IBackupContainer::openContainer(val.getString(0).toString());
}
class BackupConfig : public KeyBackedConfig {
public:
BackupConfig(UID uid = UID()) : KeyBackedConfig(fileBackupPrefixRange.begin, uid) {}
BackupConfig(Reference<Task> task) : KeyBackedConfig(fileBackupPrefixRange.begin, task) {}
// rangeFileMap maps a keyrange file's End to its Begin and Filename
struct RangeSlice {
Key begin;
Version version;
std::string fileName;
int64_t fileSize;
Tuple pack() const {
return Tuple().append(begin).append(version).append(StringRef(fileName)).append(fileSize);
}
static RangeSlice unpack(Tuple const& t) {
RangeSlice r;
int i = 0;
r.begin = t.getString(i++);
r.version = t.getInt(i++);
r.fileName = t.getString(i++).toString();
r.fileSize = t.getInt(i++);
return r;
}
};
// Map of range end boundaries to info about the backup file written for that range.
typedef KeyBackedMap<Key, RangeSlice> RangeFileMapT;
RangeFileMapT snapshotRangeFileMap() { return configSpace.pack(LiteralStringRef(__FUNCTION__)); }
// Number of kv range files that were both committed to persistent storage AND inserted into
// the snapshotRangeFileMap. Note that since insertions could replace 1 or more existing
// map entries this is not necessarily the number of entries currently in the map.
// This value exists to help with sizing of kv range folders for BackupContainers that
// require it.
KeyBackedBinaryValue<int64_t> snapshotRangeFileCount() { return configSpace.pack(LiteralStringRef(__FUNCTION__)); }
// Coalesced set of ranges already dispatched for writing.
typedef KeyBackedMap<Key, bool> RangeDispatchMapT;
RangeDispatchMapT snapshotRangeDispatchMap() { return configSpace.pack(LiteralStringRef(__FUNCTION__)); }
// Interval to use for the first (initial) snapshot.
KeyBackedProperty<int64_t> initialSnapshotIntervalSeconds() {
return configSpace.pack(LiteralStringRef(__FUNCTION__));
}
// Interval to use for determining the target end version for new snapshots
KeyBackedProperty<int64_t> snapshotIntervalSeconds() { return configSpace.pack(LiteralStringRef(__FUNCTION__)); }
// When the current snapshot began
KeyBackedProperty<Version> snapshotBeginVersion() { return configSpace.pack(LiteralStringRef(__FUNCTION__)); }
// When the current snapshot is desired to end.
// This can be changed at runtime to speed up or slow down a snapshot
KeyBackedProperty<Version> snapshotTargetEndVersion() { return configSpace.pack(LiteralStringRef(__FUNCTION__)); }
KeyBackedProperty<int64_t> snapshotBatchSize() { return configSpace.pack(LiteralStringRef(__FUNCTION__)); }
KeyBackedProperty<Key> snapshotBatchFuture() { return configSpace.pack(LiteralStringRef(__FUNCTION__)); }
KeyBackedProperty<Key> snapshotBatchDispatchDoneKey() { return configSpace.pack(LiteralStringRef(__FUNCTION__)); }
KeyBackedProperty<int64_t> snapshotDispatchLastShardsBehind() {
return configSpace.pack(LiteralStringRef(__FUNCTION__));
}
KeyBackedProperty<Version> snapshotDispatchLastVersion() {
return configSpace.pack(LiteralStringRef(__FUNCTION__));
}
Future<Void> initNewSnapshot(Reference<ReadYourWritesTransaction> tr, int64_t intervalSeconds = -1) {
BackupConfig& copy = *this; // Capture this by value instead of this ptr
Future<Version> beginVersion = tr->getReadVersion();
Future<int64_t> defaultInterval = 0;
if (intervalSeconds < 0) {
defaultInterval = copy.snapshotIntervalSeconds().getOrThrow(tr);
}
// Make sure read version and possibly the snapshot interval value are ready, then clear/init the snapshot
// config members
return map(success(beginVersion) && success(defaultInterval), [=](Void) mutable {
copy.snapshotRangeFileMap().clear(tr);
copy.snapshotRangeDispatchMap().clear(tr);
copy.snapshotBatchSize().clear(tr);
copy.snapshotBatchFuture().clear(tr);
copy.snapshotBatchDispatchDoneKey().clear(tr);
if (intervalSeconds < 0)
intervalSeconds = defaultInterval.get();
Version endVersion = beginVersion.get() + intervalSeconds * CLIENT_KNOBS->CORE_VERSIONSPERSECOND;
copy.snapshotBeginVersion().set(tr, beginVersion.get());
copy.snapshotTargetEndVersion().set(tr, endVersion);
copy.snapshotRangeFileCount().set(tr, 0);
copy.snapshotDispatchLastVersion().clear(tr);
copy.snapshotDispatchLastShardsBehind().clear(tr);
return Void();
});
}
KeyBackedBinaryValue<int64_t> rangeBytesWritten() { return configSpace.pack(LiteralStringRef(__FUNCTION__)); }
KeyBackedBinaryValue<int64_t> logBytesWritten() { return configSpace.pack(LiteralStringRef(__FUNCTION__)); }
KeyBackedProperty<EBackupState> stateEnum() { return configSpace.pack(LiteralStringRef(__FUNCTION__)); }
KeyBackedProperty<Reference<IBackupContainer>> backupContainer() {
return configSpace.pack(LiteralStringRef(__FUNCTION__));
}
// Set to true when all backup workers for saving mutation logs have been started.
KeyBackedProperty<bool> allWorkerStarted() { return configSpace.pack(LiteralStringRef(__FUNCTION__)); }
// Each backup worker adds its (epoch, tag.id) to this property.
KeyBackedProperty<std::vector<std::pair<int64_t, int64_t>>> startedBackupWorkers() {
return configSpace.pack(LiteralStringRef(__FUNCTION__));
}
// Set to true if backup worker is enabled.
KeyBackedProperty<bool> backupWorkerEnabled() { return configSpace.pack(LiteralStringRef(__FUNCTION__)); }
// Set to true if partitioned log is enabled (only useful if backup worker is also enabled).
KeyBackedProperty<bool> partitionedLogEnabled() { return configSpace.pack(LiteralStringRef(__FUNCTION__)); }
// Set to true if only requesting incremental backup without base snapshot.
KeyBackedProperty<bool> incrementalBackupOnly() { return configSpace.pack(LiteralStringRef(__FUNCTION__)); }
// Latest version for which all prior versions have saved by backup workers.
KeyBackedProperty<Version> latestBackupWorkerSavedVersion() {
return configSpace.pack(LiteralStringRef(__FUNCTION__));
}
// Stop differntial logging if already started or don't start after completing KV ranges
KeyBackedProperty<bool> stopWhenDone() { return configSpace.pack(LiteralStringRef(__FUNCTION__)); }
// Latest version for which all prior versions have had their log copy tasks completed
KeyBackedProperty<Version> latestLogEndVersion() { return configSpace.pack(LiteralStringRef(__FUNCTION__)); }
// The end version of the last complete snapshot
KeyBackedProperty<Version> latestSnapshotEndVersion() { return configSpace.pack(LiteralStringRef(__FUNCTION__)); }
// The end version of the first complete snapshot
KeyBackedProperty<Version> firstSnapshotEndVersion() { return configSpace.pack(LiteralStringRef(__FUNCTION__)); }
KeyBackedProperty<Key> destUidValue() { return configSpace.pack(LiteralStringRef(__FUNCTION__)); }
Future<Optional<Version>> getLatestRestorableVersion(Reference<ReadYourWritesTransaction> tr) {
tr->setOption(FDBTransactionOptions::READ_SYSTEM_KEYS);
tr->setOption(FDBTransactionOptions::READ_LOCK_AWARE);
auto lastLog = latestLogEndVersion().get(tr);
auto firstSnapshot = firstSnapshotEndVersion().get(tr);
auto workerEnabled = backupWorkerEnabled().get(tr);
auto plogEnabled = partitionedLogEnabled().get(tr);
auto workerVersion = latestBackupWorkerSavedVersion().get(tr);
auto incrementalBackup = incrementalBackupOnly().get(tr);
return map(success(lastLog) && success(firstSnapshot) && success(workerEnabled) && success(plogEnabled) &&
success(workerVersion) && success(incrementalBackup),
[=](Void) -> Optional<Version> {
// The latest log greater than the oldest snapshot is the restorable version
Optional<Version> logVersion = workerEnabled.get().present() && workerEnabled.get().get() &&
plogEnabled.get().present() && plogEnabled.get().get()
? workerVersion.get()
: lastLog.get();
if (logVersion.present() && firstSnapshot.get().present() &&
logVersion.get() > firstSnapshot.get().get()) {
return std::max(logVersion.get() - 1, firstSnapshot.get().get());
}
if (logVersion.present() && incrementalBackup.isReady() && incrementalBackup.get().present() &&
incrementalBackup.get().get()) {
return logVersion.get() - 1;
}
return {};
});
}
KeyBackedProperty<std::vector<KeyRange>> backupRanges() { return configSpace.pack(LiteralStringRef(__FUNCTION__)); }
void startMutationLogs(Reference<ReadYourWritesTransaction> tr, KeyRangeRef backupRange, Key destUidValue) {
Key mutationLogsDestKey = destUidValue.withPrefix(backupLogKeys.begin);
tr->set(logRangesEncodeKey(backupRange.begin, BinaryReader::fromStringRef<UID>(destUidValue, Unversioned())),
logRangesEncodeValue(backupRange.end, mutationLogsDestKey));
}
Future<Void> logError(Database cx, Error e, std::string details, void* taskInstance = nullptr) {
if (!uid.isValid()) {
TraceEvent(SevError, "FileBackupErrorNoUID").error(e).detail("Description", details);
return Void();
}
TraceEvent t(SevWarn, "FileBackupError");
t.error(e)
.detail("BackupUID", uid)
.detail("Description", details)
.detail("TaskInstance", (uint64_t)taskInstance);
// key_not_found could happen
if (e.code() == error_code_key_not_found)
t.backtrace();
return updateErrorInfo(cx, e, details);
}
};
// Helper class for reading restore data from a buffer and throwing the right errors.
struct StringRefReader {
StringRefReader(StringRef s = StringRef(), Error e = Error()) : rptr(s.begin()), end(s.end()), failure_error(e) {}
// Return remainder of data as a StringRef
StringRef remainder() { return StringRef(rptr, end - rptr); }
// Return a pointer to len bytes at the current read position and advance read pos
const uint8_t* consume(unsigned int len) {
if (rptr == end && len != 0)
throw end_of_stream();
const uint8_t* p = rptr;
rptr += len;
if (rptr > end)
throw failure_error;
return p;
}
// Return a T from the current read position and advance read pos
template <typename T>
const T consume() {
return *(const T*)consume(sizeof(T));
}
// Functions for consuming big endian (network byte order) integers.
// Consumes a big endian number, swaps it to little endian, and returns it.
int32_t consumeNetworkInt32() { return (int32_t)bigEndian32((uint32_t)consume<int32_t>()); }
uint32_t consumeNetworkUInt32() { return bigEndian32(consume<uint32_t>()); }
// Convert big Endian value (e.g., encoded in log file) into a littleEndian uint64_t value.
int64_t consumeNetworkInt64() { return (int64_t)bigEndian64((uint32_t)consume<int64_t>()); }
uint64_t consumeNetworkUInt64() { return bigEndian64(consume<uint64_t>()); }
bool eof() { return rptr == end; }
const uint8_t *rptr, *end;
Error failure_error;
};
namespace fileBackup {
ACTOR Future<Standalone<VectorRef<KeyValueRef>>> decodeRangeFileBlock(Reference<IAsyncFile> file,
int64_t offset,
int len);
// Return a block of contiguous padding bytes "\0xff" for backup files, growing if needed.
Value makePadding(int size);
} // namespace fileBackup
// For fast restore simulation test
// For testing addPrefix feature in fast restore.
// Transform db content in restoreRanges by removePrefix and then addPrefix.
// Assume: DB is locked
ACTOR Future<Void> transformRestoredDatabase(Database cx,
Standalone<VectorRef<KeyRangeRef>> backupRanges,
Key addPrefix,
Key removePrefix);
void simulateBlobFailure();
#include "flow/unactorcompiler.h"
#endif