foundationdb/flow/flow.h

1359 lines
39 KiB
C++

/*
* flow.h
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef FLOW_FLOW_H
#define FLOW_FLOW_H
#include "flow/Arena.h"
#include "flow/FastRef.h"
#pragma once
#ifdef _MSC_VER
#pragma warning(disable : 4244 4267) // SOMEDAY: Carefully check for integer overflow issues (e.g. size_t to int
// conversions like this suppresses)
#pragma warning(disable : 4345)
#pragma warning(error : 4239)
#endif
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <unordered_map>
#include <set>
#include <functional>
#include <iostream>
#include <string>
#include <string_view>
#include <utility>
#include <algorithm>
#include <memory>
#include <mutex>
#include "flow/Platform.h"
#include "flow/FastAlloc.h"
#include "flow/IRandom.h"
#include "flow/serialize.h"
#include "flow/Deque.h"
#include "flow/ThreadPrimitives.h"
#include "flow/network.h"
#include "flow/FileIdentifier.h"
#include "flow/WriteOnlySet.h"
#include <boost/version.hpp>
#define TEST(condition) \
if (!(condition)) { \
} else { \
static BaseTraceEvent* __test = \
&(TraceEvent(intToSeverity(FLOW_KNOBS->CODE_COV_TRACE_EVENT_SEVERITY), "CodeCoverage") \
.detail("File", __FILE__) \
.detail("Line", __LINE__) \
.detail("Condition", #condition)); \
(void)__test; \
}
/*
usage:
if (BUGGIFY) (
// code here is executed on some runs (with probability P_BUGGIFIED_SECTION_ACTIVATED),
// sometimes --
)
*/
extern std::vector<double> P_BUGGIFIED_SECTION_ACTIVATED, P_BUGGIFIED_SECTION_FIRES;
extern double P_EXPENSIVE_VALIDATION;
enum class BuggifyType : uint8_t { General = 0, Client };
bool isBuggifyEnabled(BuggifyType type);
void clearBuggifySections(BuggifyType type);
int getSBVar(std::string const& file, int line, BuggifyType);
void enableBuggify(bool enabled,
BuggifyType type); // Currently controls buggification and (randomized) expensive validation
bool validationIsEnabled(BuggifyType type);
#define BUGGIFY_WITH_PROB(x) \
(getSBVar(__FILE__, __LINE__, BuggifyType::General) && deterministicRandom()->random01() < (x))
#define BUGGIFY BUGGIFY_WITH_PROB(P_BUGGIFIED_SECTION_FIRES[int(BuggifyType::General)])
#define EXPENSIVE_VALIDATION \
(validationIsEnabled(BuggifyType::General) && deterministicRandom()->random01() < P_EXPENSIVE_VALIDATION)
extern Optional<uint64_t> parse_with_suffix(std::string const& toparse, std::string const& default_unit = "");
extern Optional<uint64_t> parseDuration(std::string const& str, std::string const& defaultUnit = "");
extern std::string format(const char* form, ...);
// On success, returns the number of characters written. On failure, returns a negative number.
extern int vsformat(std::string& outputString, const char* form, va_list args);
extern Standalone<StringRef> strinc(StringRef const& str);
extern StringRef strinc(StringRef const& str, Arena& arena);
extern Standalone<StringRef> addVersionStampAtEnd(StringRef const& str);
extern StringRef addVersionStampAtEnd(StringRef const& str, Arena& arena);
template <typename Iter>
StringRef concatenate(Iter b, Iter const& e, Arena& arena) {
int rsize = 0;
Iter i = b;
while (i != e) {
rsize += i->size();
++i;
}
uint8_t* s = new (arena) uint8_t[rsize];
uint8_t* p = s;
while (b != e) {
memcpy(p, b->begin(), b->size());
p += b->size();
++b;
}
return StringRef(s, rsize);
}
template <typename Iter>
Standalone<StringRef> concatenate(Iter b, Iter const& e) {
Standalone<StringRef> r;
((StringRef&)r) = concatenate(b, e, r.arena());
return r;
}
class Void {
public:
constexpr static FileIdentifier file_identifier = 2010442;
template <class Ar>
void serialize(Ar& ar) {
serializer(ar);
}
};
class Never {};
template <class T>
class ErrorOr : public ComposedIdentifier<T, 2> {
std::variant<Error, T> value;
public:
ErrorOr() : ErrorOr(default_error_or()) {}
ErrorOr(Error const& error) : value(std::in_place_type<Error>, error) {}
template <class U>
ErrorOr(U const& t) : value(std::in_place_type<T>, t) {}
ErrorOr(Arena& a, ErrorOr<T> const& o) {
if (o.present()) {
value = std::variant<Error, T>(std::in_place_type<T>, a, o.get());
} else {
value = std::variant<Error, T>(std::in_place_type<Error>, o.getError());
}
}
int expectedSize() const { return present() ? get().expectedSize() : 0; }
template <class R>
ErrorOr<R> castTo() const {
return map<R>([](const T& v) { return (R)v; });
}
template <class R>
ErrorOr<R> map(std::function<R(T)> f) const& {
return present() ? ErrorOr<R>(f(get())) : ErrorOr<R>(getError());
}
template <class R>
ErrorOr<R> map(std::function<R(T)> f) && {
return present() ? ErrorOr<R>(f(std::move(*this).get())) : ErrorOr<R>(getError());
}
bool present() const { return std::holds_alternative<T>(value); }
T& get() & {
UNSTOPPABLE_ASSERT(present());
return std::get<T>(value);
}
T const& get() const& {
UNSTOPPABLE_ASSERT(present());
return std::get<T>(value);
}
T&& get() && {
UNSTOPPABLE_ASSERT(present());
return std::get<T>(std::move(value));
}
template <class U>
T orDefault(U&& defaultValue) const& {
return present() ? get() : std::forward<U>(defaultValue);
}
template <class U>
T orDefault(U&& defaultValue) && {
return present() ? std::move(*this).get() : std::forward<U>(defaultValue);
}
bool isError() const { return std::holds_alternative<Error>(value); }
bool isError(int code) const { return isError() && getError().code() == code; }
Error const& getError() const {
ASSERT(isError());
return std::get<Error>(value);
}
};
template <class Archive, class T>
void load(Archive& ar, ErrorOr<T>& value) {
Error error;
ar >> error;
if (error.code() != invalid_error_code) {
T t;
ar >> t;
value = ErrorOr<T>(t);
} else {
value = ErrorOr<T>(error);
}
}
template <class Archive, class T>
void save(Archive& ar, ErrorOr<T> const& value) {
if (value.present()) {
ar << Error{}; // invalid error code
ar << value.get();
} else {
ar << value.getError();
}
}
template <class T>
struct union_like_traits<ErrorOr<T>> : std::true_type {
using Member = ErrorOr<T>;
using alternatives = pack<Error, T>;
template <class Context>
static uint8_t index(const Member& variant, Context&) {
return variant.present() ? 1 : 0;
}
template <class Context>
static bool empty(const Member& variant, Context&) {
return false;
}
template <int i, class Context>
static const index_t<i, alternatives>& get(const Member& m, Context&) {
if constexpr (i == 0) {
return m.getError();
} else {
static_assert(i == 1, "ErrorOr only has two members");
return m.get();
}
}
template <int i, class Alternative, class Context>
static void assign(Member& m, const Alternative& a, Context&) {
if constexpr (i == 0) {
m = a;
} else {
static_assert(i == 1);
m = a;
}
}
};
template <class T>
class CachedSerialization {
public:
constexpr static FileIdentifier file_identifier = FileIdentifierFor<T>::value;
// FIXME: this code will not work for caching a direct serialization from ObjectWriter, because it adds an ErrorOr,
// we should create a separate SerializeType for direct serialization
enum class SerializeType { None, Binary, Object };
CachedSerialization() : cacheType(SerializeType::None) {}
explicit CachedSerialization(const T& data) : data(data), cacheType(SerializeType::None) {}
const T& read() const { return data; }
T& mutate() {
cacheType = SerializeType::None;
return data;
}
// This should only be called from the ObjectSerializer load function
Standalone<StringRef> getCache() const {
if (cacheType != SerializeType::Object) {
cache = ObjectWriter::toValue(ErrorOr<EnsureTable<T>>(data), AssumeVersion(g_network->protocolVersion()));
cacheType = SerializeType::Object;
}
return cache;
}
bool operator==(CachedSerialization<T> const& rhs) const { return data == rhs.data; }
bool operator!=(CachedSerialization<T> const& rhs) const { return !(*this == rhs); }
bool operator<(CachedSerialization<T> const& rhs) const { return data < rhs.data; }
template <class Ar>
void serialize(Ar& ar) {
if constexpr (is_fb_function<Ar>) {
// Suppress vtable collection. Save and load are implemented via the specializations below
} else {
if (Ar::isDeserializing) {
cache = Standalone<StringRef>();
cacheType = SerializeType::None;
serializer(ar, data);
} else {
if (cacheType != SerializeType::Binary) {
cache = BinaryWriter::toValue(data, AssumeVersion(g_network->protocolVersion()));
cacheType = SerializeType::Binary;
}
ar.serializeBytes(const_cast<uint8_t*>(cache.begin()), cache.size());
}
}
}
private:
T data;
mutable SerializeType cacheType;
mutable Standalone<StringRef> cache;
};
// this special case is needed - the code expects
// Standalone<T> and T to be equivalent for serialization
namespace detail {
template <class T, class Context>
struct LoadSaveHelper<CachedSerialization<T>, Context> : Context {
LoadSaveHelper(const Context& context) : Context(context), helper(context) {}
void load(CachedSerialization<T>& member, const uint8_t* current) { helper.load(member.mutate(), current); }
template <class Writer>
RelativeOffset save(const CachedSerialization<T>& member, Writer& writer, const VTableSet* vtables) {
throw internal_error();
}
private:
LoadSaveHelper<T, Context> helper;
};
} // namespace detail
template <class V>
struct serialize_raw<ErrorOr<EnsureTable<CachedSerialization<V>>>> : std::true_type {
template <class Context>
static uint8_t* save_raw(Context& context, const ErrorOr<EnsureTable<CachedSerialization<V>>>& obj) {
auto cache = obj.present() ? obj.get().asUnderlyingType().getCache()
: ObjectWriter::toValue(ErrorOr<EnsureTable<V>>(obj.getError()),
AssumeVersion(g_network->protocolVersion()));
uint8_t* out = context.allocate(cache.size());
memcpy(out, cache.begin(), cache.size());
return out;
}
};
template <class T>
struct Callback {
Callback<T>*prev, *next;
virtual void fire(T const&) {}
virtual void fire(T&&) {}
virtual void error(Error) {}
virtual void unwait() {}
void insert(Callback<T>* into) {
// Add this (uninitialized) callback just after `into`
this->prev = into;
this->next = into->next;
into->next->prev = this;
into->next = this;
}
void insertBack(Callback<T>* into) {
// Add this (uninitialized) callback just before `into`
this->next = into;
this->prev = into->prev;
into->prev->next = this;
into->prev = this;
}
void insertChain(Callback<T>* into) {
// Combine this callback's (initialized) chain and `into`'s such that this callback is just after `into`
auto p = this->prev;
auto n = into->next;
this->prev = into;
into->next = this;
p->next = n;
n->prev = p;
}
void remove() {
// Remove this callback from the list it is in, and call unwait() on the head of that list if this was the last
// callback
next->prev = prev;
prev->next = next;
if (prev == next)
next->unwait();
}
int countCallbacks() {
int count = 0;
for (Callback* c = next; c != this; c = c->next)
count++;
return count;
}
};
template <class T>
struct SingleCallback {
// Used for waiting on FutureStreams, which don't support multiple callbacks
SingleCallback<T>* next;
virtual void fire(T const&) {}
virtual void fire(T&&) {}
virtual void error(Error) {}
virtual void unwait() {}
void insert(SingleCallback<T>* into) {
this->next = into->next;
into->next = this;
}
void remove() {
ASSERT(next->next == this);
next->next = next;
next->unwait();
}
};
struct LineagePropertiesBase {
virtual ~LineagePropertiesBase();
};
// helper class to make implementation of LineageProperties easier
template <class Derived>
struct LineageProperties : LineagePropertiesBase {
// Contract:
//
// StringRef name = "SomeUniqueName"_str;
// this has to be implemented by subclasses
// but can't be made virtual.
// A user should implement this for any type
// within the properies class.
template <class Value>
bool isSet(Value Derived::*member) const {
return true;
}
};
class ActorLineage : public ThreadSafeReferenceCounted<ActorLineage> {
public:
friend class LineageReference;
struct Property {
std::string_view name;
LineagePropertiesBase* properties;
};
private:
std::vector<Property> properties;
Reference<ActorLineage> parent;
mutable std::mutex mutex;
using Lock = std::unique_lock<std::mutex>;
using Iterator = std::vector<Property>::const_iterator;
ActorLineage();
Iterator find(const std::string_view& name) const {
for (auto it = properties.cbegin(); it != properties.cend(); ++it) {
if (it->name == name) {
return it;
}
}
return properties.end();
}
Property& findOrInsert(const std::string_view& name) {
for (auto& property : properties) {
if (property.name == name) {
return property;
}
}
properties.emplace_back(Property{ name, nullptr });
return properties.back();
}
public:
~ActorLineage();
bool isRoot() const {
Lock _{ mutex };
return parent.getPtr() == nullptr;
}
void makeRoot() {
Lock _{ mutex };
parent.clear();
}
template <class T, class V>
V& modify(V T::*member) {
Lock _{ mutex };
auto& res = findOrInsert(T::name).properties;
if (!res) {
res = new T{};
}
T* map = static_cast<T*>(res);
return map->*member;
}
template <class T, class V>
std::optional<V> get(V T::*member) const {
Lock _{ mutex };
auto current = this;
while (current != nullptr) {
auto iter = current->find(T::name);
if (iter != current->properties.end()) {
T const& map = static_cast<T const&>(*iter->properties);
if (map.isSet(member)) {
return map.*member;
}
}
current = current->parent.getPtr();
}
return std::optional<V>{};
}
template <class T, class V>
std::vector<V> stack(V T::*member) const {
Lock _{ mutex };
auto current = this;
std::vector<V> res;
while (current != nullptr) {
auto iter = current->find(T::name);
if (iter != current->properties.end()) {
T const& map = static_cast<T const&>(*iter->properties);
if (map.isSet(member)) {
res.push_back(map.*member);
}
}
current = current->parent.getPtr();
}
return res;
}
Reference<ActorLineage> getParent() { return parent; }
};
// A Reference subclass with knowledge on the true owner of the contained
// ActorLineage object. This class enables lazy allocation of ActorLineages.
// LineageReference copies are generally made by child actors, which should
// create their own ActorLineage when attempting to add lineage properties (see
// getCurrentLineage()).
class LineageReference : public Reference<ActorLineage> {
public:
LineageReference() : Reference<ActorLineage>(nullptr), actorName_(""), allocated_(false) {}
explicit LineageReference(ActorLineage* ptr) : Reference<ActorLineage>(ptr), actorName_(""), allocated_(false) {}
LineageReference(const LineageReference& r) : Reference<ActorLineage>(r), actorName_(""), allocated_(false) {}
LineageReference(LineageReference&& r)
: Reference<ActorLineage>(std::forward<LineageReference>(r)), actorName_(r.actorName_), allocated_(r.allocated_) {
r.actorName_ = "";
r.allocated_ = false;
}
void setActorName(const char* name) { actorName_ = name; }
const char* actorName() { return actorName_; }
void allocate() {
Reference<ActorLineage>::setPtrUnsafe(new ActorLineage());
allocated_ = true;
}
bool isAllocated() { return allocated_; }
private:
// The actor name has to be a property of the LineageReference because all
// actors store their own LineageReference copy, but not all actors point
// to their own ActorLineage.
const char* actorName_;
bool allocated_;
};
extern std::atomic<bool> startSampling;
extern thread_local LineageReference* currentLineage;
#ifdef ENABLE_SAMPLING
LineageReference getCurrentLineage();
#else
#define getCurrentLineage() \
if (false) \
(*currentLineage)
#endif
void replaceLineage(LineageReference* lineage);
struct StackLineage : LineageProperties<StackLineage> {
static const std::string_view name;
StringRef actorName;
};
#ifdef ENABLE_SAMPLING
struct LineageScope {
LineageReference* oldLineage;
LineageScope(LineageReference* with) : oldLineage(currentLineage) { replaceLineage(with); }
~LineageScope() { replaceLineage(oldLineage); }
};
#endif
// This class can be used in order to modify all lineage properties
// of actors created within a (non-actor) scope
struct LocalLineage {
LineageReference lineage;
LineageReference* oldLineage;
LocalLineage() {
#ifdef ENABLE_SAMPLING
lineage.allocate();
oldLineage = currentLineage;
replaceLineage(&lineage);
#endif
}
~LocalLineage() {
#ifdef ENABLE_SAMPLING
replaceLineage(oldLineage);
#endif
}
};
// SAV is short for Single Assignment Variable: It can be assigned for only once!
template <class T>
struct SAV : private Callback<T>, FastAllocated<SAV<T>> {
int promises; // one for each promise (and one for an active actor if this is an actor)
int futures; // one for each future and one more if there are any callbacks
private:
typename std::aligned_storage<sizeof(T), __alignof(T)>::type value_storage;
public:
Error error_state;
enum { UNSET_ERROR_CODE = -3, NEVER_ERROR_CODE, SET_ERROR_CODE };
T& value() { return *(T*)&value_storage; }
SAV(int futures, int promises)
: promises(promises), futures(futures), error_state(Error::fromCode(UNSET_ERROR_CODE)) {
Callback<T>::prev = Callback<T>::next = this;
}
~SAV() {
if (int16_t(error_state.code()) == SET_ERROR_CODE)
value().~T();
}
bool isSet() const { return int16_t(error_state.code()) > NEVER_ERROR_CODE; }
bool canBeSet() const { return int16_t(error_state.code()) == UNSET_ERROR_CODE; }
bool isError() const { return int16_t(error_state.code()) > SET_ERROR_CODE; }
T const& get() const {
ASSERT(isSet());
if (isError())
throw error_state;
return *(T const*)&value_storage;
}
template <class U>
void send(U&& value) {
ASSERT(canBeSet());
new (&value_storage) T(std::forward<U>(value));
this->error_state = Error::fromCode(SET_ERROR_CODE);
while (Callback<T>::next != this) {
Callback<T>::next->fire(this->value());
}
}
void send(Never) {
ASSERT(canBeSet());
this->error_state = Error::fromCode(NEVER_ERROR_CODE);
}
void sendError(Error err) {
ASSERT(canBeSet() && int16_t(err.code()) > 0);
this->error_state = err;
while (Callback<T>::next != this) {
Callback<T>::next->error(err);
}
}
template <class U>
void sendAndDelPromiseRef(U&& value) {
ASSERT(canBeSet());
if (promises == 1 && !futures) {
// No one is left to receive the value, so we can just die
destroy();
return;
}
new (&value_storage) T(std::forward<U>(value));
finishSendAndDelPromiseRef();
}
void finishSendAndDelPromiseRef() {
// Call only after value_storage has already been initialized!
this->error_state = Error::fromCode(SET_ERROR_CODE);
while (Callback<T>::next != this)
Callback<T>::next->fire(this->value());
if (!--promises && !futures)
destroy();
}
void sendAndDelPromiseRef(Never) {
ASSERT(canBeSet());
this->error_state = Error::fromCode(NEVER_ERROR_CODE);
if (!--promises && !futures)
destroy();
}
void sendErrorAndDelPromiseRef(Error err) {
ASSERT(canBeSet() && int16_t(err.code()) > 0);
if (promises == 1 && !futures) {
// No one is left to receive the value, so we can just die
destroy();
return;
}
this->error_state = err;
while (Callback<T>::next != this)
Callback<T>::next->error(err);
if (!--promises && !futures)
destroy();
}
void addPromiseRef() { promises++; }
void addFutureRef() { futures++; }
void delPromiseRef() {
if (promises == 1) {
if (futures && canBeSet()) {
sendError(broken_promise());
ASSERT(promises == 1); // Once there is only one promise, there is no one else with the right to change
// the promise reference count
}
promises = 0;
if (!futures)
destroy();
} else
--promises;
}
void delFutureRef() {
if (!--futures) {
if (promises)
cancel();
else
destroy();
}
}
int getFutureReferenceCount() const { return futures; }
int getPromiseReferenceCount() const { return promises; }
// Derived classes should override destroy.
virtual void destroy() {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdelete-non-virtual-dtor"
delete this;
#pragma clang diagnostic pop
}
virtual void cancel() {}
void addCallbackAndDelFutureRef(Callback<T>* cb) {
// We are always *logically* dropping one future reference from this, but if we are adding a first callback
// we also need to add one (since futures is defined as being +1 if there are any callbacks), so net nothing
if (Callback<T>::next != this)
delFutureRef();
cb->insert(this);
}
void addYieldedCallbackAndDelFutureRef(Callback<T>* cb) {
// Same contract as addCallbackAndDelFutureRef, except that the callback is placed at the end of the callback
// chain rather than at the beginning
if (Callback<T>::next != this)
delFutureRef();
cb->insertBack(this);
}
void addCallbackChainAndDelFutureRef(Callback<T>* cb) {
if (Callback<T>::next != this)
delFutureRef();
cb->insertChain(this);
}
void unwait() override { delFutureRef(); }
void fire(T const&) override { ASSERT(false); }
};
template <class T>
class Promise;
template <class T>
class Future {
public:
T const& get() const { return sav->get(); }
T getValue() const { return get(); }
bool isValid() const { return sav != 0; }
bool isReady() const { return sav->isSet(); }
bool isError() const { return sav->isError(); }
// returns true if get can be called on this future (counterpart of canBeSet on Promises)
bool canGet() const { return isValid() && isReady() && !isError(); }
Error& getError() const {
ASSERT(isError());
return sav->error_state;
}
Future() : sav(0) {}
Future(const Future<T>& rhs) : sav(rhs.sav) {
if (sav)
sav->addFutureRef();
// if (sav->endpoint.isValid()) std::cout << "Future copied for " << sav->endpoint.key << std::endl;
}
Future(Future<T>&& rhs) noexcept : sav(rhs.sav) {
rhs.sav = 0;
// if (sav->endpoint.isValid()) std::cout << "Future moved for " << sav->endpoint.key << std::endl;
}
Future(const T& presentValue) : sav(new SAV<T>(1, 0)) { sav->send(presentValue); }
Future(T&& presentValue) : sav(new SAV<T>(1, 0)) { sav->send(std::move(presentValue)); }
Future(Never) : sav(new SAV<T>(1, 0)) { sav->send(Never()); }
Future(const Error& error) : sav(new SAV<T>(1, 0)) { sav->sendError(error); }
#ifndef NO_INTELLISENSE
template <class U>
Future(const U&, typename std::enable_if<std::is_assignable<T, U>::value, int*>::type = 0) {}
#endif
~Future() {
// if (sav && sav->endpoint.isValid()) std::cout << "Future destroyed for " << sav->endpoint.key << std::endl;
if (sav)
sav->delFutureRef();
}
void operator=(const Future<T>& rhs) {
if (rhs.sav)
rhs.sav->addFutureRef();
if (sav)
sav->delFutureRef();
sav = rhs.sav;
}
void operator=(Future<T>&& rhs) noexcept {
if (sav != rhs.sav) {
if (sav)
sav->delFutureRef();
sav = rhs.sav;
rhs.sav = 0;
}
}
bool operator==(const Future& rhs) { return rhs.sav == sav; }
bool operator!=(const Future& rhs) { return rhs.sav != sav; }
void cancel() {
if (sav)
sav->cancel();
}
void addCallbackAndClear(Callback<T>* cb) {
sav->addCallbackAndDelFutureRef(cb);
sav = 0;
}
void addYieldedCallbackAndClear(Callback<T>* cb) {
sav->addYieldedCallbackAndDelFutureRef(cb);
sav = 0;
}
void addCallbackChainAndClear(Callback<T>* cb) {
sav->addCallbackChainAndDelFutureRef(cb);
sav = 0;
}
int getFutureReferenceCount() const { return sav->getFutureReferenceCount(); }
int getPromiseReferenceCount() const { return sav->getPromiseReferenceCount(); }
explicit Future(SAV<T>* sav) : sav(sav) {
// if (sav->endpoint.isValid()) std::cout << "Future created for " << sav->endpoint.key << std::endl;
}
private:
SAV<T>* sav;
friend class Promise<T>;
};
// This class is used by the flow compiler when generating code around wait statements to avoid confusing situations
// regarding Futures.
//
// For example, the following is legal with Future but not with StrictFuture:
//
// Future<T> x = ...
// T result = wait(x); // This is the correct code
// Future<T> result = wait(x); // This is legal if wait() generates Futures, but it's probably wrong. It's a compilation
// error if wait() generates StrictFutures.
template <class T>
class StrictFuture : public Future<T> {
public:
inline StrictFuture(Future<T> const& f) : Future<T>(f) {}
inline StrictFuture(Never n) : Future<T>(n) {}
private:
StrictFuture(T t) {}
StrictFuture(Error e) {}
};
template <class T>
class Promise final {
public:
template <class U>
void send(U&& value) const {
sav->send(std::forward<U>(value));
}
template <class E>
void sendError(const E& exc) const {
sav->sendError(exc);
}
Future<T> getFuture() const {
sav->addFutureRef();
return Future<T>(sav);
}
bool isSet() const { return sav->isSet(); }
bool canBeSet() const { return sav->canBeSet(); }
bool isError() const { return sav->isError(); }
bool isValid() const { return sav != nullptr; }
Promise() : sav(new SAV<T>(0, 1)) {}
Promise(const Promise& rhs) : sav(rhs.sav) { sav->addPromiseRef(); }
Promise(Promise&& rhs) noexcept : sav(rhs.sav) { rhs.sav = 0; }
~Promise() {
if (sav)
sav->delPromiseRef();
}
void operator=(const Promise& rhs) {
if (rhs.sav)
rhs.sav->addPromiseRef();
if (sav)
sav->delPromiseRef();
sav = rhs.sav;
}
void operator=(Promise&& rhs) noexcept {
if (sav != rhs.sav) {
if (sav)
sav->delPromiseRef();
sav = rhs.sav;
rhs.sav = 0;
}
}
void reset() { *this = Promise<T>(); }
void swap(Promise& other) { std::swap(sav, other.sav); }
// Beware, these operations are very unsafe
SAV<T>* extractRawPointer() {
auto ptr = sav;
sav = nullptr;
return ptr;
}
explicit Promise<T>(SAV<T>* ptr) : sav(ptr) {}
int getFutureReferenceCount() const { return sav->getFutureReferenceCount(); }
int getPromiseReferenceCount() const { return sav->getPromiseReferenceCount(); }
private:
SAV<T>* sav;
};
template <class T>
struct NotifiedQueue : private SingleCallback<T>, FastAllocated<NotifiedQueue<T>> {
int promises; // one for each promise (and one for an active actor if this is an actor)
int futures; // one for each future and one more if there are any callbacks
// Invariant: SingleCallback<T>::next==this || (queue.empty() && !error.isValid())
std::queue<T, Deque<T>> queue;
Promise<Void> onEmpty;
Error error;
NotifiedQueue(int futures, int promises) : promises(promises), futures(futures), onEmpty(nullptr) {
SingleCallback<T>::next = this;
}
virtual ~NotifiedQueue() = default;
bool isReady() const { return !queue.empty() || error.isValid(); }
bool isError() const { return queue.empty() && error.isValid(); } // the *next* thing queued is an error
uint32_t size() const { return queue.size(); }
virtual T pop() {
if (queue.empty()) {
if (error.isValid())
throw error;
throw internal_error();
}
auto copy = std::move(queue.front());
queue.pop();
if (onEmpty.isValid() && queue.empty()) {
Promise<Void> hold = onEmpty;
onEmpty = Promise<Void>(nullptr);
hold.send(Void());
}
return copy;
}
template <class U>
void send(U&& value) {
if (error.isValid())
return;
if (SingleCallback<T>::next != this) {
SingleCallback<T>::next->fire(std::forward<U>(value));
} else {
queue.emplace(std::forward<U>(value));
}
}
void sendError(Error err) {
if (error.isValid())
return;
this->error = err;
if (shouldFireImmediately()) {
SingleCallback<T>::next->error(err);
}
}
void addPromiseRef() { promises++; }
void addFutureRef() { futures++; }
void delPromiseRef() {
if (!--promises) {
if (futures) {
sendError(broken_promise());
} else
destroy();
}
}
void delFutureRef() {
if (!--futures) {
if (promises)
cancel();
else
destroy();
}
}
int getFutureReferenceCount() const { return futures; }
int getPromiseReferenceCount() const { return promises; }
virtual void destroy() { delete this; }
virtual void cancel() {}
void addCallbackAndDelFutureRef(SingleCallback<T>* cb) {
ASSERT(SingleCallback<T>::next == this);
cb->insert(this);
}
virtual void unwait() override { delFutureRef(); }
virtual void fire(T const&) override { ASSERT(false); }
virtual void fire(T&&) override { ASSERT(false); }
protected:
T popImpl() {
if (queue.empty()) {
if (error.isValid())
throw error;
throw internal_error();
}
auto copy = std::move(queue.front());
queue.pop();
return copy;
}
bool hasError() { return error.isValid(); }
bool shouldFireImmediately() { return SingleCallback<T>::next != this; }
};
template <class T>
class FutureStream {
public:
bool isValid() const { return queue != 0; }
bool isReady() const { return queue->isReady(); }
bool isError() const {
// This means that the next thing to be popped is an error - it will be false if there is an error in the stream
// but some actual data first
return queue->isError();
}
void addCallbackAndClear(SingleCallback<T>* cb) {
queue->addCallbackAndDelFutureRef(cb);
queue = 0;
}
FutureStream() : queue(nullptr) {}
FutureStream(const FutureStream& rhs) : queue(rhs.queue) { queue->addFutureRef(); }
FutureStream(FutureStream&& rhs) noexcept : queue(rhs.queue) { rhs.queue = 0; }
~FutureStream() {
if (queue)
queue->delFutureRef();
}
void operator=(const FutureStream& rhs) {
rhs.queue->addFutureRef();
if (queue)
queue->delFutureRef();
queue = rhs.queue;
}
void operator=(FutureStream&& rhs) noexcept {
if (rhs.queue != queue) {
if (queue)
queue->delFutureRef();
queue = rhs.queue;
rhs.queue = 0;
}
}
bool operator==(const FutureStream& rhs) { return rhs.queue == queue; }
bool operator!=(const FutureStream& rhs) { return rhs.queue != queue; }
T pop() { return queue->pop(); }
Error getError() {
ASSERT(queue->isError());
return queue->error;
}
explicit FutureStream(NotifiedQueue<T>* queue) : queue(queue) {}
private:
NotifiedQueue<T>* queue;
};
template <class Request>
decltype(std::declval<Request>().reply) const& getReplyPromise(Request const& r) {
return r.reply;
}
template <class Request>
auto const& getReplyPromiseStream(Request const& r) {
return r.reply;
}
// Neither of these implementations of REPLY_TYPE() works on both MSVC and g++, so...
#ifdef __GNUG__
#define REPLY_TYPE(RequestType) decltype(getReplyPromise(std::declval<RequestType>()).getFuture().getValue())
//#define REPLY_TYPE(RequestType) decltype( getReplyFuture( std::declval<RequestType>() ).getValue() )
#else
template <class T>
struct ReplyType {
// Doing this calculation directly in the return value declaration for PromiseStream<T>::getReply()
// breaks IntelliSense in VS2010; this is a workaround.
typedef decltype(std::declval<T>().reply.getFuture().getValue()) Type;
};
template <class T>
class ReplyPromise;
template <class T>
struct ReplyType<ReplyPromise<T>> {
typedef T Type;
};
#define REPLY_TYPE(RequestType) typename ReplyType<RequestType>::Type
#endif
template <class T>
class PromiseStream {
public:
// stream.send( request )
// Unreliable at most once delivery: Delivers request unless there is a connection failure (zero or one times)
void send(const T& value) const { queue->send(value); }
void send(T&& value) const { queue->send(std::move(value)); }
void sendError(const Error& error) const { queue->sendError(error); }
// stream.getReply( request )
// Reliable at least once delivery: Eventually delivers request at least once and returns one of the replies if
// communication is possible. Might deliver request
// more than once.
// If a reply is returned, request was or will be delivered one or more times.
// If cancelled, request was or will be delivered zero or more times.
template <class X>
Future<REPLY_TYPE(X)> getReply(const X& value) const {
send(value);
return getReplyPromise(value).getFuture();
}
template <class X>
Future<REPLY_TYPE(X)> getReply(const X& value, TaskPriority taskID) const {
setReplyPriority(value, taskID);
return getReplyPromise(value).getFuture();
}
template <class X>
Future<X> getReply() const {
return getReply(Promise<X>());
}
template <class X>
Future<X> getReplyWithTaskID(TaskPriority taskID) const {
Promise<X> reply;
reply.getEndpoint(taskID);
return getReply(reply);
}
FutureStream<T> getFuture() const {
queue->addFutureRef();
return FutureStream<T>(queue);
}
PromiseStream() : queue(new NotifiedQueue<T>(0, 1)) {}
PromiseStream(const PromiseStream& rhs) : queue(rhs.queue) { queue->addPromiseRef(); }
PromiseStream(PromiseStream&& rhs) noexcept : queue(rhs.queue) { rhs.queue = 0; }
void operator=(const PromiseStream& rhs) {
rhs.queue->addPromiseRef();
if (queue)
queue->delPromiseRef();
queue = rhs.queue;
}
void operator=(PromiseStream&& rhs) noexcept {
if (queue != rhs.queue) {
if (queue)
queue->delPromiseRef();
queue = rhs.queue;
rhs.queue = 0;
}
}
~PromiseStream() {
if (queue)
queue->delPromiseRef();
// queue = (NotifiedQueue<T>*)0xdeadbeef;
}
bool operator==(const PromiseStream<T>& rhs) const { return queue == rhs.queue; }
bool isEmpty() const { return !queue->isReady(); }
Future<Void> onEmpty() {
if (isEmpty()) {
return Void();
}
if (!queue->onEmpty.isValid()) {
queue->onEmpty = Promise<Void>();
}
return queue->onEmpty.getFuture();
}
private:
NotifiedQueue<T>* queue;
};
// Neither of these implementations of REPLY_TYPE() works on both MSVC and g++, so...
#ifdef __GNUG__
#define REPLYSTREAM_TYPE(RequestType) decltype(getReplyPromiseStream(std::declval<RequestType>()).getFuture().pop())
#else
template <class T>
struct ReplyStreamType {
// Doing this calculation directly in the return value declaration for PromiseStream<T>::getReply()
// breaks IntelliSense in VS2010; this is a workaround.
typedef decltype(std::declval<T>().reply.getFuture().pop()) Type;
};
template <class T>
class ReplyPromiseStream;
template <class T>
struct ReplyStreamType<ReplyPromiseStream<T>> {
typedef T Type;
};
#define REPLYSTREAM_TYPE(RequestType) typename ReplyStreamType<RequestType>::Type
#endif
// extern int actorCount;
template <class T>
static inline void destruct(T& t) {
t.~T();
}
template <class ReturnValue>
struct Actor : SAV<ReturnValue> {
#ifdef ENABLE_SAMPLING
LineageReference lineage = *currentLineage;
#endif
int8_t actor_wait_state; // -1 means actor is cancelled; 0 means actor is not waiting; 1-N mean waiting in callback
// group #
Actor() : SAV<ReturnValue>(1, 1), actor_wait_state(0) { /*++actorCount;*/
}
// ~Actor() { --actorCount; }
#ifdef ENABLE_SAMPLING
LineageReference* lineageAddr() { return std::addressof(lineage); }
#endif
};
template <>
struct Actor<void> {
// This specialization is for a void actor (one not returning a future, hence also uncancellable)
#ifdef ENABLE_SAMPLING
LineageReference lineage = *currentLineage;
#endif
int8_t actor_wait_state; // 0 means actor is not waiting; 1-N mean waiting in callback group #
Actor() : actor_wait_state(0) { /*++actorCount;*/
}
// ~Actor() { --actorCount; }
#ifdef ENABLE_SAMPLING
LineageReference* lineageAddr() { return std::addressof(lineage); }
#endif
};
template <class ActorType, int CallbackNumber, class ValueType>
struct ActorCallback : Callback<ValueType> {
virtual void fire(ValueType const& value) override {
#ifdef ENABLE_SAMPLING
LineageScope _(static_cast<ActorType*>(this)->lineageAddr());
#endif
static_cast<ActorType*>(this)->a_callback_fire(this, value);
}
virtual void error(Error e) override {
#ifdef ENABLE_SAMPLING
LineageScope _(static_cast<ActorType*>(this)->lineageAddr());
#endif
static_cast<ActorType*>(this)->a_callback_error(this, e);
}
};
template <class ActorType, int CallbackNumber, class ValueType>
struct ActorSingleCallback : SingleCallback<ValueType> {
void fire(ValueType const& value) override {
#ifdef ENABLE_SAMPLING
LineageScope _(static_cast<ActorType*>(this)->lineageAddr());
#endif
static_cast<ActorType*>(this)->a_callback_fire(this, value);
}
void fire(ValueType&& value) override {
#ifdef ENABLE_SAMPLING
LineageScope _(static_cast<ActorType*>(this)->lineageAddr());
#endif
static_cast<ActorType*>(this)->a_callback_fire(this, std::move(value));
}
void error(Error e) override {
#ifdef ENABLE_SAMPLING
LineageScope _(static_cast<ActorType*>(this)->lineageAddr());
#endif
static_cast<ActorType*>(this)->a_callback_error(this, e);
}
};
inline double now() {
return g_network->now();
}
inline Future<Void> delay(double seconds, TaskPriority taskID = TaskPriority::DefaultDelay) {
return g_network->delay(seconds, taskID);
}
inline Future<Void> orderedDelay(double seconds, TaskPriority taskID = TaskPriority::DefaultDelay) {
return g_network->orderedDelay(seconds, taskID);
}
inline Future<Void> delayUntil(double time, TaskPriority taskID = TaskPriority::DefaultDelay) {
return g_network->delay(std::max(0.0, time - g_network->now()), taskID);
}
inline Future<Void> delayJittered(double seconds, TaskPriority taskID = TaskPriority::DefaultDelay) {
return g_network->delay(seconds * (FLOW_KNOBS->DELAY_JITTER_OFFSET +
FLOW_KNOBS->DELAY_JITTER_RANGE * deterministicRandom()->random01()),
taskID);
}
inline Future<Void> yield(TaskPriority taskID = TaskPriority::DefaultYield) {
return g_network->yield(taskID);
}
inline bool check_yield(TaskPriority taskID = TaskPriority::DefaultYield) {
return g_network->check_yield(taskID);
}
#include "flow/genericactors.actor.h"
#endif