foundationdb/fdbserver/DeltaTree.h

821 lines
22 KiB
C++

/*
* DeltaTree.h
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "flow/flow.h"
#include "flow/Arena.h"
#include "fdbclient/FDBTypes.h"
#include "fdbserver/Knobs.h"
#include <string.h>
typedef uint64_t Word;
static inline int commonPrefixLength(uint8_t const* ap, uint8_t const* bp, int cl) {
int i = 0;
const int wordEnd = cl - sizeof(Word) + 1;
for(; i < wordEnd; i += sizeof(Word)) {
Word a = *(Word *)ap;
Word b = *(Word *)bp;
if(a != b) {
return i + ctzll(a ^ b) / 8;
}
ap += sizeof(Word);
bp += sizeof(Word);
}
for (; i < cl; i++) {
if (*ap != *bp) {
return i;
}
++ap;
++bp;
}
return cl;
}
static int commonPrefixLength(StringRef a, StringRef b) {
return commonPrefixLength(a.begin(), b.begin(), std::min(a.size(), b.size()));
}
// This appears to be the fastest version
static int lessOrEqualPowerOfTwo(int n) {
int p;
for (p = 1; p+p <= n; p+=p);
return p;
}
/*
static int _lessOrEqualPowerOfTwo(uint32_t n) {
if(n == 0)
return n;
int trailing = __builtin_ctz(n);
int leading = __builtin_clz(n);
if(trailing + leading == ((sizeof(n) * 8) - 1))
return n;
return 1 << ( (sizeof(n) * 8) - leading - 1);
}
static int __lessOrEqualPowerOfTwo(unsigned int n) {
int p = 1;
for(; p <= n; p <<= 1);
return p >> 1;
}
*/
static int perfectSubtreeSplitPoint(int subtree_size) {
// return the inorder index of the root node in a subtree of the given size
// consistent with the resulting binary search tree being "perfect" (having minimal height
// and all missing nodes as far right as possible).
// There has to be a simpler way to do this.
int s = lessOrEqualPowerOfTwo((subtree_size - 1) / 2 + 1) - 1;
return std::min(s * 2 + 1, subtree_size - s - 1);
}
static int perfectSubtreeSplitPointCached(int subtree_size) {
static uint16_t *points = nullptr;
static const int max = 500;
if(points == nullptr) {
points = new uint16_t[max];
for(int i = 0; i < max; ++i)
points[i] = perfectSubtreeSplitPoint(i);
}
if(subtree_size < max)
return points[subtree_size];
return perfectSubtreeSplitPoint(subtree_size);
}
// Delta Tree is a memory mappable binary tree of T objects such that each node's item is
// stored as a Delta which can reproduce the node's T item given the node's greatest
// lesser ancestor and the node's least greater ancestor.
//
// The Delta type is intended to make use of ordered prefix compression and borrow all
// available prefix bytes from the ancestor T which shares the most prefix bytes with
// the item T being encoded.
//
// T requirements
//
// Must be compatible with Standalone<T> and must implement the following additional methods:
//
// // Writes to d a delta which can create *this from base
// // commonPrefix can be passed in if known
// void writeDelta(dT &d, const T &base, int commonPrefix = -1) const;
//
// // Compare *this to t, returns < 0 for less than, 0 for equal, > 0 for greater than
// // The first skipLen bytes can be assumed to be equal
// int compare(const T &rhs, int skipLen) const;
//
// // Get the common prefix bytes between *this and base
// // skip is a hint of how many prefix bytes are already known to be the same
// int getCommonPrefixLen(const T &base, int skip) const;
//
// // Returns the size of the delta object needed to make *this from base
// // TODO: Explain contract required for deltaSize to be used to predict final
// // balanced tree size incrementally while adding sorted items to a build set
// int deltaSize(const T &base) const;
//
// DeltaT requirements
//
// // Returns the size of this dT instance
// int size();
//
// // Returns the T created by applying the delta to prev or next
// T apply(const T &base, Arena &localStorage) const;
//
// // Stores a boolean which DeltaTree will later use to determine the base node for a node's delta
// void setPrefixSource(bool val);
//
// // Retrieves the previously stored boolean
// bool getPrefixSource() const;
//
#pragma pack(push,1)
template <typename T, typename DeltaT = typename T::Delta, typename OffsetT = uint16_t>
struct DeltaTree {
static int MaximumTreeSize() {
return std::numeric_limits<OffsetT>::max();
};
struct Node {
OffsetT leftChildOffset;
OffsetT rightChildOffset;
inline DeltaT & delta() {
return *(DeltaT *)(this + 1);
};
inline const DeltaT & delta() const {
return *(const DeltaT *)(this + 1);
};
Node * rightChild() const {
//printf("Node(%p): leftOffset=%d rightOffset=%d deltaSize=%d\n", this, (int)leftChildOffset, (int)rightChildOffset, (int)delta().size());
return rightChildOffset == 0 ? nullptr : (Node *)((uint8_t *)this + rightChildOffset);
}
Node * leftChild() const {
//printf("Node(%p): leftOffset=%d rightOffset=%d deltaSize=%d\n", this, (int)leftChildOffset, (int)rightChildOffset, (int)delta().size());
return leftChildOffset == 0 ? nullptr : (Node *)((uint8_t *)this + leftChildOffset);
}
int size() const {
return sizeof(Node) + delta().size();
}
};
struct {
OffsetT numItems; // Number of items in the tree.
OffsetT nodeBytesUsed; // Bytes in use by tree, exluding overhead
OffsetT nodeBytesFree; // Bytes left at end of tree to expand into
OffsetT nodeBytesDeleted; // Delta bytes deleted from tree. Note that some of these bytes could be borrowed by descendents.
uint8_t initialHeight; // Height of tree as originally built
uint8_t maxHeight; // Maximum height of tree after any insertion. Value of 0 means no insertions done.
};
#pragma pack(pop)
inline Node & root() {
return *(Node *)(this + 1);
}
inline const Node & root() const {
return *(const Node *)(this + 1);
}
int size() const {
return sizeof(DeltaTree) + nodeBytesUsed;
}
inline Node & newNode() {
return *(Node *)((uint8_t *)this + size());
}
public:
// Get count of total overhead bytes (everything but the user-formatted Delta) for a tree given size n
static inline int GetTreeOverhead(int n = 0) {
return sizeof(DeltaTree) + (n * sizeof(Node));
}
struct DecodedNode {
DecodedNode() {}
// construct root node
DecodedNode(Node *raw, const T *prev, const T *next, Arena &arena)
: raw(raw), parent(nullptr), otherAncestor(nullptr), leftChild(nullptr), rightChild(nullptr), prev(prev), next(next),
item(raw->delta().apply(raw->delta().getPrefixSource() ? *prev : *next, arena))
{
//printf("DecodedNode1 raw=%p delta=%s\n", raw, raw->delta().toString().c_str());
}
// Construct non-root node
// wentLeft indicates that we've gone left to get to the raw node.
DecodedNode(Node *raw, DecodedNode *parent, bool wentLeft, Arena &arena)
: parent(parent), otherAncestor(wentLeft ? parent->getPrevAncestor() : parent->getNextAncestor()),
prev(wentLeft ? parent->prev : &parent->item),
next(wentLeft ? &parent->item : parent->next),
leftChild(nullptr), rightChild(nullptr),
raw(raw), item(raw->delta().apply(raw->delta().getPrefixSource() ? *prev : *next, arena))
{
//printf("DecodedNode2 raw=%p delta=%s\n", raw, raw->delta().toString().c_str());
}
// Returns true if otherAncestor is the previous ("greatest lesser") ancestor
bool otherAncestorPrev() const {
return parent && parent->leftChild == this;
}
// Returns true if otherAncestor is the next ("least greator") ancestor
bool otherAncestorNext() const {
return parent && parent->rightChild == this;
}
DecodedNode * getPrevAncestor() const {
return otherAncestorPrev() ? otherAncestor : parent;
}
DecodedNode * getNextAncestor() const {
return otherAncestorNext() ? otherAncestor : parent;
}
DecodedNode * jumpNext(DecodedNode *root) const {
if(otherAncestorNext()) {
return (otherAncestor != nullptr) ? otherAncestor : rightChild;
}
else {
if(this == root) {
return rightChild;
}
return (otherAncestor != nullptr) ? otherAncestor->rightChild : root;
}
}
DecodedNode * jumpPrev(DecodedNode *root) const {
if(otherAncestorPrev()) {
return (otherAncestor != nullptr) ? otherAncestor : leftChild;
}
else {
if(this == root) {
return leftChild;
}
return (otherAncestor != nullptr) ? otherAncestor->leftChild : root;
}
}
void setDeleted(bool deleted) {
raw->delta().setDeleted(deleted);
}
bool isDeleted() const {
return raw->delta().getDeleted();
}
Node *raw;
DecodedNode *parent;
DecodedNode *otherAncestor;
DecodedNode *leftChild;
DecodedNode *rightChild;
const T *prev; // greatest ancestor to the left, or tree lower bound
const T *next; // least ancestor to the right, or tree upper bound
T item;
DecodedNode *getRightChild(Arena &arena) {
if(rightChild == nullptr) {
Node *n = raw->rightChild();
if(n != nullptr) {
rightChild = new (arena) DecodedNode(n, this, false, arena);
}
}
return rightChild;
}
DecodedNode *getLeftChild(Arena &arena) {
if(leftChild == nullptr) {
Node *n = raw->leftChild();
if(n != nullptr) {
leftChild = new (arena) DecodedNode(n, this, true, arena);
}
}
return leftChild;
}
};
struct Cursor;
// A Mirror is an accessor for a DeltaTree which allows insertion and reading. Both operations are done
// using cursors which point to and share nodes in an tree that is built on-demand and mirrors the compressed
// structure but with fully reconstituted items (which reference DeltaTree bytes or Arena bytes, based
// on the behavior of T::Delta::apply())
struct Mirror : FastAllocated<Mirror> {
friend class Cursor;
Mirror(const void *treePtr = nullptr, const T *lowerBound = nullptr, const T *upperBound = nullptr)
: tree((DeltaTree *)treePtr), lower(lowerBound), upper(upperBound)
{
// TODO: Remove these copies into arena and require users of Mirror to keep prev and next alive during its lifetime
lower = new(arena) T(arena, *lower);
upper = new(arena) T(arena, *upper);
root = (tree->nodeBytesUsed == 0) ? nullptr : new (arena) DecodedNode(&tree->root(), lower, upper, arena);
}
const T *lowerBound() const {
return lower;
}
const T *upperBound() const {
return upper;
}
private:
Arena arena;
DeltaTree *tree;
DecodedNode *root;
const T *lower;
const T *upper;
public:
Cursor getCursor() {
return Cursor(this);
}
// Try to insert k into the DeltaTree, updating byte counts and initialHeight if they
// have changed (they won't if k already exists in the tree but was deleted).
// Returns true if successful, false if k does not fit in the space available
// or if k is already in the tree (and was not already deleted).
bool insert(const T &k, int skipLen = 0, int maxHeightAllowed = std::numeric_limits<int>::max()) {
int height = 1;
DecodedNode *n = root;
bool addLeftChild = false;
while(n != nullptr) {
int cmp = k.compare(n->item, skipLen);
if(cmp >= 0) {
// If we found an item identical to k then if it is deleted, undeleted it,
// otherwise fail
if(cmp == 0) {
auto &d = n->raw->delta();
if(d.getDeleted()) {
d.setDeleted(false);
++tree->numItems;
return true;
}
else {
return false;
}
}
DecodedNode *right = n->getRightChild(arena);
if(right == nullptr) {
break;
}
n = right;
}
else {
DecodedNode *left = n->getLeftChild(arena);
if(left == nullptr) {
addLeftChild = true;
break;
}
n = left;
}
++height;
}
if(height > maxHeightAllowed) {
return false;
}
// Insert k as the left or right child of n, depending on the value of addLeftChild
// First, see if it will fit.
const T *prev = addLeftChild ? n->prev : &n->item;
const T *next = addLeftChild ? &n->item : n->next;
int common = prev->getCommonPrefixLen(*next, skipLen);
int commonWithPrev = k.getCommonPrefixLen(*prev, common);
int commonWithNext = k.getCommonPrefixLen(*next, common);
bool basePrev = commonWithPrev >= commonWithNext;
int commonPrefix = basePrev ? commonWithPrev : commonWithNext;
const T *base = basePrev ? prev : next;
int deltaSize = k.deltaSize(*base, false, commonPrefix);
int nodeSpace = deltaSize + sizeof(Node);
if(nodeSpace > tree->nodeBytesFree) {
return false;
}
DecodedNode *newNode = new (arena) DecodedNode();
Node *raw = &tree->newNode();
raw->leftChildOffset = 0;
raw->rightChildOffset = 0;
int newOffset = (uint8_t *)raw - (uint8_t *)n->raw;
//printf("Inserting %s at offset %d\n", k.toString().c_str(), newOffset);
if(addLeftChild) {
n->leftChild = newNode;
n->raw->leftChildOffset = newOffset;
}
else {
n->rightChild = newNode;
n->raw->rightChildOffset = newOffset;
}
newNode->parent = n;
newNode->leftChild = nullptr;
newNode->rightChild = nullptr;
newNode->raw = raw;
newNode->otherAncestor = addLeftChild ? n->getPrevAncestor() : n->getNextAncestor();
newNode->prev = prev;
newNode->next = next;
ASSERT(deltaSize == k.writeDelta(raw->delta(), *base, commonPrefix));
raw->delta().setPrefixSource(basePrev);
// Initialize node's item from the delta (instead of copying into arena) to avoid unnecessary arena space usage
newNode->item = raw->delta().apply(*base, arena);
tree->nodeBytesUsed += nodeSpace;
tree->nodeBytesFree -= nodeSpace;
++tree->numItems;
// Update max height of the tree if necessary
if(height > tree->maxHeight) {
tree->maxHeight = height;
}
return true;
}
// Erase k by setting its deleted flag to true. Returns true only if k existed
bool erase(const T &k, int skipLen = 0) {
Cursor c = getCursor();
bool r = c.seek(k);
if(r) {
c.erase();
}
return r;
}
};
// Cursor provides a way to seek into a DeltaTree and iterate over its contents
// All Cursors from a Mirror share the same decoded node 'cache' (tree of DecodedNodes)
struct Cursor {
Cursor() : mirror(nullptr), node(nullptr) {
}
Cursor(Mirror *r) : mirror(r), node(mirror->root) {
}
Mirror *mirror;
DecodedNode *node;
bool valid() const {
return node != nullptr;
}
const T & get() const {
return node->item;
}
const T & getOrUpperBound() const {
return valid() ? node->item : *mirror->upperBound();
}
bool operator==(const Cursor &rhs) const {
return node == rhs.node;
}
bool operator!=(const Cursor &rhs) const {
return node != rhs.node;
}
void erase() {
node->setDeleted(true);
--mirror->tree->numItems;
moveNext();
}
bool seekLessThanOrEqual(const T &s, int skipLen = 0) {
return seekLessThanOrEqual(s, skipLen, nullptr, 0);
}
bool seekLessThanOrEqual(const T &s, int skipLen, const Cursor *pHint) {
if(pHint->valid()) {
return seekLessThanOrEqual(s, skipLen, pHint, s.compare(pHint->get(), skipLen));
}
return seekLessThanOrEqual(s, skipLen, nullptr, 0);
}
// Moves the cursor to the node with the greatest key less than or equal to s. If successful,
// returns true, otherwise returns false and the cursor position will be invalid.
// If pHint is given then initialCmp must be logically equivalent to s.compare(pHint->get())
// If hintFwd is omitted, it will be calculated (see other definitions above)
bool seekLessThanOrEqual(const T &s, int skipLen, const Cursor *pHint, int initialCmp) {
DecodedNode *n;
// If there's a hint position, use it
// At the end of using the hint, if n is valid it should point to a node which has not yet been compared to.
if(pHint != nullptr && pHint->node != nullptr) {
n = pHint->node;
if(initialCmp == 0) {
node = n;
return _hideDeletedBackward();
}
if(initialCmp > 0) {
node = n;
while(n != nullptr) {
n = n->jumpNext(mirror->root);
if(n == nullptr) {
break;
}
int cmp = s.compare(n->item, skipLen);
if(cmp > 0) {
node = n;
continue;
}
if(cmp == 0) {
node = n;
n = nullptr;
}
else {
n = n->leftChild;
}
break;
}
}
else {
while(n != nullptr) {
n = n->jumpPrev(mirror->root);
if(n == nullptr) {
break;
}
int cmp = s.compare(n->item, skipLen);
if(cmp >= 0) {
node = n;
n = (cmp == 0) ? nullptr : n->rightChild;
break;
}
}
}
}
else {
// Start at root, clear current position
n = mirror->root;
node = nullptr;
}
while(n != nullptr) {
int cmp = s.compare(n->item, skipLen);
if(cmp < 0) {
n = n->getLeftChild(mirror->arena);
}
else {
// n <= s so store it in node as a potential result
node = n;
if(cmp == 0) {
break;
}
n = n->getRightChild(mirror->arena);
}
}
return _hideDeletedBackward();
}
// Moves the cursor to the node with the lowest key greater than or equal to s. If successful,
// returns true, otherwise returns false and the cursor position will be invalid.
bool seekGreaterThanOrEqual(const T &s, int skipLen = 0) {
DecodedNode *n = mirror->root;
node = nullptr;
while(n != nullptr) {
int cmp = s.compare(n->item, skipLen);
if(cmp > 0) {
n = n->getRightChild(mirror->arena);
}
else {
// n >= s so store it in node as a potential result
node = n;
if(cmp == 0) {
break;
}
n = n->getLeftChild(mirror->arena);
}
}
return _hideDeletedForward();
}
// Moves the cursor to the node with exactly item s
// If successful, returns true, otherwise returns false and the cursor position will be invalid.
bool seek(const T &s, int skipLen = 0) {
DecodedNode *n = mirror->root;
node = nullptr;
while(n != nullptr) {
int cmp = s.compare(n->item, skipLen);
if(cmp == 0) {
if(n->isDeleted()) {
return false;
}
node = n;
return true;
}
n = (cmp > 0) ? n->getRightChild(mirror->arena) : n->getLeftChild(mirror->arena);
}
return false;
}
bool moveFirst() {
DecodedNode *n = mirror->root;
node = n;
while(n != nullptr) {
n = n->getLeftChild(mirror->arena);
if(n != nullptr)
node = n;
}
return _hideDeletedForward();
}
bool moveLast() {
DecodedNode *n = mirror->root;
node = n;
while(n != nullptr) {
n = n->getRightChild(mirror->arena);
if(n != nullptr)
node = n;
}
return _hideDeletedBackward();
}
// Try to move to next node, sees deleted nodes.
void _moveNext() {
// Try to go right
DecodedNode *n = node->getRightChild(mirror->arena);
// If we couldn't go right, then the answer is our next ancestor
if(n == nullptr) {
node = node->getNextAncestor();
}
else {
// Go left as far as possible
while(n != nullptr) {
node = n;
n = n->getLeftChild(mirror->arena);
}
}
}
// Try to move to previous node, sees deleted nodes.
void _movePrev() {
// Try to go left
DecodedNode *n = node->getLeftChild(mirror->arena);
// If we couldn't go left, then the answer is our prev ancestor
if(n == nullptr) {
node = node->getPrevAncestor();
}
else {
// Go right as far as possible
while(n != nullptr) {
node = n;
n = n->getRightChild(mirror->arena);
}
}
}
bool moveNext() {
_moveNext();
return _hideDeletedForward();
}
bool movePrev() {
_movePrev();
return _hideDeletedBackward();
}
private:
bool _hideDeletedBackward() {
while(node != nullptr && node->isDeleted()) {
_movePrev();
}
return node != nullptr;
}
bool _hideDeletedForward() {
while(node != nullptr && node->isDeleted()) {
_moveNext();
}
return node != nullptr;
}
};
// Returns number of bytes written
int build(int spaceAvailable, const T *begin, const T *end, const T *prev, const T *next) {
//printf("tree size: %d node size: %d\n", sizeof(DeltaTree), sizeof(Node));
int count = end - begin;
numItems = count;
nodeBytesDeleted = 0;
initialHeight = (uint8_t)log2(count) + 1;
maxHeight = 0;
// The boundary leading to the new page acts as the last time we branched right
if(begin != end) {
nodeBytesUsed = build(root(), begin, end, prev, next, prev->getCommonPrefixLen(*next, 0));
}
else {
nodeBytesUsed = 0;
}
nodeBytesFree = spaceAvailable - size();
return size();
}
private:
static OffsetT build(Node &root, const T *begin, const T *end, const T *prev, const T *next, int subtreeCommon) {
//printf("build: %s to %s\n", begin->toString().c_str(), (end - 1)->toString().c_str());
//printf("build: root at %p sizeof(Node) %d delta at %p \n", &root, sizeof(Node), &root.delta());
ASSERT(end != begin);
int count = end - begin;
// Find key to be stored in root
int mid = perfectSubtreeSplitPointCached(count);
const T &item = begin[mid];
int commonWithPrev = item.getCommonPrefixLen(*prev, subtreeCommon);
int commonWithNext = item.getCommonPrefixLen(*next, subtreeCommon);
bool prefixSourcePrev;
int commonPrefix;
const T *base;
if(commonWithPrev >= commonWithNext) {
prefixSourcePrev = true;
commonPrefix = commonWithPrev;
base = prev;
}
else {
prefixSourcePrev = false;
commonPrefix = commonWithNext;
base = next;
}
int deltaSize = item.writeDelta(root.delta(), *base, commonPrefix);
root.delta().setPrefixSource(prefixSourcePrev);
//printf("Serialized %s to %p\n", item.toString().c_str(), &root.delta());
// Continue writing after the serialized Delta.
uint8_t *wptr = (uint8_t *)&root.delta() + deltaSize;
// Serialize left child
if(count > 1) {
wptr += build(*(Node *)wptr, begin, begin + mid, prev, &item, commonWithPrev);
root.leftChildOffset = sizeof(Node) + deltaSize;
}
else {
root.leftChildOffset = 0;
}
// Serialize right child
if(count > 2) {
root.rightChildOffset = wptr - (uint8_t *)&root;
wptr += build(*(Node *)wptr, begin + mid + 1, end, &item, next, commonWithNext);
}
else {
root.rightChildOffset = 0;
}
return wptr - (uint8_t *)&root;
}
};