98 lines
2.4 KiB
C++
98 lines
2.4 KiB
C++
/*
|
|
* ContinuousSample.h
|
|
*
|
|
* This source file is part of the FoundationDB open source project
|
|
*
|
|
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifndef CONTINUOUSSAMPLE_H
|
|
#define CONTINUOUSSAMPLE_H
|
|
#pragma once
|
|
|
|
#include "flow/Platform.h"
|
|
#include "flow/IRandom.h"
|
|
#include <vector>
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
|
|
template <class T>
|
|
class ContinuousSample {
|
|
public:
|
|
explicit ContinuousSample( int sampleSize ) : sampleSize( sampleSize ), populationSize( 0 ), sorted( true ), _min(T()), _max(T()) {}
|
|
|
|
ContinuousSample<T>& addSample(T sample) {
|
|
if( !populationSize )
|
|
_min = _max = sample;
|
|
populationSize++;
|
|
sorted = false;
|
|
|
|
if( populationSize <= sampleSize ) {
|
|
samples.push_back( sample );
|
|
} else if( deterministicRandom()->random01() < ( (double)sampleSize / populationSize ) ) {
|
|
samples[ deterministicRandom()->randomInt( 0, sampleSize ) ] = sample;
|
|
}
|
|
|
|
_max = std::max( _max, sample );
|
|
_min = std::min( _min, sample );
|
|
return *this;
|
|
}
|
|
|
|
double mean() {
|
|
if (!samples.size()) return 0;
|
|
T sum = 0;
|
|
for( int c = 0; c < samples.size(); c++ )
|
|
sum += samples[ c ];
|
|
return (double)sum / samples.size();
|
|
}
|
|
|
|
T median() {
|
|
return percentile( 0.5 );
|
|
}
|
|
|
|
T percentile( double percentile ) {
|
|
if( !samples.size() || percentile < 0.0 || percentile > 1.0 )
|
|
return T();
|
|
sort();
|
|
int idx = std::floor( ( samples.size() - 1 ) * percentile );
|
|
return samples[ idx ];
|
|
}
|
|
|
|
T min() { return _min; }
|
|
T max() { return _max; }
|
|
|
|
void clear() {
|
|
samples.clear();
|
|
populationSize = 0;
|
|
sorted = true;
|
|
_min = _max = 0; // Doesn't work for all T
|
|
}
|
|
|
|
private:
|
|
int sampleSize;
|
|
uint64_t populationSize;
|
|
bool sorted;
|
|
std::vector<T> samples;
|
|
T _min, _max;
|
|
|
|
void sort() {
|
|
if( !sorted && samples.size() > 1 )
|
|
std::sort( samples.begin(), samples.end() );
|
|
sorted = true;
|
|
}
|
|
};
|
|
|
|
#endif
|