foundationdb/fdbserver/TagPartitionedLogSystem.act...

1134 lines
50 KiB
C++

/*
* TagPartitionedLogSystem.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "flow/actorcompiler.h"
#include "flow/ActorCollection.h"
#include "LogSystem.h"
#include "ServerDBInfo.h"
#include "DBCoreState.h"
#include "WaitFailure.h"
#include "fdbclient/SystemData.h"
#include "fdbrpc/simulator.h"
#include "fdbrpc/Replication.h"
#include "fdbrpc/ReplicationUtils.h"
#include "RecoveryState.h"
ACTOR static Future<Void> reportTLogCommitErrors( Future<Void> commitReply, UID debugID ) {
try {
Void _ = wait(commitReply);
return Void();
} catch (Error& e) {
if (e.code() == error_code_broken_promise)
throw master_tlog_failed();
else if (e.code() != error_code_actor_cancelled && e.code() != error_code_tlog_stopped)
TraceEvent(SevError, "MasterTLogCommitRequestError", debugID).error(e);
throw;
}
}
struct OldLogData {
std::vector<Reference<AsyncVar<OptionalInterface<TLogInterface>>>> logServers;
int32_t tLogWriteAntiQuorum;
int32_t tLogReplicationFactor;
std::vector< LocalityData > tLogLocalities; // Stores the localities of the log servers
IRepPolicyRef tLogPolicy;
Version epochEnd;
OldLogData() : tLogWriteAntiQuorum(0), tLogReplicationFactor(0), epochEnd(0) {}
};
struct TagPartitionedLogSystem : ILogSystem, ReferenceCounted<TagPartitionedLogSystem> {
UID dbgid;
int tLogWriteAntiQuorum, tLogReplicationFactor, logSystemType;
LocalitySetRef logServerSet;
std::vector<int> logIndexArray;
std::map<int,LocalityEntry> logEntryMap;
IRepPolicyRef tLogPolicy;
std::vector< LocalityData > tLogLocalities;
// new members
Future<Void> rejoins;
Future<Void> recoveryComplete;
bool recoveryCompleteWrittenToCoreState;
Optional<Version> epochEndVersion;
std::set< Tag > epochEndTags;
Version knownCommittedVersion;
LocalityData locality;
std::map< std::pair<int, Tag>, Version > outstandingPops; // For each currently running popFromLog actor, (log server #, tag)->popped version
ActorCollection actors;
std::vector<OldLogData> oldLogData;
std::vector<Reference<AsyncVar<OptionalInterface<TLogInterface>>>> logServers;
TagPartitionedLogSystem( UID dbgid, LocalityData locality ) : dbgid(dbgid), locality(locality), actors(false), recoveryCompleteWrittenToCoreState(false), tLogWriteAntiQuorum(0), tLogReplicationFactor(0), logSystemType(0) {}
virtual void stopRejoins() {
rejoins = Future<Void>();
}
virtual void addref() {
ReferenceCounted<TagPartitionedLogSystem>::addref();
}
virtual void delref() {
ReferenceCounted<TagPartitionedLogSystem>::delref();
}
virtual std::string describe() {
std::string result;
for( auto it : logServers ) {
result = result + it->get().id().toString() + ", ";
}
return result;
}
virtual UID getDebugID() {
return dbgid;
}
static Future<Void> recoverAndEndEpoch(Reference<AsyncVar<Reference<ILogSystem>>> const& outLogSystem, UID const& dbgid, DBCoreState const& oldState, FutureStream<TLogRejoinRequest> const& rejoins, LocalityData const& locality) {
return epochEnd( outLogSystem, dbgid, oldState, rejoins, locality );
}
static Reference<ILogSystem> fromLogSystemConfig( UID const& dbgid, LocalityData const& locality, LogSystemConfig const& lsConf ) {
ASSERT( lsConf.logSystemType == 2 || (lsConf.logSystemType == 0 && !lsConf.tLogs.size()) );
//ASSERT(lsConf.epoch == epoch); //< FIXME
Reference<TagPartitionedLogSystem> logSystem( new TagPartitionedLogSystem(dbgid, locality) );
for( int i = 0; i < lsConf.tLogs.size(); i++ )
logSystem->logServers.push_back( Reference<AsyncVar<OptionalInterface<TLogInterface>>>( new AsyncVar<OptionalInterface<TLogInterface>>( lsConf.tLogs[i] ) ) );
logSystem->oldLogData.resize(lsConf.oldTLogs.size());
for( int i = 0; i < lsConf.oldTLogs.size(); i++ ) {
for( int j = 0; j < lsConf.oldTLogs[i].tLogs.size(); j++) {
logSystem->oldLogData[i].logServers.push_back( Reference<AsyncVar<OptionalInterface<TLogInterface>>>( new AsyncVar<OptionalInterface<TLogInterface>>( lsConf.oldTLogs[i].tLogs[j] ) ) );
}
logSystem->oldLogData[i].tLogWriteAntiQuorum = lsConf.oldTLogs[i].tLogWriteAntiQuorum;
logSystem->oldLogData[i].tLogReplicationFactor = lsConf.oldTLogs[i].tLogReplicationFactor;
logSystem->oldLogData[i].tLogPolicy = lsConf.oldTLogs[i].tLogPolicy;
logSystem->oldLogData[i].tLogLocalities = lsConf.oldTLogs[i].tLogLocalities;
logSystem->oldLogData[i].epochEnd = lsConf.oldTLogs[i].epochEnd;
}
//logSystem->epoch = lsConf.epoch;
logSystem->tLogWriteAntiQuorum = lsConf.tLogWriteAntiQuorum;
logSystem->tLogReplicationFactor = lsConf.tLogReplicationFactor;
logSystem->tLogPolicy = lsConf.tLogPolicy;
logSystem->tLogLocalities = lsConf.tLogLocalities;
logSystem->logSystemType = lsConf.logSystemType;
logSystem->UpdateLocalitySet(lsConf.tLogs);
filterLocalityDataForPolicy(logSystem->tLogPolicy, &logSystem->tLogLocalities);
return logSystem;
}
static Reference<ILogSystem> fromOldLogSystemConfig( UID const& dbgid, LocalityData const& locality, LogSystemConfig const& lsConf ) {
ASSERT( lsConf.logSystemType == 2 || (lsConf.logSystemType == 0 && !lsConf.tLogs.size()) );
//ASSERT(lsConf.epoch == epoch); //< FIXME
Reference<TagPartitionedLogSystem> logSystem( new TagPartitionedLogSystem(dbgid, locality) );
if(lsConf.oldTLogs.size()) {
for( int i = 0; i < lsConf.oldTLogs[0].tLogs.size(); i++ )
logSystem->logServers.push_back( Reference<AsyncVar<OptionalInterface<TLogInterface>>>( new AsyncVar<OptionalInterface<TLogInterface>>( lsConf.oldTLogs[0].tLogs[i] ) ) );
//logSystem->epoch = lsConf.epoch;
logSystem->tLogWriteAntiQuorum = lsConf.oldTLogs[0].tLogWriteAntiQuorum;
logSystem->tLogReplicationFactor = lsConf.oldTLogs[0].tLogReplicationFactor;
logSystem->tLogPolicy = lsConf.oldTLogs[0].tLogPolicy;
logSystem->tLogLocalities = lsConf.oldTLogs[0].tLogLocalities;
filterLocalityDataForPolicy(logSystem->tLogPolicy, &logSystem->tLogLocalities);
logSystem->oldLogData.resize(lsConf.oldTLogs.size()-1);
for( int i = 1; i < lsConf.oldTLogs.size(); i++ ) {
for( int j = 0; j < lsConf.oldTLogs[i].tLogs.size(); j++) {
logSystem->oldLogData[i-1].logServers.push_back( Reference<AsyncVar<OptionalInterface<TLogInterface>>>( new AsyncVar<OptionalInterface<TLogInterface>>( lsConf.oldTLogs[i].tLogs[j] ) ) );
}
logSystem->oldLogData[i-1].tLogWriteAntiQuorum = lsConf.oldTLogs[i].tLogWriteAntiQuorum;
logSystem->oldLogData[i-1].tLogReplicationFactor = lsConf.oldTLogs[i].tLogReplicationFactor;
logSystem->oldLogData[i-1].tLogPolicy = lsConf.oldTLogs[i].tLogPolicy;
logSystem->oldLogData[i-1].tLogLocalities = lsConf.oldTLogs[i].tLogLocalities;
logSystem->oldLogData[i-1].epochEnd = lsConf.oldTLogs[i].epochEnd;
}
}
logSystem->logSystemType = lsConf.logSystemType;
return logSystem;
}
virtual void toCoreState( DBCoreState& newState ) {
if( recoveryComplete.isValid() && recoveryComplete.isError() )
throw recoveryComplete.getError();
newState.tLogs.clear();
tLogLocalities.clear();
for(auto &t : logServers) {
newState.tLogs.push_back(t->get().id());
tLogLocalities.push_back(t->get().interf().locality);
}
newState.oldTLogData.clear();
if(!recoveryComplete.isValid() || !recoveryComplete.isReady()) {
newState.oldTLogData.resize(oldLogData.size());
for(int i = 0; i < oldLogData.size(); i++) {
for(auto &t : oldLogData[i].logServers)
newState.oldTLogData[i].tLogs.push_back(t->get().id());
newState.oldTLogData[i].tLogWriteAntiQuorum = oldLogData[i].tLogWriteAntiQuorum;
newState.oldTLogData[i].tLogReplicationFactor = oldLogData[i].tLogReplicationFactor;
newState.oldTLogData[i].tLogPolicy = oldLogData[i].tLogPolicy;
newState.oldTLogData[i].tLogLocalities = oldLogData[i].tLogLocalities;
newState.oldTLogData[i].epochEnd = oldLogData[i].epochEnd;
}
}
newState.tLogWriteAntiQuorum = tLogWriteAntiQuorum;
newState.tLogReplicationFactor = tLogReplicationFactor;
newState.tLogPolicy = tLogPolicy;
newState.tLogLocalities = tLogLocalities;
newState.logSystemType = logSystemType;
}
virtual Future<Void> onCoreStateChanged() {
ASSERT(recoveryComplete.isValid());
if( recoveryComplete.isReady() )
return Never();
return recoveryComplete;
}
virtual void coreStateWritten( DBCoreState const& newState ) {
if( !newState.oldTLogData.size() )
recoveryCompleteWrittenToCoreState = true;
}
virtual Future<Void> onError() {
// Never returns normally, but throws an error if the subsystem stops working
// FIXME: Run waitFailureClient on the master instead of these onFailedFor?
if (!logServers.size()) return Never();
vector<Future<Void>> failed;
for(auto &t : logServers)
if( t->get().present() )
failed.push_back( waitFailureClient( t->get().interf().waitFailure, SERVER_KNOBS->TLOG_TIMEOUT, -SERVER_KNOBS->TLOG_TIMEOUT/SERVER_KNOBS->SECONDS_BEFORE_NO_FAILURE_DELAY ) );
ASSERT( failed.size() >= 1 );
return tagError<Void>( quorum( failed, 1 ), master_tlog_failed() ) || actors.getResult();
}
virtual Future<Void> push( Version prevVersion, Version version, Version knownCommittedVersion, LogPushData& data, Optional<UID> debugID ) {
// FIXME: Randomize request order as in LegacyLogSystem?
vector<Future<Void>> tLogCommitResults;
for(int loc=0; loc<logServers.size(); loc++) {
Future<Void> commitMessage = reportTLogCommitErrors(
logServers[loc]->get().interf().commit.getReply(
TLogCommitRequest( data.getArena(), prevVersion, version, knownCommittedVersion, data.getMessages(loc), data.getTags(loc), debugID ), TaskTLogCommitReply ),
getDebugID());
actors.add(commitMessage);
tLogCommitResults.push_back(commitMessage);
}
return quorum( tLogCommitResults, tLogCommitResults.size() - tLogWriteAntiQuorum );
}
virtual Reference<IPeekCursor> peek( Version begin, Tag tag, bool parallelGetMore ) {
if(oldLogData.size() == 0 || begin >= oldLogData[0].epochEnd) {
return Reference<ILogSystem::MergedPeekCursor>( new ILogSystem::MergedPeekCursor( logServers, logServers.size() ? bestLocationFor( tag ) : -1,
(int)logServers.size() + 1 - tLogReplicationFactor, tag, begin, getPeekEnd(), parallelGetMore, tLogLocalities, tLogPolicy, tLogReplicationFactor));
} else {
std::vector< Reference<ILogSystem::IPeekCursor> > cursors;
std::vector< LogMessageVersion > epochEnds;
cursors.push_back( Reference<ILogSystem::MergedPeekCursor>( new ILogSystem::MergedPeekCursor( logServers, logServers.size() ? bestLocationFor( tag ) : -1,
(int)logServers.size() + 1 - tLogReplicationFactor, tag, oldLogData[0].epochEnd, getPeekEnd(), parallelGetMore, tLogLocalities, tLogPolicy, tLogReplicationFactor)) );
for(int i = 0; i < oldLogData.size() && begin < oldLogData[i].epochEnd; i++) {
cursors.push_back( Reference<ILogSystem::MergedPeekCursor>( new ILogSystem::MergedPeekCursor( oldLogData[i].logServers, oldLogData[i].logServers.size() ? oldBestLocationFor( tag, i ) : -1,
(int)oldLogData[i].logServers.size() + 1 - oldLogData[i].tLogReplicationFactor, tag, i+1 == oldLogData.size() ? begin : std::max(oldLogData[i+1].epochEnd, begin), oldLogData[i].epochEnd, parallelGetMore, oldLogData[i].tLogLocalities, oldLogData[i].tLogPolicy, oldLogData[i].tLogReplicationFactor)) );
epochEnds.push_back(LogMessageVersion(oldLogData[i].epochEnd));
}
return Reference<ILogSystem::MultiCursor>( new ILogSystem::MultiCursor(cursors, epochEnds) );
}
}
virtual Reference<IPeekCursor> peekSingle( Version begin, Tag tag ) {
if(oldLogData.size() == 0 || begin >= oldLogData[0].epochEnd) {
return Reference<ILogSystem::ServerPeekCursor>( new ILogSystem::ServerPeekCursor( logServers.size() ?
logServers[bestLocationFor( tag )] :
Reference<AsyncVar<OptionalInterface<TLogInterface>>>(), tag, begin, getPeekEnd(), false, false ) );
} else {
TEST(true); //peekSingle used during non-copying tlog recovery
std::vector< Reference<ILogSystem::IPeekCursor> > cursors;
std::vector< LogMessageVersion > epochEnds;
cursors.push_back( Reference<ILogSystem::ServerPeekCursor>( new ILogSystem::ServerPeekCursor( logServers.size() ?
logServers[bestLocationFor( tag )] :
Reference<AsyncVar<OptionalInterface<TLogInterface>>>(), tag, oldLogData[0].epochEnd, getPeekEnd(), false, false) ) );
for(int i = 0; i < oldLogData.size() && begin < oldLogData[i].epochEnd; i++) {
cursors.push_back( Reference<ILogSystem::MergedPeekCursor>( new ILogSystem::MergedPeekCursor( oldLogData[i].logServers, oldLogData[i].logServers.size() ? oldBestLocationFor( tag, i ) : -1,
(int)oldLogData[i].logServers.size() + 1 - oldLogData[i].tLogReplicationFactor, tag, i+1 == oldLogData.size() ? begin : std::max(oldLogData[i+1].epochEnd, begin), oldLogData[i].epochEnd, false,
oldLogData[i].tLogLocalities, oldLogData[i].tLogPolicy, oldLogData[i].tLogReplicationFactor)) );
epochEnds.push_back(LogMessageVersion(oldLogData[i].epochEnd));
}
return Reference<ILogSystem::MultiCursor>( new ILogSystem::MultiCursor(cursors, epochEnds) );
}
}
virtual void pop( Version upTo, Tag _tag ) {
if (!logServers.size() || !upTo) return;
Tag tag = _tag;
for(auto log=0; log<logServers.size(); log++) {
Version prev = outstandingPops[std::make_pair(log,tag)];
if (prev < upTo)
outstandingPops[std::make_pair(log,tag)] = upTo;
if (prev == 0)
actors.add( popFromLog( this, log, tag ) );
}
}
ACTOR static Future<Void> popFromLog( TagPartitionedLogSystem* self, int log, Tag tag ) {
state Version last = 0;
loop {
Void _ = wait( delay(1.0) ); //< FIXME: knob
state Version to = self->outstandingPops[ std::make_pair(log,tag) ];
if (to <= last) {
self->outstandingPops.erase( std::make_pair(log,tag) );
return Void();
}
try {
auto& interf = self->logServers[log];
if( !interf->get().present() )
return Void();
Void _ = wait(interf->get().interf().popMessages.getReply( TLogPopRequest( to, tag ) ) );
last = to;
} catch (Error& e) {
if (e.code() == error_code_actor_cancelled) throw;
TraceEvent( (e.code() == error_code_broken_promise) ? SevInfo : SevError, "LogPopError", self->dbgid ).detail("Log", self->logServers[log]->get().id()).error(e);
return Void(); // Leaving outstandingPops filled in means no further pop requests to this tlog from this logSystem
}
}
}
ACTOR static Future<Void> confirmEpochLive_internal(TagPartitionedLogSystem* self, Optional<UID> debugID) {
state vector<Future<Void>> alive;
int numPresent = 0;
for(auto& t : self->logServers) {
if( t->get().present() ) {
alive.push_back( brokenPromiseToNever(
t->get().interf().confirmRunning.getReply( TLogConfirmRunningRequest(debugID),
TaskTLogConfirmRunningReply ) ) );
numPresent++;
} else {
alive.push_back( Never() );
}
}
Void _ = wait( quorum( alive, std::min(self->tLogReplicationFactor, numPresent - self->tLogWriteAntiQuorum) ) );
state Reference<LocalityGroup> locked(new LocalityGroup());
state std::vector<bool> responded(alive.size());
for (int i = 0; i < alive.size(); i++) {
responded[i] = false;
}
loop {
for (int i = 0; i < alive.size(); i++) {
if (!responded[i] && alive[i].isReady() && !alive[i].isError()) {
locked->add(self->tLogLocalities[i]);
responded[i] = true;
}
}
bool quorum_obtained = locked->validate(self->tLogPolicy);
// We intentionally skip considering antiquorums, as the CPU cost of doing so is prohibitive.
if (self->tLogReplicationFactor == 1 && locked->size() > 0) {
ASSERT(quorum_obtained);
}
if (quorum_obtained) {
return Void();
}
// The current set of responders that we have weren't enough to form a quorum, so we must
// wait for more responses and try again.
std::vector<Future<Void>> changes;
for (int i = 0; i < alive.size(); i++) {
if (!alive[i].isReady()) {
changes.push_back( ready(alive[i]) );
} else if (alive[i].isReady() && alive[i].isError() &&
alive[i].getError().code() == error_code_tlog_stopped) {
// All commits must go to all TLogs. If any TLog is stopped, then our epoch has ended.
return Never();
}
}
ASSERT(changes.size() != 0);
Void _ = wait( waitForAny(changes) );
}
}
// Returns success after confirming that pushes in the current epoch are still possible.
virtual Future<Void> confirmEpochLive(Optional<UID> debugID) {
return confirmEpochLive_internal(this, debugID);
}
virtual Future<Reference<ILogSystem>> newEpoch( vector<WorkerInterface> availableLogServers, DatabaseConfiguration const& config, LogEpoch recoveryCount ) {
// Call only after end_epoch() has successfully completed. Returns a new epoch immediately following this one. The new epoch
// is only provisional until the caller updates the coordinated DBCoreState
return newEpoch( Reference<TagPartitionedLogSystem>::addRef(this), availableLogServers, config, recoveryCount );
}
virtual LogSystemConfig getLogSystemConfig() {
LogSystemConfig logSystemConfig;
logSystemConfig.logSystemType = logSystemType;
logSystemConfig.tLogWriteAntiQuorum = tLogWriteAntiQuorum;
logSystemConfig.tLogReplicationFactor = tLogReplicationFactor;
logSystemConfig.tLogPolicy = tLogPolicy;
logSystemConfig.tLogLocalities = tLogLocalities;
for( int i = 0; i < logServers.size(); i++ )
logSystemConfig.tLogs.push_back(logServers[i]->get());
if(!recoveryCompleteWrittenToCoreState) {
for( int i = 0; i < oldLogData.size(); i++ ) {
logSystemConfig.oldTLogs.push_back(OldTLogConf());
for( int j = 0; j < oldLogData[i].logServers.size(); j++ ) {
logSystemConfig.oldTLogs[i].tLogs.push_back(oldLogData[i].logServers[j]->get());
}
logSystemConfig.oldTLogs[i].tLogWriteAntiQuorum = oldLogData[i].tLogWriteAntiQuorum;
logSystemConfig.oldTLogs[i].tLogReplicationFactor = oldLogData[i].tLogReplicationFactor;
logSystemConfig.oldTLogs[i].tLogPolicy = oldLogData[i].tLogPolicy;
logSystemConfig.oldTLogs[i].tLogLocalities = oldLogData[i].tLogLocalities;
logSystemConfig.oldTLogs[i].epochEnd = oldLogData[i].epochEnd;
}
}
return logSystemConfig;
}
virtual Standalone<StringRef> getLogsValue() {
vector<std::pair<UID, NetworkAddress>> logs;
for( int i = 0; i < logServers.size(); i++ ) {
logs.push_back(std::make_pair(logServers[i]->get().id(), logServers[i]->get().present() ? logServers[i]->get().interf().address() : NetworkAddress()));
}
vector<std::pair<UID, NetworkAddress>> oldLogs;
if(!recoveryCompleteWrittenToCoreState) {
for( int i = 0; i < oldLogData.size(); i++ ) {
for( int j = 0; j < oldLogData[i].logServers.size(); j++ ) {
oldLogs.push_back(std::make_pair(oldLogData[i].logServers[j]->get().id(), oldLogData[i].logServers[j]->get().present() ? oldLogData[i].logServers[j]->get().interf().address() : NetworkAddress()));
}
}
}
return logsValue( logs, oldLogs );
}
virtual Future<Void> onLogSystemConfigChange() {
std::vector<Future<Void>> changes;
changes.push_back(Never());
for( int i = 0; i < logServers.size(); i++ )
changes.push_back( logServers[i]->onChange() );
for( int i = 0; i < oldLogData.size(); i++ ) {
for( int j = 0; j < oldLogData[i].logServers.size(); j++ ) {
changes.push_back( oldLogData[i].logServers[j]->onChange() );
}
}
return waitForAny(changes);
}
virtual int getLogServerCount() { return logServers.size(); }
virtual Version getEnd() {
ASSERT( epochEndVersion.present() );
return epochEndVersion.get() + 1;
}
Version getPeekEnd() {
if (epochEndVersion.present())
return getEnd();
else
return std::numeric_limits<Version>::max();
}
int bestLocationFor( Tag tag ) {
return tag % logServers.size();
}
int oldBestLocationFor( Tag tag, int idx ) {
return tag % oldLogData[idx].logServers.size();
}
virtual void getPushLocations( std::vector<Tag> const& tags, std::vector<int>& locations ) {
// Ensure that the replication server set and replication policy
// have been defined
ASSERT(logServerSet.getPtr());
ASSERT(tLogPolicy.getPtr());
std::vector<LocalityEntry> alsoServers, resultEntries;
for(auto& t : tags) {
locations.push_back(bestLocationFor(t));
}
uniquify( locations );
if (locations.size())
alsoServers.reserve(locations.size());
// Convert locations to the also servers
for (auto location : locations) {
ASSERT(logEntryMap[location]._id == location);
alsoServers.push_back(logEntryMap[location]);
}
// Run the policy, assert if unable to satify
bool result = logServerSet->selectReplicas(tLogPolicy, alsoServers, resultEntries);
ASSERT(result);
// Add the new servers to the location array
LocalityMap<int>* logServerMap = (LocalityMap<int>*) logServerSet.getPtr();
for (auto entry : resultEntries) {
locations.push_back(*logServerMap->getObject(entry));
}
// TraceEvent("getPushLocations").detail("Policy", tLogPolicy->info())
// .detail("Results", locations.size()).detail("Selection", logServerSet->size())
// .detail("Included", alsoServers.size()).detail("Duration", timer() - t);
}
void UpdateLocalitySet(vector<OptionalInterface<TLogInterface>> const& tlogs)
{
LocalityMap<int>* logServerMap;
logServerSet = LocalitySetRef(new LocalityMap<int>());
logServerMap = (LocalityMap<int>*) logServerSet.getPtr();
logEntryMap.clear();
logIndexArray.clear();
logIndexArray.reserve(tlogs.size());
for( int i = 0; i < tlogs.size(); i++ ) {
if (tlogs[i].present()) {
logIndexArray.push_back(i);
ASSERT(logEntryMap.find(i) == logEntryMap.end());
logEntryMap[logIndexArray.back()] = logServerMap->add(tlogs[i].interf().locality, &logIndexArray.back());
}
}
}
void UpdateLocalitySet(
vector<WorkerInterface> const& workers,
vector<InitializeTLogRequest> const& reqs)
{
LocalityMap<int>* logServerMap;
logServerSet = LocalitySetRef(new LocalityMap<int>());
logServerMap = (LocalityMap<int>*) logServerSet.getPtr();
logEntryMap.clear();
logIndexArray.clear();
logIndexArray.reserve(workers.size());
for( int i = 0; i < workers.size(); i++ ) {
ASSERT(logEntryMap.find(i) == logEntryMap.end());
logIndexArray.push_back(i);
logEntryMap[logIndexArray.back()] = logServerMap->add(workers[i].locality, &logIndexArray.back());
}
}
std::set< Tag > const& getEpochEndTags() const { return epochEndTags; }
ACTOR static Future<Void> monitorLog(Reference<AsyncVar<OptionalInterface<TLogInterface>>> logServer, Reference<AsyncVar<bool>> failed) {
state Future<Void> waitFailure;
loop {
if(logServer->get().present())
waitFailure = waitFailureTracker( logServer->get().interf().waitFailure, failed );
else
failed->set(true);
Void _ = wait( logServer->onChange() );
}
}
ACTOR static Future<Void> epochEnd( Reference<AsyncVar<Reference<ILogSystem>>> outLogSystem, UID dbgid, DBCoreState prevState, FutureStream<TLogRejoinRequest> rejoinRequests, LocalityData locality ) {
// Stops a co-quorum of tlogs so that no further versions can be committed until the DBCoreState coordination state is changed
// Creates a new logSystem representing the (now frozen) epoch
// No other important side effects.
// The writeQuorum in the master info is from the previous configuration
state vector<Future<TLogLockResult>> tLogReply(prevState.tLogs.size());
if (!prevState.tLogs.size()) {
// This is a brand new database
Reference<TagPartitionedLogSystem> logSystem( new TagPartitionedLogSystem(dbgid, locality) );
logSystem->tLogWriteAntiQuorum = prevState.tLogWriteAntiQuorum;
logSystem->tLogReplicationFactor = prevState.tLogReplicationFactor;
logSystem->tLogPolicy = prevState.tLogPolicy;
logSystem->tLogLocalities = prevState.tLogLocalities;
logSystem->logSystemType = prevState.logSystemType;
filterLocalityDataForPolicy(logSystem->tLogPolicy, &logSystem->tLogLocalities);
logSystem->epochEndVersion = 0;
logSystem->knownCommittedVersion = 0;
outLogSystem->set(logSystem);
Void _ = wait( Future<Void>(Never()) );
throw internal_error();
}
TEST( true ); // Master recovery from pre-existing database
// To ensure consistent recovery, the number of servers NOT in the write quorum plus the number of servers NOT in the read quorum
// have to be strictly less than the replication factor. Otherwise there could be a replica set consistent entirely of servers that
// are out of date due to not being in the write quorum or unavailable due to not being in the read quorum.
// So with N = # of tlogs, W = antiquorum, R = required count, F = replication factor,
// W + (N - R) < F, and optimally (N-W)+(N-R)=F-1. Thus R=N+1-F+W.
state int requiredCount = (int)prevState.tLogs.size()+1 - prevState.tLogReplicationFactor + prevState.tLogWriteAntiQuorum;
ASSERT( requiredCount > 0 && requiredCount <= prevState.tLogs.size() );
ASSERT( prevState.tLogReplicationFactor >= 1 && prevState.tLogReplicationFactor <= prevState.tLogs.size() );
ASSERT( prevState.tLogWriteAntiQuorum >= 0 && prevState.tLogWriteAntiQuorum < prevState.tLogs.size() );
// trackRejoins listens for rejoin requests from the tLogs that we are recovering from, to learn their TLogInterfaces
state std::vector<Reference<AsyncVar<OptionalInterface<TLogInterface>>>> logServers;
state std::vector<Reference<AsyncVar<OptionalInterface<TLogInterface>>>> allLogServers;
state std::vector<OldLogData> oldLogData;
state std::vector<Reference<AsyncVar<bool>>> logFailed;
state std::vector<Future<Void>> failureTrackers;
for( int i = 0; i < prevState.tLogs.size(); i++ ) {
Reference<AsyncVar<OptionalInterface<TLogInterface>>> logVar = Reference<AsyncVar<OptionalInterface<TLogInterface>>>( new AsyncVar<OptionalInterface<TLogInterface>>( OptionalInterface<TLogInterface>(prevState.tLogs[i]) ) );
logServers.push_back( logVar );
allLogServers.push_back( logVar );
logFailed.push_back( Reference<AsyncVar<bool>>( new AsyncVar<bool>() ) );
failureTrackers.push_back( monitorLog(logServers[i], logFailed[i] ) );
}
for( int i = 0; i < prevState.oldTLogData.size(); i++ ) {
oldLogData.push_back(OldLogData());
for(int j = 0; j < prevState.oldTLogData[i].tLogs.size(); j++) {
Reference<AsyncVar<OptionalInterface<TLogInterface>>> logVar = Reference<AsyncVar<OptionalInterface<TLogInterface>>>( new AsyncVar<OptionalInterface<TLogInterface>>( OptionalInterface<TLogInterface>(prevState.oldTLogData[i].tLogs[j]) ) );
oldLogData[i].logServers.push_back( logVar );
allLogServers.push_back( logVar );
}
oldLogData[i].tLogReplicationFactor = prevState.oldTLogData[i].tLogReplicationFactor;
oldLogData[i].tLogWriteAntiQuorum = prevState.oldTLogData[i].tLogWriteAntiQuorum;
oldLogData[i].epochEnd = prevState.oldTLogData[i].epochEnd;
oldLogData[i].tLogPolicy = prevState.oldTLogData[i].tLogPolicy;
oldLogData[i].tLogLocalities = prevState.oldTLogData[i].tLogLocalities;
}
state Future<Void> rejoins = trackRejoins( dbgid, allLogServers, rejoinRequests );
state bool buggify_lock_minimal_tlogs = BUGGIFY;
if (!buggify_lock_minimal_tlogs) {
for(int t=0; t<logServers.size(); t++) {
tLogReply[t] = lockTLog( dbgid, logServers[t]);
}
}
state Optional<Version> last_end;
state bool lastWaitForRecovery = true;
state int cycles = 0;
loop {
if (buggify_lock_minimal_tlogs) {
lockMinimalTLogSet( dbgid, prevState, logServers, logFailed, &tLogReply );
}
std::vector<LocalityData> availableItems, badCombo;
std::vector<TLogLockResult> results;
std::string sServerState;
LocalityGroup unResponsiveSet;
std::string missingServerIds;
double t = timer();
cycles ++;
for(int t=0; t<logServers.size(); t++) {
if (tLogReply[t].isValid() && tLogReply[t].isReady() && !tLogReply[t].isError() && !logFailed[t]->get()) {
results.push_back(tLogReply[t].get());
availableItems.push_back(prevState.tLogLocalities[t]);
sServerState += 'a';
}
else {
unResponsiveSet.add(prevState.tLogLocalities[t]);
sServerState += 'f';
if(missingServerIds.size()) {
missingServerIds += ", ";
}
missingServerIds += logServers[t]->get().toString();
}
}
// Check if the list of results is not larger than the anti quorum
bool bTooManyFailures = (results.size() <= prevState.tLogWriteAntiQuorum);
// Check if failed logs complete the policy
bTooManyFailures = bTooManyFailures ||
((unResponsiveSet.size() >= prevState.tLogReplicationFactor) &&
(unResponsiveSet.validate(prevState.tLogPolicy)) );
// Check all combinations of the AntiQuorum within the failed
if ((!bTooManyFailures) &&
(prevState.tLogWriteAntiQuorum) &&
(!validateAllCombinations(badCombo, unResponsiveSet, prevState.tLogPolicy, availableItems, prevState.tLogWriteAntiQuorum, false)))
{
TraceEvent("EpochEndBadCombo", dbgid).detail("Cycles", cycles)
.detail("Present", results.size())
.detail("Available", availableItems.size())
.detail("Absent", logServers.size() - results.size())
.detail("ServerState", sServerState)
.detail("ReplicationFactor", prevState.tLogReplicationFactor)
.detail("AntiQuorum", prevState.tLogWriteAntiQuorum)
.detail("Policy", prevState.tLogPolicy->info())
.detail("TooManyFailures", bTooManyFailures)
.detail("LogZones", ::describeZones(prevState.tLogLocalities))
.detail("LogDataHalls", ::describeDataHalls(prevState.tLogLocalities));
bTooManyFailures = true;
}
// If too many TLogs are failed for recovery to be possible, we could wait forever here.
//Void _ = wait( smartQuorum( tLogReply, requiredCount, SERVER_KNOBS->RECOVERY_TLOG_SMART_QUORUM_DELAY ) || rejoins );
ASSERT(logServers.size() == tLogReply.size());
if (!bTooManyFailures) {
std::sort( results.begin(), results.end(), sort_by_end() );
int absent = logServers.size() - results.size();
int safe_range_begin = prevState.tLogWriteAntiQuorum;
int new_safe_range_begin = std::min(prevState.tLogWriteAntiQuorum, (int)(results.size()-1));
int safe_range_end = prevState.tLogReplicationFactor - absent;
Version end = results[ new_safe_range_begin ].end;
Version knownCommittedVersion = end - (g_network->isSimulated() ? 10*SERVER_KNOBS->VERSIONS_PER_SECOND : SERVER_KNOBS->MAX_READ_TRANSACTION_LIFE_VERSIONS); //In simulation this must be the maximum MAX_READ_TRANSACTION_LIFE_VERSIONS
for(int i = 0; i < results.size(); i++) {
knownCommittedVersion = std::max(knownCommittedVersion, results[i].knownCommittedVersion);
}
if( ( prevState.logSystemType == 2 && (!last_end.present() || ((safe_range_end > 0) && (safe_range_end-1 < results.size()) && results[ safe_range_end-1 ].end < last_end.get())) ) ) {
TEST( last_end.present() ); // Restarting recovery at an earlier point
Reference<TagPartitionedLogSystem> logSystem( new TagPartitionedLogSystem(dbgid, locality) );
TraceEvent("LogSystemRecovery", dbgid).detail("Cycles", cycles)
.detail("TotalServers", logServers.size())
.detail("Present", results.size())
.detail("Available", availableItems.size())
.detail("Absent", logServers.size() - results.size())
.detail("ServerState", sServerState)
.detail("ReplicationFactor", prevState.tLogReplicationFactor)
.detail("AntiQuorum", prevState.tLogWriteAntiQuorum)
.detail("Policy", prevState.tLogPolicy->info())
.detail("TooManyFailures", bTooManyFailures)
.detail("LastVersion", (last_end.present()) ? last_end.get() : -1L)
.detail("RecoveryVersion", ((safe_range_end > 0) && (safe_range_end-1 < results.size())) ? results[ safe_range_end-1 ].end : -1)
.detail("EndVersion", end)
.detail("SafeBegin", safe_range_begin)
.detail("SafeEnd", safe_range_end)
.detail("NewSafeBegin", new_safe_range_begin)
.detail("LogZones", ::describeZones(prevState.tLogLocalities))
.detail("LogDataHalls", ::describeDataHalls(prevState.tLogLocalities))
.detail("tLogs", (int)prevState.tLogs.size())
.detail("oldTlogsSize", (int)prevState.oldTLogData.size())
.detail("logSystemType", prevState.logSystemType)
.detail("At", end).detail("AvailableServers", results.size())
.detail("knownCommittedVersion", knownCommittedVersion);
last_end = end;
logSystem->logServers = logServers;
logSystem->oldLogData = oldLogData;
logSystem->tLogReplicationFactor = prevState.tLogReplicationFactor;
logSystem->tLogWriteAntiQuorum = prevState.tLogWriteAntiQuorum;
logSystem->tLogPolicy = prevState.tLogPolicy;
logSystem->tLogLocalities = prevState.tLogLocalities;
logSystem->logSystemType = prevState.logSystemType;
logSystem->rejoins = rejoins;
logSystem->epochEndVersion = end;
logSystem->knownCommittedVersion = knownCommittedVersion;
for(auto &r : results)
logSystem->epochEndTags.insert( r.tags.begin(), r.tags.end() );
outLogSystem->set(logSystem);
}
else {
TraceEvent("LogSystemUnchangedRecovery", dbgid).detail("Cycles", cycles)
.detail("TotalServers", logServers.size())
.detail("Present", results.size())
.detail("Available", availableItems.size())
.detail("Absent", logServers.size() - results.size())
.detail("ServerState", sServerState)
.detail("ReplicationFactor", prevState.tLogReplicationFactor)
.detail("AntiQuorum", prevState.tLogWriteAntiQuorum)
.detail("Policy", prevState.tLogPolicy->info())
.detail("TooManyFailures", bTooManyFailures)
.detail("LastVersion", (last_end.present()) ? last_end.get() : -1L)
.detail("RecoveryVersion", ((safe_range_end > 0) && (safe_range_end-1 < results.size())) ? results[ safe_range_end-1 ].end : -1)
.detail("EndVersion", end)
.detail("SafeBegin", safe_range_begin)
.detail("SafeEnd", safe_range_end)
.detail("NewSafeBegin", new_safe_range_begin)
.detail("LogZones", ::describeZones(prevState.tLogLocalities))
.detail("LogDataHalls", ::describeDataHalls(prevState.tLogLocalities));
}
} else {
TraceEvent("MasterRecoveryState", dbgid)
.detail("StatusCode", RecoveryStatus::locking_old_transaction_servers)
.detail("Status", RecoveryStatus::names[RecoveryStatus::locking_old_transaction_servers])
.detail("MissingIDs", missingServerIds)
.trackLatest("MasterRecoveryState");
}
// Wait for anything relevant to change
std::vector<Future<Void>> changes;
for(int i=0; i<logServers.size(); i++) {
if (tLogReply[i].isValid() && !tLogReply[i].isReady()) {
changes.push_back( ready(tLogReply[i]) );
if(buggify_lock_minimal_tlogs) {
changes.push_back( logFailed[i]->onChange() );
}
} else {
changes.push_back( logFailed[i]->onChange() );
changes.push_back( logServers[i]->onChange() );
}
}
ASSERT(changes.size());
Void _ = wait(waitForAny(changes));
}
}
ACTOR static Future<Reference<ILogSystem>> newEpoch(
Reference<TagPartitionedLogSystem> oldLogSystem, vector<WorkerInterface> workers, DatabaseConfiguration configuration, LogEpoch recoveryCount )
{
state double startTime = now();
state Reference<TagPartitionedLogSystem> logSystem( new TagPartitionedLogSystem(oldLogSystem->getDebugID(), oldLogSystem->locality) );
state UID recruitmentID = g_random->randomUniqueID();
logSystem->tLogWriteAntiQuorum = configuration.tLogWriteAntiQuorum;
logSystem->tLogReplicationFactor = configuration.tLogReplicationFactor;
logSystem->tLogPolicy = configuration.tLogPolicy;
logSystem->logSystemType = 2;
if(oldLogSystem->logServers.size()) {
logSystem->oldLogData.push_back(OldLogData());
logSystem->oldLogData[0].tLogWriteAntiQuorum = oldLogSystem->tLogWriteAntiQuorum;
logSystem->oldLogData[0].tLogReplicationFactor = oldLogSystem->tLogReplicationFactor;
logSystem->oldLogData[0].tLogPolicy = oldLogSystem->tLogPolicy;
logSystem->oldLogData[0].tLogLocalities = oldLogSystem->tLogLocalities;
logSystem->oldLogData[0].epochEnd = oldLogSystem->knownCommittedVersion + 1;
logSystem->oldLogData[0].logServers = oldLogSystem->logServers;
}
for(int i = 0; i < oldLogSystem->oldLogData.size(); i++) {
logSystem->oldLogData.push_back(oldLogSystem->oldLogData[i]);
}
state vector<Future<TLogInterface>> initializationReplies;
vector< InitializeTLogRequest > reqs( workers.size() );
for( int i = 0; i < workers.size(); i++ ) {
InitializeTLogRequest &req = reqs[i];
req.recruitmentID = recruitmentID;
req.storeType = configuration.tLogDataStoreType;
req.recoverFrom = oldLogSystem->getLogSystemConfig();
req.recoverAt = oldLogSystem->epochEndVersion.get();
req.knownCommittedVersion = oldLogSystem->knownCommittedVersion;
req.epoch = recoveryCount;
TraceEvent("TLogInitializeRequest").detail("address", workers[i].tLog.getEndpoint().address);
}
logSystem->tLogLocalities.resize( workers.size() );
logSystem->logServers.resize( workers.size() ); // Dummy interfaces, so that logSystem->getPushLocations() below uses the correct size
// Send requests array (reqs) also
logSystem->UpdateLocalitySet(workers, reqs);
std::vector<int> locations;
for( Tag tag : oldLogSystem->getEpochEndTags() ) {
locations.clear();
logSystem->getPushLocations( vector<Tag>(1, tag), locations );
for(int loc : locations)
reqs[ loc ].recoverTags.push_back( tag );
}
for( int i = 0; i < workers.size(); i++ )
initializationReplies.push_back( transformErrors( throwErrorOr( workers[i].tLog.getReplyUnlessFailedFor( reqs[i], SERVER_KNOBS->TLOG_TIMEOUT, SERVER_KNOBS->MASTER_FAILURE_SLOPE_DURING_RECOVERY ) ), master_recovery_failed() ) );
Void _ = wait( waitForAll( initializationReplies ) );
for( int i = 0; i < initializationReplies.size(); i++ ) {
logSystem->logServers[i] = Reference<AsyncVar<OptionalInterface<TLogInterface>>>( new AsyncVar<OptionalInterface<TLogInterface>>( OptionalInterface<TLogInterface>(initializationReplies[i].get()) ) );
logSystem->tLogLocalities[i] = workers[i].locality;
}
filterLocalityDataForPolicy(logSystem->tLogPolicy, &logSystem->tLogLocalities);
//Don't force failure of recovery if it took us a long time to recover. This avoids multiple long running recoveries causing tests to timeout
if (BUGGIFY && now() - startTime < 300 && g_network->isSimulated() && g_simulator.speedUpSimulation) throw master_recovery_failed();
std::vector<Future<Void>> recoveryComplete;
for( int i = 0; i < logSystem->logServers.size(); i++)
recoveryComplete.push_back( transformErrors( throwErrorOr( logSystem->logServers[i]->get().interf().recoveryFinished.getReplyUnlessFailedFor( TLogRecoveryFinishedRequest(), SERVER_KNOBS->TLOG_TIMEOUT, SERVER_KNOBS->MASTER_FAILURE_SLOPE_DURING_RECOVERY ) ), master_recovery_failed() ) );
logSystem->recoveryComplete = waitForAll(recoveryComplete);
return logSystem;
}
ACTOR static Future<Void> trackRejoins( UID dbgid, std::vector<Reference<AsyncVar<OptionalInterface<TLogInterface>>>> logServers, FutureStream< struct TLogRejoinRequest > rejoinRequests ) {
state std::map<UID,ReplyPromise<bool>> lastReply;
try {
loop {
TLogRejoinRequest req = waitNext( rejoinRequests );
int pos = -1;
for( int i = 0; i < logServers.size(); i++ ) {
if( logServers[i]->get().id() == req.myInterface.id() ) {
pos = i;
break;
}
}
if ( pos != -1 ) {
TraceEvent("TLogJoinedMe", dbgid).detail("TLog", req.myInterface.id()).detail("Address", req.myInterface.commit.getEndpoint().address.toString());
if( !logServers[pos]->get().present() || req.myInterface.commit.getEndpoint() != logServers[pos]->get().interf().commit.getEndpoint())
logServers[pos]->setUnconditional( OptionalInterface<TLogInterface>(req.myInterface) );
lastReply[req.myInterface.id()].send(false);
lastReply[req.myInterface.id()] = req.reply;
}
else {
TraceEvent("TLogJoinedMeUnknown", dbgid).detail("TLog", req.myInterface.id()).detail("Address", req.myInterface.commit.getEndpoint().address.toString());
req.reply.send(true);
}
}
} catch (...) {
for( auto it = lastReply.begin(); it != lastReply.end(); ++it)
it->second.send(true);
throw;
}
}
ACTOR static Future<TLogLockResult> lockTLog( UID myID, Reference<AsyncVar<OptionalInterface<TLogInterface>>> tlog ) {
TraceEvent("TLogLockStarted", myID).detail("TLog", tlog->get().id());
loop {
choose {
when (TLogLockResult data = wait( tlog->get().present() ? brokenPromiseToNever( tlog->get().interf().lock.getReply<TLogLockResult>() ) : Never() )) {
TraceEvent("TLogLocked", myID).detail("TLog", tlog->get().id()).detail("end", data.end);
return data;
}
when (Void _ = wait(tlog->onChange())) {}
}
}
}
static void lockMinimalTLogSet(const UID& dbgid, const DBCoreState& prevState,
const std::vector<Reference<AsyncVar<OptionalInterface<TLogInterface>>>>& logServers,
const std::vector<Reference<AsyncVar<bool>>>& logFailed,
vector<Future<TLogLockResult>>* tLogReply ) {
// Invariant: tLogReply[i] must correspond to the tlog stored as logServers[i].
ASSERT(tLogReply->size() == prevState.tLogLocalities.size());
ASSERT(logFailed.size() == tLogReply->size());
// For any given index, only one of the following will be true.
auto locking_completed = [&logFailed, tLogReply](int index) {
const auto& entry = tLogReply->at(index);
return !logFailed[index]->get() && entry.isValid() && entry.isReady() && !entry.isError();
};
auto locking_failed = [&logFailed, tLogReply](int index) {
const auto& entry = tLogReply->at(index);
return logFailed[index]->get() || (entry.isValid() && entry.isReady() && entry.isError());
};
auto locking_pending = [&logFailed, tLogReply](int index) {
const auto& entry = tLogReply->at(index);
return !logFailed[index]->get() && (entry.isValid() && !entry.isReady());
};
auto locking_skipped = [&logFailed, tLogReply](int index) {
const auto& entry = tLogReply->at(index);
return !logFailed[index]->get() && !entry.isValid();
};
auto can_obtain_quorum = [&prevState](std::function<bool(int)> filter) {
LocalityGroup filter_true;
std::vector<LocalityData> filter_false, unused;
for (int i = 0; i < prevState.tLogLocalities.size() ; i++) {
if (filter(i)) {
filter_true.add(prevState.tLogLocalities[i]);
} else {
filter_false.push_back(prevState.tLogLocalities[i]);
}
}
bool valid = filter_true.validate(prevState.tLogPolicy);
if (!valid && prevState.tLogWriteAntiQuorum > 0 ) {
valid = !validateAllCombinations(unused, filter_true, prevState.tLogPolicy, filter_false, prevState.tLogWriteAntiQuorum, false);
}
return valid;
};
// Step 1: Verify that if all the failed TLogs come back, they can't form a quorum.
if (can_obtain_quorum(locking_failed)) {
TraceEvent(SevInfo, "MasterRecoveryTLogLockingImpossible", dbgid);
return;
}
// Step 2: It's possible for us to succeed, but we need to lock additional logs.
//
// First, we need an accurate picture of what TLogs we're capable of locking. We can't tell the
// difference between a temporarily failed TLog and a permanently failed TLog. Thus, we assume
// all failures are permanent, and manually re-issue lock requests if they rejoin.
for (int i = 0; i < logFailed.size(); i++) {
const auto& r = tLogReply->at(i);
TEST(locking_failed(i) && (r.isValid() && !r.isReady())); // A TLog failed with a pending request.
// The reboot_a_tlog BUGGIFY below should cause the above case to be hit.
if (locking_failed(i)) {
tLogReply->at(i) = Future<TLogLockResult>();
}
}
// We're trying to paritition the set of old tlogs into two sets, L and R, such that:
// (1). R does not validate the policy
// (2). |R| is as large as possible
// (3). L contains all the already-locked TLogs
// and then we only issue lock requests to TLogs in L. This is safe, as R does not have quorum,
// so no commits may occur. It does not matter if L forms a quorum or not.
//
// We form these sets by starting with L as all machines and R as the empty set, and moving a
// random machine from L to R until (1) or (2) no longer holds as true. Code-wise, L is
// [0..end-can_omit), and R is [end-can_omit..end), and we move a random machine via randomizing
// the order of the tlogs. Choosing a random machine was verified to generate a good-enough
// result to be interesting intests sufficiently frequently that we don't need to try to
// calculate the exact optimal solution.
std::vector<std::pair<LocalityData, int>> tlogs;
for (int i = 0; i < prevState.tLogLocalities.size(); i++) {
tlogs.emplace_back(prevState.tLogLocalities[i], i);
}
g_random->randomShuffle(tlogs);
// Rearrange the array such that things that the left is logs closer to being locked, and
// the right is logs that can't be locked. This makes us prefer locking already-locked TLogs,
// which is how we respect the decisions made in the previous execution.
auto idx_to_order = [&locking_completed, &locking_failed, &locking_pending, &locking_skipped](int index) {
bool complete = locking_completed(index);
bool pending = locking_pending(index);
bool skipped = locking_skipped(index);
bool failed = locking_failed(index);
ASSERT( complete + pending + skipped + failed == 1 );
if (complete) return 0;
if (pending) return 1;
if (skipped) return 2;
if (failed) return 3;
ASSERT(false); // Programmer error.
return -1;
};
std::sort(tlogs.begin(), tlogs.end(),
// TODO: Change long type to `auto` once toolchain supports C++17.
[&idx_to_order](const std::pair<LocalityData, int>& lhs, const std::pair<LocalityData, int>& rhs) {
return idx_to_order(lhs.second) < idx_to_order(rhs.second);
});
// Indexes that aren't in the vector are the ones we're considering omitting. Remove indexes until
// the removed set forms a quorum.
int can_omit = 0;
std::vector<int> to_lock_indexes;
for (auto it = tlogs.cbegin() ; it != tlogs.cend() - 1 ; it++ ) {
to_lock_indexes.push_back(it->second);
}
auto filter = [&to_lock_indexes](int index) {
return std::find(to_lock_indexes.cbegin(), to_lock_indexes.cend(), index) == to_lock_indexes.cend();
};
while(true) {
if (can_obtain_quorum(filter)) {
break;
} else {
can_omit++;
ASSERT(can_omit < tlogs.size());
to_lock_indexes.pop_back();
}
}
if (prevState.tLogReplicationFactor - prevState.tLogWriteAntiQuorum == 1) {
ASSERT(can_omit == 0);
}
// Our previous check of making sure there aren't too many failed logs should have prevented this.
ASSERT(!locking_failed(tlogs[tlogs.size()-can_omit-1].second));
// If we've managed to leave more tlogs unlocked than (RF-AQ), it means we've hit the case
// where the policy engine has allowed us to have multiple logs in the same failure domain
// with independant sets of data. This case will validated that no code is relying on the old
// quorum=(RF-AQ) logic, and now goes through the policy engine instead.
TEST(can_omit >= prevState.tLogReplicationFactor - prevState.tLogWriteAntiQuorum); // Locking a subset of the TLogs while ending an epoch.
const bool reboot_a_tlog = g_network->now() - g_simulator.lastConnectionFailure > g_simulator.connectionFailuresDisableDuration && BUGGIFY && g_random->random01() < 0.25;
TraceEvent(SevInfo, "MasterRecoveryTLogLocking", dbgid)
.detail("locks", tlogs.size() - can_omit)
.detail("skipped", can_omit)
.detail("replication", prevState.tLogReplicationFactor)
.detail("antiquorum", prevState.tLogWriteAntiQuorum)
.detail("reboot_buggify", reboot_a_tlog);
for (int i = 0; i < tlogs.size() - can_omit; i++) {
const int index = tlogs[i].second;
Future<TLogLockResult>& entry = tLogReply->at(index);
if (!entry.isValid()) {
entry = lockTLog( dbgid, logServers[index] );
}
}
if (reboot_a_tlog) {
g_simulator.lastConnectionFailure = g_network->now();
for (int i = 0; i < tlogs.size() - can_omit; i++) {
const int index = tlogs[i].second;
if (logServers[index]->get().present()) {
g_simulator.rebootProcess(
g_simulator.getProcessByAddress(
logServers[index]->get().interf().address()),
ISimulator::RebootProcess);
break;
}
}
}
// Intentionally leave `tlogs.size() - can_omit` .. `tlogs.size()` as !isValid() Futures.
}
template <class T>
static vector<T> getReadyNonError( vector<Future<T>> const& futures ) {
// Return the values of those futures which have (non-error) values ready
std::vector<T> result;
for(auto& f : futures)
if (f.isReady() && !f.isError())
result.push_back(f.get());
return result;
}
struct sort_by_end {
bool operator ()(TLogLockResult const&a, TLogLockResult const& b) const { return a.end < b.end; }
};
};
Future<Void> ILogSystem::recoverAndEndEpoch(Reference<AsyncVar<Reference<ILogSystem>>> const& outLogSystem, UID const& dbgid, DBCoreState const& oldState, FutureStream<TLogRejoinRequest> const& rejoins, LocalityData const& locality ) {
return TagPartitionedLogSystem::recoverAndEndEpoch( outLogSystem, dbgid, oldState, rejoins, locality );
}
Reference<ILogSystem> ILogSystem::fromLogSystemConfig( UID const& dbgid, struct LocalityData const& locality, struct LogSystemConfig const& conf ) {
if (conf.logSystemType == 0)
return Reference<ILogSystem>();
else if (conf.logSystemType == 2)
return TagPartitionedLogSystem::fromLogSystemConfig( dbgid, locality, conf );
else
throw internal_error();
}
Reference<ILogSystem> ILogSystem::fromOldLogSystemConfig( UID const& dbgid, struct LocalityData const& locality, struct LogSystemConfig const& conf ) {
if (conf.logSystemType == 0)
return Reference<ILogSystem>();
else if (conf.logSystemType == 2)
return TagPartitionedLogSystem::fromOldLogSystemConfig( dbgid, locality, conf );
else
throw internal_error();
}
Reference<ILogSystem> ILogSystem::fromServerDBInfo( UID const& dbgid, ServerDBInfo const& dbInfo ) {
return fromLogSystemConfig( dbgid, dbInfo.myLocality, dbInfo.logSystemConfig );
}