foundationdb/fdbserver/workloads/Performance.actor.cpp

233 lines
7.7 KiB
C++

/*
* Performance.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "fdbclient/NativeAPI.actor.h"
#include "fdbserver/TesterInterface.actor.h"
#include "fdbserver/workloads/workloads.actor.h"
#include "fdbserver/QuietDatabase.h"
#include "flow/actorcompiler.h" // This must be the last #include.
struct PerformanceWorkload : TestWorkload {
static constexpr auto NAME = "Performance";
Value probeWorkload;
Standalone<VectorRef<KeyValueRef>> savedOptions;
std::vector<PerfMetric> metrics;
std::vector<TesterInterface> testers;
PerfMetric latencyBaseline, latencySaturation;
PerfMetric maxAchievedTPS;
PerformanceWorkload(WorkloadContext const& wcx) : TestWorkload(wcx) {
probeWorkload = getOption(options, "probeWorkload"_sr, "ReadWrite"_sr);
// "Consume" all options and save for later tests
for (int i = 0; i < options.size(); i++) {
if (options[i].value.size()) {
savedOptions.push_back_deep(savedOptions.arena(), KeyValueRef(options[i].key, options[i].value));
printf("saved option (%d): '%s'='%s'\n",
i,
printable(options[i].key).c_str(),
printable(options[i].value).c_str());
options[i].value = ""_sr;
}
}
printf("saved %d options\n", savedOptions.size());
}
Future<Void> setup(Database const& cx) override {
if (!clientId)
return _setup(cx, this);
return Void();
}
Future<Void> start(Database const& cx) override {
if (!clientId)
return _start(cx, this);
return Void();
}
Future<bool> check(Database const& cx) override { return true; }
void getMetrics(std::vector<PerfMetric>& m) override {
for (int i = 0; i < metrics.size(); i++)
m.push_back(metrics[i]);
if (!clientId) {
m.emplace_back("Baseline Latency (average, ms)", latencyBaseline.value(), Averaged::False);
m.emplace_back("Saturation Transactions/sec", maxAchievedTPS.value(), Averaged::False);
m.emplace_back("Saturation Median Latency (average, ms)", latencySaturation.value(), Averaged::False);
}
}
Standalone<VectorRef<VectorRef<KeyValueRef>>> getOpts(double transactionsPerSecond) {
Standalone<VectorRef<KeyValueRef>> options;
Standalone<VectorRef<VectorRef<KeyValueRef>>> opts;
options.push_back_deep(options.arena(), KeyValueRef("testName"_sr, probeWorkload));
options.push_back_deep(options.arena(),
KeyValueRef("transactionsPerSecond"_sr, format("%f", transactionsPerSecond)));
for (int i = 0; i < savedOptions.size(); i++) {
options.push_back_deep(options.arena(), savedOptions[i]);
printf("option [%d]: '%s'='%s'\n",
i,
printable(savedOptions[i].key).c_str(),
printable(savedOptions[i].value).c_str());
}
opts.push_back_deep(opts.arena(), options);
return opts;
}
void logOptions(Standalone<VectorRef<VectorRef<KeyValueRef>>> options) {
TraceEvent start("PerformaceSetupStarting");
for (int i = 0; i < options.size(); i++) {
for (int j = 0; j < options[i].size(); j++) {
start.detail(format("Option-%d-%d", i, j).c_str(),
printable(options[i][j].key) + "=" + printable(options[i][j].value));
}
}
}
// FIXME: does not use testers which are recruited on workers
ACTOR Future<std::vector<TesterInterface>> getTesters(PerformanceWorkload* self) {
state std::vector<WorkerDetails> workers;
loop {
choose {
when(
std::vector<WorkerDetails> w = wait(
brokenPromiseToNever(self->dbInfo->get().clusterInterface.getWorkers.getReply(GetWorkersRequest(
GetWorkersRequest::TESTER_CLASS_ONLY | GetWorkersRequest::NON_EXCLUDED_PROCESSES_ONLY))))) {
workers = w;
break;
}
when(wait(self->dbInfo->onChange())) {}
}
}
std::vector<TesterInterface> ts;
ts.reserve(workers.size());
for (int i = 0; i < workers.size(); i++)
ts.push_back(workers[i].interf.testerInterface);
return ts;
}
ACTOR Future<Void> _setup(Database cx, PerformanceWorkload* self) {
state Standalone<VectorRef<VectorRef<KeyValueRef>>> options = self->getOpts(1000.0);
self->logOptions(options);
std::vector<TesterInterface> testers = wait(self->getTesters(self));
self->testers = testers;
TestSpec spec("PerformanceSetup"_sr, false, false);
spec.options = options;
spec.phases = TestWorkload::SETUP;
DistributedTestResults results = wait(runWorkload(cx, testers, spec, Optional<TenantName>()));
return Void();
}
PerfMetric getNamedMetric(std::string name, std::vector<PerfMetric> metrics) {
for (int i = 0; i < metrics.size(); i++) {
if (metrics[i].name() == name) {
return metrics[i];
}
}
return PerfMetric();
}
ACTOR Future<Void> getSaturation(Database cx, PerformanceWorkload* self) {
state double tps = 400;
state bool reported = false;
state bool retry = false;
state double multiplier = 2.0;
loop {
Standalone<VectorRef<VectorRef<KeyValueRef>>> options = self->getOpts(tps);
TraceEvent start("PerformaceProbeStarting");
start.detail("RateTarget", tps);
for (int i = 0; i < options.size(); i++) {
for (int j = 0; j < options[i].size(); j++) {
start.detail(format("Option-%d-%d", i, j).c_str(),
printable(options[i][j].key) + "=" + printable(options[i][j].value));
}
}
state DistributedTestResults results;
try {
TestSpec spec("PerformanceRun"_sr, false, false);
spec.phases = TestWorkload::EXECUTION | TestWorkload::METRICS;
spec.options = options;
DistributedTestResults r = wait(runWorkload(cx, self->testers, spec, Optional<TenantName>()));
results = r;
} catch (Error& e) {
TraceEvent("PerformanceRunError")
.errorUnsuppressed(e)
.detail("Workload", printable(self->probeWorkload));
break;
}
PerfMetric tpsMetric = self->getNamedMetric("Transactions/sec", results.metrics);
PerfMetric latencyMetric = self->getNamedMetric("Median Latency (ms, averaged)", results.metrics);
logMetrics(results.metrics);
if (!reported || self->latencyBaseline.value() > latencyMetric.value())
self->latencyBaseline = latencyMetric;
if (!reported || self->maxAchievedTPS.value() < tpsMetric.value()) {
self->maxAchievedTPS = tpsMetric;
self->latencySaturation = latencyMetric;
self->metrics = results.metrics;
}
reported = true;
TraceEvent evt("PerformanceProbeComplete");
evt.detail("RateTarget", tps)
.detail("AchievedRate", tpsMetric.value())
.detail("Multiplier", multiplier)
.detail("Retry", retry);
if (tpsMetric.value() < (tps * .95) - 100) {
evt.detail("LimitReached", 1);
if (!retry) {
retry = true;
} else if (multiplier < 2.0) {
evt.detail("Saturation", "final");
return Void();
} else {
tps /= 2;
multiplier = 1.189;
retry = false;
}
} else {
retry = false;
}
tps *= retry ? 1.0 : multiplier;
}
return Void();
}
ACTOR Future<Void> _start(Database cx, PerformanceWorkload* self) {
wait(self->getSaturation(cx, self));
TraceEvent("PerformanceSaturation")
.detail("SaturationRate", self->maxAchievedTPS.value())
.detail("SaturationLatency", self->latencySaturation.value());
return Void();
}
};
WorkloadFactory<PerformanceWorkload> PerformanceWorkloadFactory;