foundationdb/fdbserver/workloads/MachineAttrition.actor.cpp

487 lines
19 KiB
C++

/*
* MachineAttrition.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "fdbclient/FDBOptions.g.h"
#include "fdbclient/NativeAPI.actor.h"
#include "fdbclient/CoordinationInterface.h"
#include "fdbserver/TesterInterface.actor.h"
#include "fdbserver/WorkerInterface.actor.h"
#include "fdbserver/workloads/workloads.actor.h"
#include "fdbrpc/simulator.h"
#include "fdbclient/ManagementAPI.actor.h"
#include "flow/FaultInjection.h"
#include "flow/DeterministicRandom.h"
#include "flow/actorcompiler.h" // This must be the last #include.
static std::set<int> const& normalAttritionErrors() {
static std::set<int> s;
if (s.empty()) {
s.insert(error_code_please_reboot);
s.insert(error_code_please_reboot_delete);
}
return s;
}
ACTOR Future<bool> ignoreSSFailuresForDuration(Database cx, double duration) {
// duration doesn't matter since this won't timeout
TraceEvent("IgnoreSSFailureStart").log();
wait(success(setHealthyZone(cx, ignoreSSFailuresZoneString, 0)));
TraceEvent("IgnoreSSFailureWait").log();
wait(delay(duration));
TraceEvent("IgnoreSSFailureClear").log();
state Transaction tr(cx);
loop {
try {
tr.setOption(FDBTransactionOptions::LOCK_AWARE);
tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr.clear(healthyZoneKey);
wait(tr.commit());
TraceEvent("IgnoreSSFailureComplete").log();
return true;
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
struct MachineAttritionWorkload : FailureInjectionWorkload {
static constexpr auto NAME = "Attrition";
bool enabled;
int machinesToKill = 2, machinesToLeave = 1, workersToKill = 2, workersToLeave = 1;
double testDuration = 10.0, suspendDuration = 1.0, liveDuration = 5.0;
bool iterate = false;
bool reboot = false;
bool killDc = false;
bool killMachine = false;
bool killDatahall = false;
bool killProcess = false;
bool killZone = false;
bool killSelf = false;
bool killAll = false;
std::vector<std::string> targetIds;
bool replacement = false;
bool waitForVersion = false;
bool allowFaultInjection = true;
Future<bool> ignoreSSFailures = true;
double maxRunDuration = 60.0, backoff = 1.5;
// This is set in setup from the list of workers when the cluster is started
std::vector<LocalityData> machines;
MachineAttritionWorkload(WorkloadContext const& wcx, NoOptions) : FailureInjectionWorkload(wcx) {
enabled = !clientId && g_network->isSimulated() && faultInjectionActivated;
suspendDuration = 10.0;
iterate = true;
}
MachineAttritionWorkload(WorkloadContext const& wcx) : FailureInjectionWorkload(wcx) {
// only do this on the "first" client, and only when in simulation and only when fault injection is enabled
enabled = !clientId && g_network->isSimulated() && faultInjectionActivated;
machinesToKill = getOption(options, "machinesToKill"_sr, machinesToKill);
machinesToLeave = getOption(options, "machinesToLeave"_sr, machinesToLeave);
workersToKill = getOption(options, "workersToKill"_sr, workersToKill);
workersToLeave = getOption(options, "workersToLeave"_sr, workersToLeave);
testDuration = getOption(options, "testDuration"_sr, testDuration);
suspendDuration = getOption(options, "suspendDuration"_sr, suspendDuration);
liveDuration = getOption(options, "liveDuration"_sr, liveDuration);
reboot = getOption(options, "reboot"_sr, reboot);
killDc = getOption(options, "killDc"_sr, g_network->isSimulated() && deterministicRandom()->random01() < 0.25);
killMachine = getOption(options, "killMachine"_sr, killMachine);
killDatahall = getOption(options, "killDatahall"_sr, killDatahall);
killProcess = getOption(options, "killProcess"_sr, killProcess);
killZone = getOption(options, "killZone"_sr, killZone);
killSelf = getOption(options, "killSelf"_sr, killSelf);
killAll =
getOption(options,
"killAll"_sr,
g_network->isSimulated() && !g_simulator->extraDatabases.empty() && BUGGIFY_WITH_PROB(0.01));
targetIds = getOption(options, "targetIds"_sr, std::vector<std::string>());
replacement = getOption(options, "replacement"_sr, reboot && deterministicRandom()->random01() < 0.5);
waitForVersion = getOption(options, "waitForVersion"_sr, waitForVersion);
allowFaultInjection = getOption(options, "allowFaultInjection"_sr, allowFaultInjection);
}
bool shouldInject(DeterministicRandom& random,
const WorkloadRequest& work,
const unsigned alreadyAdded) const override {
return work.useDatabase && random.random01() < 1.0 / (2.0 + alreadyAdded);
}
void initializeForInjection(DeterministicRandom& random) {
reboot = random.random01() < 0.25;
replacement = random.random01() < 0.25;
allowFaultInjection = random.random01() < 0.5;
suspendDuration = 10.0 * random.random01();
if (g_network->isSimulated()) {
std::set<Optional<StringRef>> dataCenters;
std::set<Optional<StringRef>> dataHalls;
std::set<Optional<StringRef>> zones;
for (auto process : g_simulator->getAllProcesses()) {
dataCenters.emplace(process->locality.dcId().castTo<StringRef>());
dataHalls.emplace(process->locality.dataHallId().castTo<StringRef>());
zones.emplace(process->locality.zoneId().castTo<StringRef>());
}
killDc = dataCenters.size() > 0 && random.random01() > (dataHalls.size() < 0 ? 0.1 : 0.25);
killDatahall = dataHalls.size() > 0 && killDc && random.random01() < 0.5;
killZone = zones.size() > 0 && random.random01() < 0.2;
}
TraceEvent("AddingFailureInjection")
.detail("Reboot", reboot)
.detail("Replacement", replacement)
.detail("AllowFaultInjection", allowFaultInjection)
.detail("KillDC", killDc)
.detail("KillDataHall", killDatahall)
.detail("KillZone", killZone);
}
static std::vector<ISimulator::ProcessInfo*> getServers() {
std::vector<ISimulator::ProcessInfo*> machines;
std::vector<ISimulator::ProcessInfo*> all = g_simulator->getAllProcesses();
for (int i = 0; i < all.size(); i++)
if (!all[i]->failed && all[i]->name == std::string("Server") &&
all[i]->startingClass != ProcessClass::TesterClass)
machines.push_back(all[i]);
return machines;
}
Future<Void> setup(Database const& cx) override { return Void(); }
Future<Void> start(Database const& cx) override {
if (enabled) {
std::map<Optional<Standalone<StringRef>>, LocalityData> machineIDMap;
auto processes = getServers();
for (auto it = processes.begin(); it != processes.end(); ++it) {
machineIDMap[(*it)->locality.zoneId()] = (*it)->locality;
}
machines.clear();
for (auto it = machineIDMap.begin(); it != machineIDMap.end(); ++it) {
machines.push_back(it->second);
}
deterministicRandom()->randomShuffle(machines);
double meanDelay = testDuration / machinesToKill;
TraceEvent("AttritionStarting")
.detail("KillDataCenters", killDc)
.detail("Reboot", reboot)
.detail("MachinesToLeave", machinesToLeave)
.detail("MachinesToKill", machinesToKill)
.detail("MeanDelay", meanDelay);
return timeout(
reportErrorsExcept(
machineKillWorker(this, meanDelay, cx), "machineKillWorkerError", UID(), &normalAttritionErrors()),
testDuration,
Void());
}
if (!clientId && !g_network->isSimulated()) {
return timeout(
reportErrorsExcept(
noSimMachineKillWorker(this, cx), "noSimMachineKillWorkerError", UID(), &normalAttritionErrors()),
testDuration,
Void());
}
if (killSelf)
throw please_reboot();
return Void();
}
Future<bool> check(Database const& cx) override { return ignoreSSFailures; }
void getMetrics(std::vector<PerfMetric>& m) override {}
static bool noSimIsViableKill(WorkerDetails worker) {
return (worker.processClass != ProcessClass::ClassType::TesterClass);
}
template <typename Proc>
static void sendRebootRequests(std::vector<WorkerDetails> workers,
std::vector<std::string> targets,
RebootRequest rbReq,
Proc idAccess) {
for (const auto& worker : workers) {
// kill all matching workers
if (idAccess(worker).present() &&
std::count(targets.begin(), targets.end(), idAccess(worker).get().toString())) {
TraceEvent("SendingRebootRequest").detail("TargetWorker", worker.interf.locality.toString());
worker.interf.clientInterface.reboot.send(rbReq);
}
}
}
ACTOR static Future<Void> noSimMachineKillWorker(MachineAttritionWorkload* self, Database cx) {
ASSERT(!g_network->isSimulated());
state int killedWorkers = 0;
state std::vector<WorkerDetails> allWorkers =
wait(self->dbInfo->get().clusterInterface.getWorkers.getReply(GetWorkersRequest()));
// Can reuse reboot request to send to each interface since no reply promise needed
state RebootRequest rbReq;
if (self->reboot) {
rbReq.waitForDuration = self->suspendDuration;
} else {
rbReq.waitForDuration = std::numeric_limits<uint32_t>::max();
}
state std::vector<WorkerDetails> workers;
// Pre-processing step: remove all testers from list of workers
for (const auto& worker : allWorkers) {
if (noSimIsViableKill(worker)) {
workers.push_back(worker);
}
}
deterministicRandom()->randomShuffle(workers);
wait(delay(self->liveDuration));
// if a specific kill is requested, it must be accompanied by a set of target IDs otherwise no kills will
// occur
if (self->killDc) {
TraceEvent("Assassination").detail("TargetDataCenterIds", describe(self->targetIds));
sendRebootRequests(workers,
self->targetIds,
rbReq,
// idAccess lambda
[](WorkerDetails worker) { return worker.interf.locality.dcId(); });
} else if (self->killMachine) {
TraceEvent("Assassination").detail("TargetMachineIds", describe(self->targetIds));
sendRebootRequests(workers,
self->targetIds,
rbReq,
// idAccess lambda
[](WorkerDetails worker) { return worker.interf.locality.machineId(); });
} else if (self->killDatahall) {
TraceEvent("Assassination").detail("TargetDatahallIds", describe(self->targetIds));
sendRebootRequests(workers,
self->targetIds,
rbReq,
// idAccess lambda
[](WorkerDetails worker) { return worker.interf.locality.dataHallId(); });
} else if (self->killProcess) {
TraceEvent("Assassination").detail("TargetProcessIds", describe(self->targetIds));
sendRebootRequests(workers,
self->targetIds,
rbReq,
// idAccess lambda
[](WorkerDetails worker) { return worker.interf.locality.processId(); });
} else if (self->killZone) {
TraceEvent("Assassination").detail("TargetZoneIds", describe(self->targetIds));
sendRebootRequests(workers,
self->targetIds,
rbReq,
// idAccess lambda
[](WorkerDetails worker) { return worker.interf.locality.zoneId(); });
} else {
while (killedWorkers < self->workersToKill && workers.size() > self->workersToLeave) {
TraceEvent("WorkerKillBegin")
.detail("KilledWorkers", killedWorkers)
.detail("WorkersToKill", self->workersToKill)
.detail("WorkersToLeave", self->workersToLeave)
.detail("Workers", workers.size());
if (self->waitForVersion) {
state Transaction tr(cx);
loop {
try {
tr.setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE);
tr.setOption(FDBTransactionOptions::LOCK_AWARE);
wait(success(tr.getReadVersion()));
break;
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
// Pick a worker to kill
state WorkerDetails targetWorker;
targetWorker = workers.back();
TraceEvent("Assassination")
.detail("TargetWorker", targetWorker.interf.locality.toString())
.detail("ZoneId", targetWorker.interf.locality.zoneId())
.detail("KilledWorkers", killedWorkers)
.detail("WorkersToKill", self->workersToKill)
.detail("WorkersToLeave", self->workersToLeave)
.detail("Workers", workers.size());
targetWorker.interf.clientInterface.reboot.send(rbReq);
killedWorkers++;
workers.pop_back();
}
}
return Void();
}
ACTOR static Future<Void> machineKillWorker(MachineAttritionWorkload* self, double meanDelay, Database cx) {
ASSERT(g_network->isSimulated());
state double delayBeforeKill;
state double suspendDuration = self->suspendDuration;
state double startTime = now();
loop {
if (self->killDc) {
delayBeforeKill = deterministicRandom()->random01() * meanDelay;
wait(delay(delayBeforeKill));
// decide on a machine to kill
ASSERT(self->machines.size());
Optional<Standalone<StringRef>> target = self->machines.back().dcId();
ISimulator::KillType kt = ISimulator::Reboot;
if (!self->reboot) {
int killType = deterministicRandom()->randomInt(0, 3); // FIXME: enable disk stalls
if (killType == 0)
kt = ISimulator::KillInstantly;
else if (killType == 1)
kt = ISimulator::InjectFaults;
else if (killType == 2)
kt = ISimulator::RebootAndDelete;
else
kt = ISimulator::FailDisk;
}
TraceEvent("Assassination")
.detail("TargetDatacenter", target)
.detail("Reboot", self->reboot)
.detail("KillType", kt);
g_simulator->killDataCenter(target, kt);
} else if (self->killDatahall) {
delayBeforeKill = deterministicRandom()->random01() * meanDelay;
wait(delay(delayBeforeKill));
// It only makes sense to kill a single data hall.
ASSERT(self->targetIds.size() == 1);
auto target = self->targetIds.front();
auto kt = ISimulator::KillInstantly;
TraceEvent("Assassination").detail("TargetDataHall", target).detail("KillType", kt);
g_simulator->killDataHall(target, kt);
} else if (self->killAll) {
state ISimulator::KillType kt = ISimulator::RebootProcessAndSwitch;
TraceEvent("Assassination").detail("KillType", kt);
g_simulator->killAll(kt, true);
g_simulator->toggleGlobalSwitchCluster();
wait(delay(self->testDuration / 2));
g_simulator->killAll(kt, true);
g_simulator->toggleGlobalSwitchCluster();
} else {
state int killedMachines = 0;
while (killedMachines < self->machinesToKill && self->machines.size() > self->machinesToLeave) {
TraceEvent("WorkerKillBegin")
.detail("KilledMachines", killedMachines)
.detail("MachinesToKill", self->machinesToKill)
.detail("MachinesToLeave", self->machinesToLeave)
.detail("Machines", self->machines.size());
CODE_PROBE(true, "Killing a machine");
delayBeforeKill = deterministicRandom()->random01() * meanDelay;
wait(delay(delayBeforeKill));
TraceEvent("WorkerKillAfterDelay").log();
if (self->waitForVersion) {
state Transaction tr(cx);
loop {
try {
tr.setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE);
tr.setOption(FDBTransactionOptions::LOCK_AWARE);
wait(success(tr.getReadVersion()));
break;
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
// decide on a machine to kill
state LocalityData targetMachine = self->machines.back();
if (BUGGIFY_WITH_PROB(0.01)) {
CODE_PROBE(true, "Marked a zone for maintenance before killing it");
wait(success(
setHealthyZone(cx, targetMachine.zoneId().get(), deterministicRandom()->random01() * 20)));
} else if (BUGGIFY_WITH_PROB(0.005)) {
CODE_PROBE(true, "Disable DD for all storage server failures");
self->ignoreSSFailures =
uncancellable(ignoreSSFailuresForDuration(cx, deterministicRandom()->random01() * 5));
}
TraceEvent("Assassination")
.detail("TargetMachine", targetMachine.toString())
.detail("ZoneId", targetMachine.zoneId())
.detail("Reboot", self->reboot)
.detail("KilledMachines", killedMachines)
.detail("MachinesToKill", self->machinesToKill)
.detail("MachinesToLeave", self->machinesToLeave)
.detail("Machines", self->machines.size())
.detail("Replace", self->replacement);
if (self->reboot) {
if (deterministicRandom()->random01() > 0.5) {
g_simulator->rebootProcess(targetMachine.zoneId(), deterministicRandom()->random01() > 0.5);
} else {
g_simulator->killZone(targetMachine.zoneId(), ISimulator::Reboot);
}
} else {
auto randomDouble = deterministicRandom()->random01();
TraceEvent("WorkerKill")
.detail("MachineCount", self->machines.size())
.detail("RandomValue", randomDouble);
if (randomDouble < 0.33) {
TraceEvent("RebootAndDelete").detail("TargetMachine", targetMachine.toString());
g_simulator->killZone(targetMachine.zoneId(), ISimulator::RebootAndDelete);
} else {
auto kt = ISimulator::KillInstantly;
if (self->allowFaultInjection) {
if (randomDouble < 0.50) {
kt = ISimulator::InjectFaults;
}
// FIXME: enable disk stalls
/*
if( randomDouble < 0.56 ) {
kt = ISimulator::InjectFaults;
} else if( randomDouble < 0.66 ) {
kt = ISimulator::FailDisk;
}
*/
}
g_simulator->killZone(targetMachine.zoneId(), kt);
}
}
killedMachines++;
if (self->replacement) {
// Replace by reshuffling, since we always pick from the back.
deterministicRandom()->randomShuffle(self->machines);
} else {
self->machines.pop_back();
}
wait(delay(meanDelay - delayBeforeKill) && success(self->ignoreSSFailures));
delayBeforeKill = deterministicRandom()->random01() * meanDelay;
TraceEvent("WorkerKillAfterMeanDelay").detail("DelayBeforeKill", delayBeforeKill);
}
}
if (!self->iterate || now() - startTime > self->maxRunDuration) {
break;
} else {
wait(delay(suspendDuration));
suspendDuration *= self->backoff;
}
}
if (self->killSelf)
throw please_reboot();
return Void();
}
};
WorkloadFactory<MachineAttritionWorkload> MachineAttritionWorkloadFactory;
// TODO: Enable MachineAttritionWorkload injection once this is bug-free
// FailureInjectorFactory<MachineAttritionWorkload> MachineAttritionFailureWorkloadFactory;