foundationdb/fdbserver/workloads/WriteBandwidth.actor.cpp

142 lines
5.7 KiB
C++

/*
* WriteBandwidth.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <boost/lexical_cast.hpp>
#include "fdbrpc/ContinuousSample.h"
#include "fdbclient/NativeAPI.actor.h"
#include "fdbserver/TesterInterface.actor.h"
#include "fdbserver/WorkerInterface.actor.h"
#include "fdbserver/workloads/workloads.actor.h"
#include "fdbserver/workloads/BulkSetup.actor.h"
#include "flow/actorcompiler.h" // This must be the last #include.
struct WriteBandwidthWorkload : KVWorkload {
int keysPerTransaction;
double testDuration, warmingDelay, loadTime, maxInsertRate;
std::string valueString;
std::vector<Future<Void>> clients;
PerfIntCounter transactions, retries;
ContinuousSample<double> commitLatencies, GRVLatencies;
WriteBandwidthWorkload(WorkloadContext const& wcx)
: KVWorkload(wcx),
commitLatencies( 2000 ), GRVLatencies( 2000 ),
loadTime( 0.0 ), transactions("Transactions"), retries("Retries")
{
testDuration = getOption( options, LiteralStringRef("testDuration"), 10.0 );
keysPerTransaction = getOption( options, LiteralStringRef("keysPerTransaction"), 100 );
valueString = std::string( maxValueBytes, '.' );
warmingDelay = getOption( options, LiteralStringRef("warmingDelay"), 0.0 );
maxInsertRate = getOption( options, LiteralStringRef("maxInsertRate"), 1e12 );
}
virtual std::string description() { return "WriteBandwidth"; }
virtual Future<Void> setup( Database const& cx ) { return _setup( cx, this ); }
virtual Future<Void> start( Database const& cx ) { return _start( cx, this ); }
virtual Future<bool> check( Database const& cx ) { return true; }
virtual void getMetrics( std::vector<PerfMetric>& m ) {
double duration = testDuration;
int writes = transactions.getValue() * keysPerTransaction;
m.emplace_back("Measured Duration", duration, true);
m.emplace_back("Transactions/sec", transactions.getValue() / duration, false);
m.emplace_back("Operations/sec", writes / duration, false);
m.push_back(transactions.getMetric());
m.push_back(retries.getMetric());
m.emplace_back("Mean load time (seconds)", loadTime, true);
m.emplace_back("Write rows", writes, false);
m.emplace_back("Mean GRV Latency (ms)", 1000 * GRVLatencies.mean(), true);
m.emplace_back("Median GRV Latency (ms, averaged)", 1000 * GRVLatencies.median(), true);
m.emplace_back("90% GRV Latency (ms, averaged)", 1000 * GRVLatencies.percentile( 0.90 ), true);
m.emplace_back("98% GRV Latency (ms, averaged)", 1000 * GRVLatencies.percentile( 0.98 ), true);
m.emplace_back("Mean Commit Latency (ms)", 1000 * commitLatencies.mean(), true);
m.emplace_back("Median Commit Latency (ms, averaged)", 1000 * commitLatencies.median(), true);
m.emplace_back("90% Commit Latency (ms, averaged)", 1000 * commitLatencies.percentile( 0.90 ), true);
m.emplace_back("98% Commit Latency (ms, averaged)", 1000 * commitLatencies.percentile( 0.98 ), true);
m.emplace_back("Write rows/sec", writes / duration, false);
m.emplace_back("Bytes written/sec", (writes * (keyBytes + (minValueBytes+maxValueBytes)*0.5)) / duration, false);
}
Value randomValue() { return StringRef( (uint8_t*)valueString.c_str(), deterministicRandom()->randomInt(minValueBytes, maxValueBytes+1) ); }
Standalone<KeyValueRef> operator()( uint64_t n ) {
return KeyValueRef( keyForIndex( n, false ), randomValue() );
}
ACTOR Future<Void> _setup( Database cx, WriteBandwidthWorkload *self ) {
state Promise<double> loadTime;
state Promise<std::vector<std::pair<uint64_t, double> > > ratesAtKeyCounts;
wait( bulkSetup( cx, self, self->nodeCount, loadTime, true, self->warmingDelay, self->maxInsertRate ) );
self->loadTime = loadTime.getFuture().get();
return Void();
}
ACTOR Future<Void> _start( Database cx, WriteBandwidthWorkload *self ) {
for( int i = 0; i < self->actorCount; i++ ) {
self->clients.push_back( self->writeClient( cx, self ) );
}
wait( timeout( waitForAll( self->clients ), self->testDuration, Void() ) );
self->clients.clear();
return Void();
}
ACTOR Future<Void> writeClient( Database cx, WriteBandwidthWorkload *self ) {
loop {
state Transaction tr( cx );
state uint64_t startIdx = deterministicRandom()->random01() * (self->nodeCount - self->keysPerTransaction);
loop {
try {
state double start = now();
wait(success(tr.getReadVersion()));
self->GRVLatencies.addSample( now() - start );
// Predefine a single large write conflict range over the whole key space
tr.addWriteConflictRange( KeyRangeRef(
self->keyForIndex( startIdx, false ),
keyAfter( self->keyForIndex( startIdx + self->keysPerTransaction - 1, false ) ) ) );
for( int i = 0; i < self->keysPerTransaction; i++ )
tr.set( self->keyForIndex( startIdx + i, false ), self->randomValue(), false );
start = now();
wait( tr.commit() );
self->commitLatencies.addSample( now() - start );
break;
} catch( Error& e ) {
wait( tr.onError( e ) );
++self->retries;
}
}
++self->transactions;
}
}
};
WorkloadFactory<WriteBandwidthWorkload> WriteBandwidthWorkloadFactory("WriteBandwidth");