foundationdb/fdbserver/workloads/DiskDurabilityTest.actor.cpp

182 lines
5.9 KiB
C++
Executable File

/*
* DiskDurabilityTest.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cinttypes>
#include "fdbserver/workloads/workloads.actor.h"
#include "fdbrpc/IAsyncFile.h"
#include "fdbclient/FDBTypes.h"
#include "flow/actorcompiler.h" // This must be the last #include.
struct DiskDurabilityTest : TestWorkload {
bool enabled;
std::string filename;
KeyRange range, metrics;
DiskDurabilityTest(WorkloadContext const& wcx)
: TestWorkload(wcx)
{
enabled = !clientId; // only do this on the "first" client
filename = getOption(options, LiteralStringRef("filename"), LiteralStringRef("durability_test.bin")).toString();
auto prefix = getOption(options, LiteralStringRef("prefix"), LiteralStringRef("/DiskDurabilityTest/"));
range = prefixRange( LiteralStringRef("S").withPrefix(prefix) );
metrics = prefixRange( prefix );
}
virtual std::string description() { return "DiskDurabilityTest"; }
virtual Future<Void> setup( Database const& cx ) { return Void(); }
virtual Future<Void> start( Database const& cx ) {
if (enabled)
return durabilityTest(this, cx);
return Void();
}
virtual Future<bool> check( Database const& cx ) { return true; }
virtual void getMetrics( vector<PerfMetric>& m ) {}
Value encodeValue( int64_t x ) {
x = bigEndian64(x);
return StringRef( (const uint8_t*)&x, sizeof(x) );
}
Key encodeKey( int64_t x ) {
return encodeValue(x).withPrefix(range.begin);
}
int64_t decodeValue( ValueRef k ) {
ASSERT( k.size() == sizeof(int64_t) );
return bigEndian64( *(int64_t*)k.begin() );
}
int64_t decodeKey( KeyRef k ) { return decodeValue(k.removePrefix(range.begin)); }
void encodePage( uint8_t* page, int64_t value ) {
int64_t *ipage = (int64_t*)page;
for(int i=0; i<4096/8; i++)
ipage[i] = value + i;
}
int64_t decodePage( uint8_t* page ) {
int64_t *ipage = (int64_t*)page;
for(int i=0; i<4096/8; i++)
if (ipage[i] != ipage[0] + i)
return 0;
return ipage[0];
}
ACTOR static Future<Void> durabilityTest( DiskDurabilityTest* self, Database db ) {
state Reference<IAsyncFile> file = wait( IAsyncFileSystem::filesystem()->open( self->filename, IAsyncFile::OPEN_CREATE | IAsyncFile::OPEN_READWRITE | IAsyncFile::OPEN_UNBUFFERED | IAsyncFile::OPEN_UNCACHED | IAsyncFile::OPEN_LOCK, 0600 ) );
state vector<uint8_t> pagedata(4096 * 128);
state uint8_t* page = (uint8_t*)((intptr_t(&pagedata[0]) | intptr_t(4095)) + 1);
state int64_t size = wait( file->size() );
state bool failed = false;
state int verifyPages;
// Verify
state Transaction tr(db);
loop {
try {
state Standalone<RangeResultRef> r = wait( tr.getRange( self->range, GetRangeLimits(1000000) ) );
verifyPages = r.size();
state int i;
for(i=0; i<r.size(); i++) {
int bytesRead = wait( file->read( page, 4096, self->decodeKey(r[i].key)*4096 ) );
if (bytesRead != 4096 || self->decodePage(page) != self->decodeValue(r[i].value)) {
printf("ValidationError\n");
TraceEvent(SevError, "ValidationError").detail("At", self->decodeKey(r[i].key)).detail("Expected", self->decodeValue(r[i].value)).detail("Found", self->decodePage(page)).detail("Read", bytesRead);
failed = true;
}
}
break;
} catch (Error& e) {
wait( tr.onError(e) );
}
}
if (failed) throw operation_failed();
printf("Verified %d/%" PRId64 " pages\n", verifyPages, size/4096);
TraceEvent(SevInfo, "Verified").detail("Pages", verifyPages).detail("Of", size/4096);
// Run
state bool first = true;
loop {
state vector<int64_t> targetPages;
for(int i=deterministicRandom()->randomInt(1, 100); i>0 && targetPages.size() < size/4096; i--) {
auto p = deterministicRandom()->randomInt(0, size/4096);
if (!std::count(targetPages.begin(), targetPages.end(), p))
targetPages.push_back( p );
}
for(int i=deterministicRandom()->randomInt(1,4); i>0; i--) {
targetPages.push_back( size/4096 );
size += 4096;
}
state vector<int64_t> targetValues(targetPages.size());
for(auto& v : targetValues)
v = deterministicRandom()->randomUniqueID().first();
tr.reset();
loop {
try {
for(int i=0; i<targetPages.size(); i++)
tr.clear( self->encodeKey(targetPages[i]) );
if (!first) {
Optional<Value> v = wait( tr.get( LiteralStringRef("syncs").withPrefix(self->metrics.begin) ) );
int64_t count = v.present() ? self->decodeValue(v.get()) : 0;
count++;
tr.set( LiteralStringRef("syncs").withPrefix(self->metrics.begin), self->encodeValue( count ) );
}
wait( tr.commit() );
break;
} catch (Error& e) {
wait( tr.onError(e) );
}
}
tr.reset();
state Future<Version> rv = tr.getReadVersion(); // hide this latency
vector<Future<Void>> fresults;
for(int i=0; i<targetPages.size(); i++) {
uint8_t* p = page + 4096*i;
self->encodePage( p, targetValues[i] );
fresults.push_back( file->write( p, 4096, targetPages[i]*4096 ) );
}
wait( waitForAll( fresults ) );
wait( file->sync() );
loop {
try {
for(int i=0; i<targetPages.size(); i++)
tr.set( self->encodeKey(targetPages[i]), self->encodeValue(targetValues[i]) );
wait( tr.commit() );
break;
} catch (Error& e) {
wait( tr.onError(e) );
}
}
first = false;
}
}
};
WorkloadFactory<DiskDurabilityTest> DiskDurabilityTestFactory("DiskDurabilityTest");