foundationdb/fdbserver/DataDistribution.actor.h

445 lines
18 KiB
C++

/*
* DataDistribution.actor.h
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined(NO_INTELLISENSE) && !defined(FDBSERVER_DATA_DISTRIBUTION_ACTOR_G_H)
#define FDBSERVER_DATA_DISTRIBUTION_ACTOR_G_H
#include "fdbserver/DataDistribution.actor.g.h"
#elif !defined(FDBSERVER_DATA_DISTRIBUTION_ACTOR_H)
#define FDBSERVER_DATA_DISTRIBUTION_ACTOR_H
#include <boost/heap/skew_heap.hpp>
#include <boost/heap/policies.hpp>
#include "fdbclient/NativeAPI.actor.h"
#include "fdbserver/MoveKeys.actor.h"
#include "fdbserver/LogSystem.h"
#include "fdbclient/RunTransaction.actor.h"
#include "flow/actorcompiler.h" // This must be the last #include.
struct RelocateShard {
KeyRange keys;
int priority;
RelocateShard() : priority(0) {}
RelocateShard(KeyRange const& keys, int priority) : keys(keys), priority(priority) {}
};
struct IDataDistributionTeam {
virtual std::vector<StorageServerInterface> getLastKnownServerInterfaces() const = 0;
virtual int size() const = 0;
virtual std::vector<UID> const& getServerIDs() const = 0;
virtual void addDataInFlightToTeam(int64_t delta) = 0;
virtual int64_t getDataInFlightToTeam() const = 0;
virtual int64_t getLoadBytes(bool includeInFlight = true, double inflightPenalty = 1.0) const = 0;
virtual int64_t getMinAvailableSpace(bool includeInFlight = true) const = 0;
virtual double getMinAvailableSpaceRatio(bool includeInFlight = true) const = 0;
virtual bool hasHealthyAvailableSpace(double minRatio) const = 0;
virtual Future<Void> updateStorageMetrics() = 0;
virtual void addref() = 0;
virtual void delref() = 0;
virtual bool isHealthy() const = 0;
virtual void setHealthy(bool) = 0;
virtual int getPriority() const = 0;
virtual void setPriority(int) = 0;
virtual bool isOptimal() const = 0;
virtual bool isWrongConfiguration() const = 0;
virtual void setWrongConfiguration(bool) = 0;
virtual void addServers(const std::vector<UID>& servers) = 0;
virtual std::string getTeamID() const = 0;
std::string getDesc() const {
const auto& servers = getLastKnownServerInterfaces();
std::string s = format("TeamID:%s", getTeamID().c_str());
s += format("Size %d; ", servers.size());
for (int i = 0; i < servers.size(); i++) {
if (i)
s += ", ";
s += servers[i].address().toString() + " " + servers[i].id().shortString();
}
return s;
}
};
struct GetTeamRequest {
bool wantsNewServers;
bool wantsTrueBest;
bool preferLowerUtilization;
bool teamMustHaveShards;
double inflightPenalty;
std::vector<UID> completeSources;
std::vector<UID> src;
Promise<std::pair<Optional<Reference<IDataDistributionTeam>>, bool>> reply;
GetTeamRequest() {}
GetTeamRequest(bool wantsNewServers,
bool wantsTrueBest,
bool preferLowerUtilization,
bool teamMustHaveShards,
double inflightPenalty = 1.0)
: wantsNewServers(wantsNewServers), wantsTrueBest(wantsTrueBest), preferLowerUtilization(preferLowerUtilization),
teamMustHaveShards(teamMustHaveShards), inflightPenalty(inflightPenalty) {}
std::string getDesc() const {
std::stringstream ss;
ss << "WantsNewServers:" << wantsNewServers << " WantsTrueBest:" << wantsTrueBest
<< " PreferLowerUtilization:" << preferLowerUtilization << " teamMustHaveShards:" << teamMustHaveShards
<< " inflightPenalty:" << inflightPenalty << ";";
ss << "CompleteSources:";
for (const auto& cs : completeSources) {
ss << cs.toString() << ",";
}
return std::move(ss).str();
}
};
struct GetMetricsRequest {
KeyRange keys;
Promise<StorageMetrics> reply;
GetMetricsRequest() {}
GetMetricsRequest(KeyRange const& keys) : keys(keys) {}
};
struct GetMetricsListRequest {
KeyRange keys;
int shardLimit;
Promise<Standalone<VectorRef<DDMetricsRef>>> reply;
GetMetricsListRequest() {}
GetMetricsListRequest(KeyRange const& keys, const int shardLimit) : keys(keys), shardLimit(shardLimit) {}
};
struct TeamCollectionInterface {
PromiseStream<GetTeamRequest> getTeam;
};
class ShardsAffectedByTeamFailure : public ReferenceCounted<ShardsAffectedByTeamFailure> {
public:
ShardsAffectedByTeamFailure() {}
struct Team {
std::vector<UID> servers; // sorted
bool primary;
Team() : primary(true) {}
Team(std::vector<UID> const& servers, bool primary) : servers(servers), primary(primary) {}
bool operator<(const Team& r) const {
if (servers == r.servers)
return primary < r.primary;
return servers < r.servers;
}
bool operator>(const Team& r) const { return r < *this; }
bool operator<=(const Team& r) const { return !(*this > r); }
bool operator>=(const Team& r) const { return !(*this < r); }
bool operator==(const Team& r) const { return servers == r.servers && primary == r.primary; }
bool operator!=(const Team& r) const { return !(*this == r); }
};
// This tracks the data distribution on the data distribution server so that teamTrackers can
// relocate the right shards when a team is degraded.
// The following are important to make sure that failure responses don't revert splits or merges:
// - The shards boundaries in the two data structures reflect "queued" RelocateShard requests
// (i.e. reflects the desired set of shards being tracked by dataDistributionTracker,
// rather than the status quo). These boundaries are modified in defineShard and the content
// of what servers correspond to each shard is a copy or union of the shards already there
// - The teams associated with each shard reflect either the sources for non-moving shards
// or the destination team for in-flight shards (the change is atomic with respect to team selection).
// moveShard() changes the servers associated with a shard and will never adjust the shard
// boundaries. If a move is received for a shard that has been redefined (the exact shard is
// no longer in the map), the servers will be set for all contained shards and added to all
// intersecting shards.
int getNumberOfShards(UID ssID) const;
std::vector<KeyRange> getShardsFor(Team team);
bool hasShards(Team team) const;
// The first element of the pair is either the source for non-moving shards or the destination team for in-flight
// shards The second element of the pair is all previous sources for in-flight shards
std::pair<std::vector<Team>, std::vector<Team>> getTeamsFor(KeyRangeRef keys);
void defineShard(KeyRangeRef keys);
void moveShard(KeyRangeRef keys, std::vector<Team> destinationTeam);
void finishMove(KeyRangeRef keys);
void check();
private:
struct OrderByTeamKey {
bool operator()(const std::pair<Team, KeyRange>& lhs, const std::pair<Team, KeyRange>& rhs) const {
if (lhs.first < rhs.first)
return true;
if (lhs.first > rhs.first)
return false;
return lhs.second.begin < rhs.second.begin;
}
};
KeyRangeMap<std::pair<std::vector<Team>, std::vector<Team>>>
shard_teams; // A shard can be affected by the failure of multiple teams if it is a queued merge, or when
// usable_regions > 1
std::set<std::pair<Team, KeyRange>, OrderByTeamKey> team_shards;
std::map<UID, int> storageServerShards;
void erase(Team team, KeyRange const& range);
void insert(Team team, KeyRange const& range);
};
// DDShardInfo is so named to avoid link-time name collision with ShardInfo within the StorageServer
struct DDShardInfo {
Key key;
std::vector<UID> primarySrc;
std::vector<UID> remoteSrc;
std::vector<UID> primaryDest;
std::vector<UID> remoteDest;
bool hasDest;
explicit DDShardInfo(Key key) : key(key), hasDest(false) {}
};
struct InitialDataDistribution : ReferenceCounted<InitialDataDistribution> {
int mode;
std::vector<std::pair<StorageServerInterface, ProcessClass>> allServers;
std::set<std::vector<UID>> primaryTeams;
std::set<std::vector<UID>> remoteTeams;
std::vector<DDShardInfo> shards;
Optional<Key> initHealthyZoneValue;
};
struct ShardMetrics {
StorageMetrics metrics;
double lastLowBandwidthStartTime;
int shardCount; // number of smaller shards whose metrics are aggregated in the ShardMetrics
bool operator==(ShardMetrics const& rhs) const {
return metrics == rhs.metrics && lastLowBandwidthStartTime == rhs.lastLowBandwidthStartTime &&
shardCount == rhs.shardCount;
}
ShardMetrics(StorageMetrics const& metrics, double lastLowBandwidthStartTime, int shardCount)
: metrics(metrics), lastLowBandwidthStartTime(lastLowBandwidthStartTime), shardCount(shardCount) {}
};
struct ShardTrackedData {
Future<Void> trackShard;
Future<Void> trackBytes;
Reference<AsyncVar<Optional<ShardMetrics>>> stats;
};
ACTOR Future<Void> dataDistributionTracker(Reference<InitialDataDistribution> initData,
Database cx,
PromiseStream<RelocateShard> output,
Reference<ShardsAffectedByTeamFailure> shardsAffectedByTeamFailure,
PromiseStream<GetMetricsRequest> getShardMetrics,
PromiseStream<GetMetricsListRequest> getShardMetricsList,
FutureStream<Promise<int64_t>> getAverageShardBytes,
Promise<Void> readyToStart,
Reference<AsyncVar<bool>> zeroHealthyTeams,
UID distributorId,
KeyRangeMap<ShardTrackedData>* shards,
bool* trackerCancelled);
ACTOR Future<Void> dataDistributionQueue(Database cx,
PromiseStream<RelocateShard> output,
FutureStream<RelocateShard> input,
PromiseStream<GetMetricsRequest> getShardMetrics,
Reference<AsyncVar<bool>> processingUnhealthy,
Reference<AsyncVar<bool>> processingWiggle,
std::vector<TeamCollectionInterface> teamCollection,
Reference<ShardsAffectedByTeamFailure> shardsAffectedByTeamFailure,
MoveKeysLock lock,
PromiseStream<Promise<int64_t>> getAverageShardBytes,
PromiseStream<Promise<int>> getUnhealthyRelocationCount,
UID distributorId,
int teamSize,
int singleRegionTeamSize,
double* lastLimited,
const DDEnabledState* ddEnabledState);
// Holds the permitted size and IO Bounds for a shard
struct ShardSizeBounds {
StorageMetrics max;
StorageMetrics min;
StorageMetrics permittedError;
bool operator==(ShardSizeBounds const& rhs) const {
return max == rhs.max && min == rhs.min && permittedError == rhs.permittedError;
}
};
// Gets the permitted size and IO bounds for a shard
ShardSizeBounds getShardSizeBounds(KeyRangeRef shard, int64_t maxShardSize);
// Determines the maximum shard size based on the size of the database
int64_t getMaxShardSize(double dbSizeEstimate);
class DDTeamCollection;
struct StorageWiggleMetrics {
constexpr static FileIdentifier file_identifier = 4728961;
// round statistics
// One StorageServer wiggle round is considered 'complete', when all StorageServers with creationTime < T are
// wiggled
uint64_t last_round_start = 0; // wall timer: timer_int()
uint64_t last_round_finish = 0;
TimerSmoother smoothed_round_duration;
int finished_round = 0; // finished round since storage wiggle is open
// step statistics
// 1 wiggle step as 1 storage server is wiggled in the current round
uint64_t last_wiggle_start = 0; // wall timer: timer_int()
uint64_t last_wiggle_finish = 0;
TimerSmoother smoothed_wiggle_duration;
int finished_wiggle = 0; // finished step since storage wiggle is open
StorageWiggleMetrics() : smoothed_round_duration(20.0 * 60), smoothed_wiggle_duration(10.0 * 60) {}
template <class Ar>
void serialize(Ar& ar) {
if (ar.isDeserializing) {
double step_total, round_total;
serializer(ar,
last_wiggle_start,
last_wiggle_finish,
step_total,
finished_wiggle,
last_round_start,
last_round_finish,
round_total,
finished_round);
smoothed_round_duration.reset(round_total);
smoothed_wiggle_duration.reset(step_total);
} else {
serializer(ar,
last_wiggle_start,
last_wiggle_finish,
smoothed_wiggle_duration.total,
finished_wiggle,
last_round_start,
last_round_finish,
smoothed_round_duration.total,
finished_round);
}
}
static Future<Void> runSetTransaction(Reference<ReadYourWritesTransaction> tr,
bool primary,
StorageWiggleMetrics metrics) {
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr->setOption(FDBTransactionOptions::LOCK_AWARE);
tr->set(perpetualStorageWiggleStatsPrefix.withSuffix(primary ? "primary"_sr : "remote"_sr),
ObjectWriter::toValue(metrics, IncludeVersion()));
return Void();
}
static Future<Void> runSetTransaction(Database cx, bool primary, StorageWiggleMetrics metrics) {
return runRYWTransaction(cx, [=](Reference<ReadYourWritesTransaction> tr) -> Future<Void> {
return runSetTransaction(tr, primary, metrics);
});
}
static Future<Optional<Value>> runGetTransaction(Reference<ReadYourWritesTransaction> tr, bool primary) {
tr->setOption(FDBTransactionOptions::READ_SYSTEM_KEYS);
tr->setOption(FDBTransactionOptions::READ_LOCK_AWARE);
return tr->get(perpetualStorageWiggleStatsPrefix.withSuffix(primary ? "primary"_sr : "remote"_sr));
}
static Future<Optional<Value>> runGetTransaction(Database cx, bool primary) {
return runRYWTransaction(cx, [=](Reference<ReadYourWritesTransaction> tr) -> Future<Optional<Value>> {
return runGetTransaction(tr, primary);
});
}
StatusObject toJSON() {
StatusObject result;
result["last_round_start_datetime"] = timerIntToGmt(last_round_start);
result["last_round_finish_datetime"] = timerIntToGmt(last_round_finish);
result["last_round_start_timestamp"] = last_round_start;
result["last_round_finish_timestamp"] = last_round_finish;
result["smoothed_round_seconds"] = smoothed_round_duration.estimate;
result["finished_round"] = finished_round;
result["last_wiggle_start_datetime"] = timerIntToGmt(last_wiggle_start);
result["last_wiggle_finish_datetime"] = timerIntToGmt(last_wiggle_finish);
result["last_wiggle_start_timestamp"] = last_wiggle_start;
result["last_wiggle_finish_timestamp"] = last_wiggle_finish;
result["smoothed_wiggle_seconds"] = smoothed_wiggle_duration.estimate;
result["finished_wiggle"] = finished_wiggle;
return result;
}
};
struct StorageWiggler : ReferenceCounted<StorageWiggler> {
DDTeamCollection* teamCollection;
StorageWiggleMetrics metrics;
// data structures
typedef std::pair<StorageMetadataType, UID> MetadataUIDP;
// sorted by (createdTime, UID), the least comes first
struct CompPair {
bool operator()(MetadataUIDP const& a, MetadataUIDP const& b) const {
if (a.first.createdTime == b.first.createdTime) {
return a.second > b.second;
}
// larger createdTime means the age is younger
return a.first.createdTime > b.first.createdTime;
}
};
boost::heap::skew_heap<MetadataUIDP, boost::heap::mutable_<true>, boost::heap::compare<CompPair>> wiggle_pq;
std::unordered_map<UID, decltype(wiggle_pq)::handle_type> pq_handles;
AsyncVar<bool> nonEmpty;
explicit StorageWiggler(DDTeamCollection* collection) : teamCollection(collection), nonEmpty(false){};
// add server to wiggling queue
void addServer(const UID& serverId, const StorageMetadataType& metadata);
// remove server from wiggling queue
void removeServer(const UID& serverId);
// update metadata and adjust priority_queue
void updateMetadata(const UID& serverId, const StorageMetadataType& metadata);
bool contains(const UID& serverId) { return pq_handles.count(serverId) > 0; }
bool empty() { return wiggle_pq.empty(); }
Optional<UID> getNextServerId();
// -- statistic update
// reset Statistic in database when perpetual wiggle is closed by user
Future<Void> resetStats();
// restore Statistic from database when the perpetual wiggle is opened
Future<Void> restoreStats();
// called when start wiggling a SS
Future<Void> startWiggle();
Future<Void> finishWiggle();
bool shouldStartNewRound() { return metrics.last_round_finish >= metrics.last_round_start; }
bool shouldFinishRound() {
if (wiggle_pq.empty())
return true;
return (wiggle_pq.top().first.createdTime >= metrics.last_round_start);
}
};
ACTOR Future<std::vector<std::pair<StorageServerInterface, ProcessClass>>> getServerListAndProcessClasses(
Transaction* tr);
#include "flow/unactorcompiler.h"
#endif