foundationdb/fdbserver/SkipList.cpp

1552 lines
45 KiB
C++

/*
* SkipList.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdint.h>
#include <memory.h>
#include <stdio.h>
#include <algorithm>
#include <numeric>
#include <string>
#include <vector>
/*
#ifdef __GNUG__
#include <smmintrin.h>
#endif
*/
#include "flow/Platform.h"
#include "fdbrpc/fdbrpc.h"
#include "fdbrpc/PerfMetric.h"
#include "fdbclient/FDBTypes.h"
#include "fdbclient/KeyRangeMap.h"
#include "fdbclient/SystemData.h"
#include "fdbserver/Knobs.h"
#define PARALLEL_THREAD_COUNT 0 // FIXME: When >1, program execution (e.g. random numbers) is/was nondeterministic. Why?
using std::min;
using std::max;
static std::vector<PerfDoubleCounter*> skc;
static thread_local uint32_t g_seed = 0;
static inline int skfastrand() {
g_seed = g_seed * 1664525L + 1013904223L;
return g_seed;
}
void setAffinity(int proc);
class SlowConflictSet {
public:
bool is_conflict( const VectorRef<KeyRangeRef>& readRanges, Version read_snapshot );
void add( const VectorRef<KeyRangeRef>& clearRanges, const VectorRef<KeyValueRef>& setValues, Version now );
void clear( Version now );
private:
KeyRangeMap<Version> age;
};
bool SlowConflictSet::is_conflict( const VectorRef<KeyRangeRef>& readRanges, Version read_snapshot ) {
for(auto range = readRanges.begin(); range != readRanges.end(); ++range) {
auto intersecting = age.intersectingRanges( *range );
for(auto it = intersecting.begin(); it != intersecting.end(); ++it)
if ( it.value() > read_snapshot )
return true;
}
return false;
}
void SlowConflictSet::clear( Version now ) {
age.insert(allKeys, now);
}
void SlowConflictSet::add( const VectorRef<KeyRangeRef>& clearRanges, const VectorRef<KeyValueRef>& setValues, Version now ) {
for(auto c = clearRanges.begin(); c != clearRanges.end(); ++c)
age.insert( *c, now );
for(auto s = setValues.begin(); s != setValues.end(); ++s)
age.insert( s->key, now );
}
PerfDoubleCounter
g_buildTest("Build", skc),
g_add("Add", skc),
g_add_sort("A.Sort", skc),
g_detectConflicts("Detect", skc),
g_sort("D.Sort", skc),
g_combine("D.Combine", skc),
g_checkRead("D.CheckRead", skc),
g_checkBatch("D.CheckIntraBatch", skc),
g_merge("D.MergeWrite", skc),
g_merge_launch("D.Merge.Launch", skc),
g_merge_fork("D.Merge.Fork", skc),
g_merge_start_var("D.Merge.StartVariance", skc),
g_merge_end_var("D.Merge.EndVariance", skc),
g_merge_run_var("D.Merge.RunVariance", skc),
g_merge_run_shortest("D.Merge.ShortestRun", skc),
g_merge_run_longest("D.Merge.LongestRun", skc),
g_merge_run_total("D.Merge.TotalRun", skc),
g_merge_join("D.Merge.Join", skc),
g_removeBefore("D.RemoveBefore", skc)
;
static force_inline int compare( const StringRef& a, const StringRef& b ) {
int c = memcmp( a.begin(), b.begin(), min(a.size(), b.size()) );
if (c<0) return -1;
if (c>0) return +1;
if (a.size() < b.size()) return -1;
if (a.size() == b.size()) return 0;
return +1;
}
struct ReadConflictRange {
StringRef begin, end;
Version version;
int transaction;
ReadConflictRange( StringRef begin, StringRef end, Version version, int transaction )
: begin(begin), end(end), version(version), transaction(transaction)
{
}
bool operator<(const ReadConflictRange& rhs) const { return compare(begin, rhs.begin)<0; }
};
struct KeyInfo {
StringRef key;
int* pIndex;
bool nextKey;
bool begin;
bool write;
int transaction;
KeyInfo() {};
KeyInfo( StringRef key, bool nextKey, bool begin, bool write, int transaction, int* pIndex ) : key(key), nextKey(nextKey), begin(begin), write(write), transaction(transaction), pIndex(pIndex) {}
};
// returns true if done with string
force_inline bool getCharacter(const KeyInfo& ki, int character, int &outputCharacter){
// normal case
if (character < ki.key.size()){
outputCharacter = 5 + ki.key.begin()[character];
return false;
}
// nextKey append a zero
if (ki.nextKey && character >= ki.key.size()){
if (character == ki.key.size()){
outputCharacter = 5; // extra '0' character
return false;
}
character--;
}
// termination
if (character == ki.key.size()){
outputCharacter = 0;
return false;
}
if (character == ki.key.size()+1) {
// end/begin+read/write relative sorting
outputCharacter = ki.begin*2 + (ki.write ^ ki.begin);
return false;
}
outputCharacter = 0;
return true;
}
bool operator < ( const KeyInfo& lhs, const KeyInfo& rhs ) {
int i = min(lhs.key.size(), rhs.key.size());
int c = memcmp( lhs.key.begin(), rhs.key.begin(), i );
if (c!=0) return c<0;
// SOMEDAY: This is probably not very fast. Slows D.Sort by ~20% relative to previous (incorrect) version.
bool lDone, rDone;
int lc, rc;
while (true) {
lDone = getCharacter(lhs, i, lc);
rDone = getCharacter(rhs, i, rc);
if (lDone && rDone) return false; // equality
if (lc < rc) return true;
if (lc > rc) return false;
i++;
}
}
bool operator == (const KeyInfo& lhs, const KeyInfo& rhs ) {
return !(lhs<rhs || rhs<lhs);
}
void swapSort(std::vector<KeyInfo>& points, int a, int b){
if (points[b] < points[a]){
KeyInfo temp;
temp = points[a];
points[a] = points[b];
points[b] = temp;
}
}
void smallSort(std::vector<KeyInfo>& points, int start, int N){
for (int i=1;i<N;i++)
for (int j=i;j>0;j-=2)
swapSort(points, start+j-1, start+j);
for (int i=N-2;i>0;i--)
for (int j=i;j>0;j-=2)
swapSort(points, start+j-1, start+j);
}
struct SortTask {
int begin;
int size;
int character;
SortTask(int begin, int size, int character) : begin(begin), size(size), character(character) {}
};
void sortPoints(std::vector<KeyInfo>& points){
std::vector<SortTask> tasks;
std::vector<KeyInfo> newPoints;
std::vector<int> counts;
tasks.emplace_back(0, points.size(), 0);
while (tasks.size()){
SortTask st = tasks.back();
tasks.pop_back();
if (st.size < 10){
//smallSort(points, st.begin, st.size);
std::sort(points.begin() + st.begin, points.begin() + st.begin + st.size );
continue;
}
newPoints.resize(st.size);
counts.assign(256+5, 0);
// get counts
int c;
bool allDone = true;
for (int i=st.begin; i<st.begin+st.size; i++){
allDone &= getCharacter(points[i], st.character, c);
counts[c]++;
}
if (allDone)
continue;
// calculate offsets from counts and build next level of tasks
int total=0;
for(int i=0;i<counts.size();i++){
int temp = counts[i];
if (temp > 1)
tasks.emplace_back(st.begin+total, temp, st.character+1);
counts[i] = total;
total += temp;
}
// put in their places
for (int i=st.begin; i<st.begin+st.size; i++){
getCharacter(points[i], st.character, c);
newPoints[counts[c]++] = points[i];
}
//copy back into original points array
for (int i=0;i<st.size;i++)
points[st.begin+i] = newPoints[i];
}
//cout << endl << "Radix sort done" << endl;
}
class SkipList : NonCopyable
{
private:
static const int MaxLevels = 26;
int randomLevel() {
/*int l = 0;
while (deterministicRandom()->random01() < 0.5 && l < MaxLevels-1) l++;
return l; */
//deterministicRandom()->randomInt(0, 1<<(MaxLevels-1));
uint32_t i = uint32_t(skfastrand()) >> (32-(MaxLevels-1));
int level = 0;
while (i&1) {
i>>=1;
level++;
}
ASSERT( level < MaxLevels );
return level;
}
/*
struct Node {
int nPointers, valueLength;
Node *pointers[nPointers];
Version maxVersions[nPointers];
char value[valueLength];
};
*/
struct Node {
int level() { return nPointers-1; }
uint8_t* value() { return end() + nPointers*(sizeof(Node*)+sizeof(Version)); }
int length() { return valueLength; }
Node* getNext(int i) { return *((Node**)end() + i); }
void setNext(int i, Node* n) {
*((Node**)end() + i) = n;
#if defined(_DEBUG) || 1
/*if (n && n->level() < i)
*(volatile int*)0 = 0;*/
#endif
}
Version getMaxVersion(int i) { return ((Version*)(end() + nPointers*sizeof(Node*)))[i]; }
void setMaxVersion(int i, Version v) { ((Version*)(end() + nPointers*sizeof(Node*)))[i] = v; }
// Return a node with initialized value but uninitialized pointers
static Node* create( const StringRef& value, int level ) {
int nodeSize = sizeof(Node) + value.size() + (level+1)*(sizeof(Node*)+sizeof(Version));
Node* n;
if (nodeSize <= 64) {
n = (Node*)FastAllocator<64>::allocate();
INSTRUMENT_ALLOCATE("SkipListNode64");
} else if (nodeSize <= 128) {
n = (Node*)FastAllocator<128>::allocate();
INSTRUMENT_ALLOCATE("SkipListNode128");
} else {
n = (Node*)new char[ nodeSize ];
INSTRUMENT_ALLOCATE("SkipListNodeLarge");
}
n->nPointers = level+1;
n->valueLength = value.size();
memcpy(n->value(), value.begin(), value.size());
return n;
}
// pre: level>0, all lower level nodes between this and getNext(level) have correct maxversions
void calcVersionForLevel(int level){
Node *end = getNext(level);
Version v = getMaxVersion(level-1);
for(Node *x = getNext(level-1); x != end; x = x->getNext(level-1))
v = max(v, x->getMaxVersion(level-1));
setMaxVersion(level, v);
}
void destroy() {
int nodeSize = getNodeSize();
if (nodeSize <= 64) {
FastAllocator<64>::release(this);
INSTRUMENT_RELEASE("SkipListNode64");
} else if (nodeSize <= 128) {
FastAllocator<128>::release(this);
INSTRUMENT_RELEASE("SkipListNode128");
} else {
delete[] (char*)this;
INSTRUMENT_RELEASE("SkipListNodeLarge");
}
}
private:
int getNodeSize() { return sizeof(Node) + valueLength + nPointers*(sizeof(Node*)+sizeof(Version)); }
uint8_t* end() { return (uint8_t*)(this+1); }
int nPointers,
valueLength;
};
static force_inline bool less( const uint8_t* a, int aLen, const uint8_t* b, int bLen ) {
int len = min(aLen, bLen);
for(int i=0; i<len; i++)
if (a[i] < b[i])
return true;
else if (a[i] > b[i])
return false;
/*int c = memcmp(a,b,min(aLen,bLen));
if (c<0) return true;
if (c>0) return false;*/
return aLen < bLen;
}
Node *header;
void destroy() {
Node *next, *x;
for(x = header; x; x = next) {
next = x->getNext(0);
x->destroy();
}
}
public:
struct Finger{
Node *finger[MaxLevels]; // valid for levels >= level
int level;
Node* x;
Node *alreadyChecked;
StringRef value;
Finger() : level(MaxLevels), x(NULL), alreadyChecked(NULL) {}
Finger( Node* header, const StringRef& ptr ) :
value(ptr), level(MaxLevels),
alreadyChecked(NULL), x(header)
{
}
void init(const StringRef& value, Node *header){
this->value = value;
x = header;
alreadyChecked = NULL;
level = MaxLevels;
}
// pre: !finished()
force_inline void prefetch() {
Node* next = x->getNext(level-1);
_mm_prefetch( (const char*)next, _MM_HINT_T0 );
//if ( (((intptr_t)next) & 64) == 0 )
_mm_prefetch( (const char*)next+64, _MM_HINT_T0 );
//_mm_prefetch( (const char*)next+128, _MM_HINT_T0 );
//_mm_prefetch( (const char*)next+192, _MM_HINT_T0 );
//_mm_prefetch( (const char*)next+256, _MM_HINT_T0 );
//_mm_prefetch( (const char*)next+320, _MM_HINT_T0 );
}
// pre: !finished()
// Returns true if we have advanced to the next level
force_inline bool advance() {
Node* next = x->getNext(level-1);
if (next == alreadyChecked || !less(next->value(), next->length(), value.begin(), value.size())) {
alreadyChecked = next;
level--;
finger[level] = x;
return true;
} else {
x = next;
return false;
}
}
// pre: !finished()
force_inline void nextLevel() {
while (!advance());
}
force_inline bool finished(){
return level == 0;
}
force_inline Node* found() const {
// valid after finished returns true
Node *n = finger[0]->getNext(0); // or alreadyChecked, but that is more easily invalidated
if (n && n->length() == value.size() && !memcmp(n->value(), value.begin(), value.size()))
return n;
else
return NULL;
}
StringRef getValue() const {
Node* n = finger[0]->getNext(0);
return n ? StringRef( n->value(), n->length() ) : StringRef();
}
};
int count() {
int count = 0;
Node* x = header->getNext(0);
while (x) {
x = x->getNext(0);
count++;
}
return count;
}
explicit SkipList( Version version = 0 ) {
header = Node::create(StringRef(), MaxLevels-1);
for(int l=0; l<MaxLevels; l++) {
header->setNext(l, NULL);
header->setMaxVersion(l, version);
}
}
~SkipList() {
destroy();
}
SkipList(SkipList&& other) BOOST_NOEXCEPT
: header(other.header)
{
other.header = NULL;
}
void operator=(SkipList&& other) BOOST_NOEXCEPT {
destroy();
header = other.header;
other.header = NULL;
}
void swap( SkipList& other ) {
std::swap(header, other.header);
}
void addConflictRanges( const Finger* fingers, int rangeCount, Version version ) {
for(int r=rangeCount-1; r>=0; r--) {
const Finger& startF = fingers[r*2];
const Finger& endF = fingers[r*2+1];
if (endF.found()==NULL)
insert(endF, endF.finger[0]->getMaxVersion(0));
remove( startF, endF );
insert( startF, version );
}
}
void detectConflicts( ReadConflictRange* ranges, int count, bool* transactionConflictStatus ) {
const int M = 16;
int nextJob[M];
CheckMax inProgress[ M ];
if (!count) return;
int started = min(M,count);
for(int i=0; i<started; i++){
inProgress[i].init( ranges[i], header, transactionConflictStatus );
nextJob[i] = i+1;
}
nextJob[started-1] = 0;
int prevJob = started-1;
int job = 0;
// vtune: 340 parts
while (true) {
if (inProgress[job].advance()) {
if (started == count){
if (prevJob == job) break;
nextJob[prevJob] = nextJob[job];
job = prevJob;
}
else
inProgress[job].init( ranges[started++], header, transactionConflictStatus );
}
prevJob = job;
job = nextJob[job];
}
}
// Splits the version history represented by this skiplist into separate key ranges
// delimited by the given array of keys. This SkipList is left empty. this->partition
// is intended to be followed by a call to this->concatenate() recombining the same
// partitions. In between, operations on each partition must not touch any keys outside
// the partition. Specifically, the partition to the left of 'key' must not have a range
// [...,key) inserted, since that would insert an entry at 'key'.
void partition( StringRef* begin, int splitCount, SkipList* output ) {
for(int i=splitCount-1; i>=0; i--) {
Finger f( header, begin[i] );
while (!f.finished())
f.nextLevel();
split(f, output[i+1]);
}
swap(output[0]);
}
void concatenate( SkipList* input, int count ) {
std::vector<Finger> ends( count-1 );
for(int i=0; i<ends.size(); i++)
input[i].getEnd( ends[i] );
for(int l=0; l<MaxLevels; l++) {
for(int i=ends.size()-1; i>=0; i--) {
ends[i].finger[l]->setNext( l, input[i+1].header->getNext(l) );
if (l && (!i || ends[i].finger[l] != input[i].header))
ends[i].finger[l]->calcVersionForLevel(l);
input[i+1].header->setNext( l, NULL );
}
}
swap(input[0]);
}
void find( const StringRef* values, Finger* results, int* temp, int count ) {
// Relying on the ordering of values, descend until the values aren't all in the
// same part of the tree
// vtune: 11 parts
results[0].init( values[0], header );
const StringRef& endValue = values[count-1];
while ( results[0].level > 1 ) {
results[0].nextLevel();
Node* ac = results[0].alreadyChecked;
if (ac && less(ac->value(), ac->length(), endValue.begin(), endValue.size()))
break;
}
// Init all the other fingers to start descending where we stopped
// the first one
// SOMEDAY: this loop showed up on vtune, could be faster?
// vtune: 8 parts
int startLevel = results[0].level+1;
Node *x = startLevel<MaxLevels ? results[0].finger[startLevel] : header;
for(int i=1; i<count; i++) {
results[i].level = startLevel;
results[i].x = x;
results[i].alreadyChecked = NULL;
results[i].value = values[i];
for(int j=startLevel; j<MaxLevels; j++)
results[i].finger[j] = results[0].finger[j];
}
int* nextJob = temp;
for (int i=0;i<count-1;i++)
nextJob[i] = i+1;
nextJob[count-1] = 0;
int prevJob = count-1;
int job = 0;
// vtune: 225 parts
while (true) {
Finger* f = &results[job];
f->advance();
if (f->finished()) {
if (prevJob == job) break;
nextJob[prevJob] = nextJob[job];
}
else {
f->prefetch();
prevJob = job;
}
job = nextJob[job];
}
}
/*Finger randomFinger() {
// Written, not exactly uniform, not tested
Finger f( header, StringRef() );
Node* begin = header, *end = 0;
for(int lev = MaxLevels-1; lev>=0; lev--) {
int length = 0;
for( Node* x = begin; x != end; x=x->getNext(lev) )
length++;
if (length == 1) { // forced down
f.finger[lev] = begin;
} else {
int c = deterministicRandom()->randomInt(0, length);
for( Node* x = begin; x != end; x=x->getNext(lev) )
if (!c--) {
f.finger[lev] = begin = x;
end = x->getNext(lev);
break;
}
}
}
f.level = 0;
return f;
}*/
int removeBefore( Version v, Finger& f, int nodeCount ) {
/*Finger f( header, StringRef() );
for(int i=0; i<MaxLevels; i++)
f.finger[i] = header;
f.level = 0;*/
// f.x, f.alreadyChecked?
int removedCount = 0;
bool wasAbove = true;
while (nodeCount--) {
Node* x = f.finger[0]->getNext(0);
if (!x) break;
// double prefetch gives +25% speed (single threaded)
Node* next = x->getNext(0);
_mm_prefetch( (const char*)next, _MM_HINT_T0 );
//_mm_prefetch( (const char*)next+64, _MM_HINT_T0 );
next = x->getNext(1);
_mm_prefetch( (const char*)next, _MM_HINT_T0 );
//_mm_prefetch( (const char*)next+64, _MM_HINT_T0 );
bool isAbove = x->getMaxVersion(0) >= v;
if (isAbove || wasAbove) { // f.nextItem
for(int l=0; l<=x->level(); l++)
f.finger[l] = x;
} else { // f.eraseItem
removedCount++;
for(int l=0; l<=x->level(); l++)
f.finger[l]->setNext(l, x->getNext(l));
for(int i=1; i<=x->level(); i++)
f.finger[i]->setMaxVersion( i, max(f.finger[i]->getMaxVersion(i), x->getMaxVersion(i)) );
x->destroy();
}
wasAbove = isAbove;
}
return removedCount;
}
private:
void remove( const Finger& start, const Finger& end ) {
if (start.finger[0] == end.finger[0])
return;
Node *x = start.finger[0]->getNext(0);
// vtune says: this loop is the expensive parts (6 parts)
for(int i=0; i<MaxLevels; i++)
if (start.finger[i] != end.finger[i])
start.finger[i]->setNext(i, end.finger[i]->getNext(i));
while (true) {
Node* next = x->getNext(0);
x->destroy();
if (x == end.finger[0]) break;
x = next;
}
}
//void insert( const std::string& v, Version version ) { insert(StringRef(v), version); }
void insert( const Finger& f, Version version ) {
int level = randomLevel();
//cout << std::string((const char*)value,length) << " level: " << level << endl;
Node *x = Node::create( f.value, level );
x->setMaxVersion(0, version);
for(int i=0; i<=level; i++) {
x->setNext(i, f.finger[i]->getNext(i));
f.finger[i]->setNext(i, x);
}
// vtune says: this loop is the costly part of this function
for(int i=1; i<=level; i++) {
f.finger[i]->calcVersionForLevel(i);
x->calcVersionForLevel(i);
}
for(int i=level+1; i<MaxLevels; i++) {
Version v = f.finger[i]->getMaxVersion(i);
if (v >= version) break;
f.finger[i]->setMaxVersion(i, version);
}
}
void insert( const StringRef& value, Version version ) {
Finger f(header, value);
while (!f.finished())
f.nextLevel();
// SOMEDAY: equality?
insert( f, version );
}
struct CheckMax {
Finger start, end;
Version version;
bool *result;
int state;
void init( const ReadConflictRange& r, Node* header, bool* tCS ) {
this->start.init( r.begin, header );
this->end.init( r.end, header );
this->version = r.version;
result = &tCS[ r.transaction ];
this->state = 0;
}
bool noConflict() { return true; }
bool conflict() { *result = true; return true; }
// Return true if finished
force_inline bool advance() {
switch (state) {
case 0:
// find where start and end fingers diverge
while (true) {
if (!start.advance()) {
start.prefetch();
return false;
}
end.x = start.x;
while (!end.advance());
int l = start.level;
if (start.finger[l] != end.finger[l])
break;
// accept if the range spans the check range, but does not have a greater version
if (start.finger[l]->getMaxVersion(l) <= version)
return noConflict();
if (l==0)
return conflict();
}
state = 1;
case 1:
{
// check the end side of the pyramid
Node *e = end.finger[end.level];
while (e->getMaxVersion(end.level) > version) {
if (end.finished())
return conflict();
end.nextLevel();
Node *f = end.finger[end.level];
while (e != f){
if (e->getMaxVersion(end.level) > version)
return conflict();
e = e->getNext(end.level);
}
}
// check the start side of the pyramid
Node *s = end.finger[start.level];
while (true){
Node *nextS = start.finger[start.level]->getNext(start.level);
Node *p = nextS;
while (p != s){
if (p->getMaxVersion(start.level) > version)
return conflict();
p = p->getNext(start.level);
}
if (start.finger[start.level]->getMaxVersion(start.level) <= version)
return noConflict();
s = nextS;
if (start.finished()) {
if (nextS->length() == start.value.size() && !memcmp(nextS->value(), start.value.begin(), start.value.size()))
return noConflict();
else
return conflict();
}
start.nextLevel();
}
}
default:
__assume(false);
}
}
};
void split( const Finger& f, SkipList& right ) {
ASSERT( !right.header->getNext(0) ); // right must be empty
right.header->setMaxVersion(0, f.finger[0]->getMaxVersion(0));
for(int l=0; l<MaxLevels; l++) {
right.header->setNext(l, f.finger[l]->getNext(l));
f.finger[l]->setNext(l, NULL);
/*if (l) {
// SOMEDAY: Do we actually need these?
right.header->calcVersionForLevel(l);
f.finger[l]->calcVersionForLevel(l);
}*/
}
}
void getEnd( Finger& end ) {
Node* node = header;
for(int l=MaxLevels-1; l>=0; l--) {
Node* next;
while ( (next=node->getNext(l)) != NULL )
node = next;
end.finger[l] = node;
}
end.level = 0;
// SOMEDAY: end.x? end.alreadyChecked?
/*end = Finger(header, (const uint8_t*)"\xff\xff\xff\xff\xff\xff", 6);
while (!end.finished())
end.nextLevel();*/
}
};
struct Action {
virtual void operator()() = 0; // self-destructs
};
typedef Action* PAction;
template <class F>
PAction action( F && f ) {
struct FAction : Action, F, FastAllocated<FAction> {
FAction( F&& f ) : F(std::move(f)) {}
virtual void operator()() { F::operator()(); delete this; }
};
return new FAction( std::move(f) );
};
void workerThread( PAction* nextAction, Event* nextActionReady, int index, Event* whenFinished ) {
ASSERT(false);
/*
inThread<Void>( [nextAction,nextActionReady,index,whenFinished]()->Void {
g_seed = index*123; fastrand();
setAffinity( index );
while (true) {
try {
nextActionReady->block(); // auto-reset
Action* action = *nextAction;
*nextAction = 0;
if (!action) break;
(*action)();
} catch (Error& e) {
fprintf(stderr, "Error in worker thread: %s\n", e.what());
} catch (...) {
fprintf(stderr, "Error in worker thread: %s\n", unknown_error().what());
}
}
//cout << "Worker thread finished" << endl;
whenFinished->set();
return Void();
});*/
}
StringRef setK( Arena& arena, int i ) {
char t[ sizeof(i) ];
*(int*)t = i;
const int keySize = 16;
char* ss = new (arena) char[ keySize ];
for(int c=0; c<keySize-sizeof(i); c++)
ss[c] = '.';
for(int c=0; c<sizeof(i); c++)
ss[c+keySize-sizeof(i)] = t[sizeof(i)-1-c];
return StringRef( (const uint8_t*)ss, keySize );
}
#include "fdbserver/ConflictSet.h"
struct ConflictSet {
ConflictSet() : oldestVersion(0) {
static_assert(PARALLEL_THREAD_COUNT == 0, "workerThread() not implemented");
static_assert(PARALLEL_THREAD_COUNT == 0 || FASTALLOC_THREAD_SAFE, "Thread safe fast allocator required for multithreaded conflict set");
for (int i = 0; i < PARALLEL_THREAD_COUNT; i++) {
worker_nextAction.push_back( NULL );
worker_ready.push_back( new Event );
worker_finished.push_back( new Event );
}
for(int t=0; t<worker_nextAction.size(); t++)
workerThread( &worker_nextAction[t], worker_ready[t], (t)*2, worker_finished[t] );
}
~ConflictSet() {
for(int i=0; i<worker_nextAction.size(); i++) {
worker_nextAction[i] = 0;
worker_ready[i]->set();
}
// Wait for workers to terminate; otherwise can get crashes at shutdown time
for(int i=0; i<worker_finished.size(); i++)
worker_finished[i]->block();
}
SkipList versionHistory;
Key removalKey;
Version oldestVersion;
std::vector<PAction> worker_nextAction;
std::vector<Event*> worker_ready;
std::vector<Event*> worker_finished;
};
ConflictSet* newConflictSet() { return new ConflictSet; }
void clearConflictSet( ConflictSet* cs, Version v ) {
SkipList(v).swap( cs->versionHistory );
}
void destroyConflictSet(ConflictSet* cs) {
delete cs;
}
ConflictBatch::ConflictBatch( ConflictSet* cs )
: cs(cs), transactionCount(0)
{
}
ConflictBatch::~ConflictBatch()
{
}
struct TransactionInfo {
VectorRef< std::pair<int,int> > readRanges;
VectorRef< std::pair<int,int> > writeRanges;
bool tooOld;
};
void ConflictBatch::addTransaction( const CommitTransactionRef& tr ) {
int t = transactionCount++;
Arena& arena = transactionInfo.arena();
TransactionInfo* info = new (arena) TransactionInfo;
if (tr.read_snapshot < cs->oldestVersion && tr.read_conflict_ranges.size()) {
info->tooOld = true;
} else {
info->tooOld = false;
info->readRanges.resize( arena, tr.read_conflict_ranges.size() );
info->writeRanges.resize( arena, tr.write_conflict_ranges.size() );
std::vector<KeyInfo>& points = this->points;
for(int r=0; r<tr.read_conflict_ranges.size(); r++) {
const KeyRangeRef& range = tr.read_conflict_ranges[r];
points.emplace_back(range.begin, false, true, false, t, &info->readRanges[r].first);
//points.back().keyEnd = StringRef(buf,range.second);
points.emplace_back(range.end, false, false, false, t, &info->readRanges[r].second);
combinedReadConflictRanges.emplace_back(range.begin, range.end, tr.read_snapshot, t);
}
for(int r=0; r<tr.write_conflict_ranges.size(); r++) {
const KeyRangeRef& range = tr.write_conflict_ranges[r];
points.emplace_back(range.begin, false, true, true, t, &info->writeRanges[r].first);
points.emplace_back(range.end, false, false, true, t, &info->writeRanges[r].second);
}
}
this->transactionInfo.push_back( arena, info );
}
class MiniConflictSet2 : NonCopyable {
std::vector<bool> values;
public:
explicit MiniConflictSet2( int size ) {
values.assign( size, false );
}
void set( int begin, int end ) {
for(int i=begin; i<end; i++)
values[i] = true;
}
bool any( int begin, int end ) {
for(int i=begin; i<end; i++)
if (values[i])
return true;
return false;
}
};
class MiniConflictSet : NonCopyable {
typedef uint64_t wordType;
enum { bucketShift = 6, bucketMask=sizeof(wordType)*8-1 };
std::vector<wordType> values; // undefined when andValues is true for a range of values
std::vector<wordType> orValues;
std::vector<wordType> andValues;
MiniConflictSet2 debug; // SOMEDAY: Test on big ranges, eliminate this
uint64_t bitMask(unsigned int bit){ // computes results for bit%word
return (((wordType)1) << ( bit & bucketMask )); // '&' unnecesary?
}
void setNthBit(std::vector<wordType>& v, const unsigned int bit){
v[bit>>bucketShift] |= bitMask(bit);
}
void clearNthBit(std::vector<wordType>& v, const unsigned int bit){
v[bit>>bucketShift] &= ~(bitMask(bit));
}
bool getNthBit(const std::vector<wordType>& v, const unsigned int bit){
return (v[bit>>bucketShift] & bitMask(bit)) != 0;
}
int wordsForNBits(unsigned int bits){
return (bits+((1<<bucketShift)-1))>>bucketShift;
}
wordType highBits(int b){ // bits (b&bucketMask) and higher are 1
#pragma warning(disable: 4146)
return -(wordType(1) << b);
#pragma warning(default: 4146)
}
wordType lowBits(int b){ // bits lower than b are 1
return (wordType(1)<<b)-1;
}
wordType lowBits2(int b) {
return (b&bucketMask) ? lowBits(b) : -1;
}
void setBits(std::vector<wordType>& v, int bitBegin, int bitEnd, bool fillMiddle){
if (bitBegin >= bitEnd) return;
int beginWord = bitBegin>>bucketShift;
int lastWord = ((bitEnd+bucketMask) >> bucketShift) - 1;
if (beginWord == lastWord){
v[beginWord] |= highBits(bitBegin) & lowBits2(bitEnd);
} else {
v[beginWord] |= highBits(bitBegin);
if (fillMiddle)
for(int w=beginWord+1;w<lastWord;w++)
v[w] = wordType(-1);
v[lastWord] |= lowBits2(bitEnd);
}
}
bool orBits(std::vector<wordType>& v, int bitBegin, int bitEnd, bool getMiddle) {
if (bitBegin >= bitEnd) return false;
int beginWord = bitBegin >> bucketShift;
int lastWord = ((bitEnd+bucketMask) >> bucketShift) - 1;
if (beginWord == lastWord)
return (v[beginWord] & highBits(bitBegin) & lowBits2(bitEnd)) != 0;
else {
if (getMiddle)
for(int w=beginWord+1; w<lastWord; w++)
if (v[w])
return true;
return ((v[beginWord] & highBits(bitBegin)) | (v[lastWord] & lowBits2(bitEnd))) != 0;
}
}
public:
explicit MiniConflictSet( int size ) : debug(size) {
static_assert((1<<bucketShift) == sizeof(wordType)*8, "BucketShift incorrect");
values.assign( wordsForNBits(size), false );
orValues.assign( wordsForNBits(wordsForNBits(size)), false);
andValues.assign( wordsForNBits(wordsForNBits(size)), false);
}
void set( int begin, int end ) {
debug.set(begin,end);
if (begin == end) return;
int beginWord = begin>>bucketShift;
int lastWord = ((end+bucketMask) >> bucketShift) - 1;
setBits(values, begin, end, false);
setBits(andValues, beginWord+1, lastWord, true);
setBits(orValues, beginWord, lastWord+1, true);
}
bool any(int begin, int end) {
bool a = orImpl(begin,end);
bool b = debug.any(begin,end);
ASSERT( a == b );
return b;
}
bool orImpl( int begin, int end ) {
if (begin == end) return false;
int beginWord = begin>>bucketShift;
int lastWord = ((end+bucketMask) >> bucketShift) - 1;
return orBits( orValues, beginWord+1, lastWord, true ) ||
getNthBit( andValues, beginWord ) || getNthBit( andValues, lastWord ) ||
orBits( values, begin, end, false );
}
};
void ConflictBatch::checkIntraBatchConflicts() {
int index = 0;
for(int p=0; p<points.size(); p++)
*points[p].pIndex = index++;
MiniConflictSet mcs( index );
for(int t=0; t<transactionInfo.size(); t++) {
const TransactionInfo& tr = *transactionInfo[t];
if (transactionConflictStatus[t]) continue;
bool conflict = tr.tooOld;
for(int i=0; i<tr.readRanges.size(); i++)
if ( mcs.any( tr.readRanges[i].first, tr.readRanges[i].second ) ) {
conflict = true;
break;
}
transactionConflictStatus[t] = conflict;
if (!conflict)
for(int i=0; i<tr.writeRanges.size(); i++)
mcs.set( tr.writeRanges[i].first, tr.writeRanges[i].second );
}
}
void ConflictBatch::GetTooOldTransactions(std::vector<int>& tooOldTransactions) {
for (int i = 0; i<transactionInfo.size(); i++) {
if (transactionInfo[i]->tooOld) {
tooOldTransactions.push_back(i);
}
}
}
void ConflictBatch::detectConflicts(Version now, Version newOldestVersion, std::vector<int>& nonConflicting, std::vector<int>* tooOldTransactions) {
double t = timer();
sortPoints( points );
//std::sort( combinedReadConflictRanges.begin(), combinedReadConflictRanges.end() );
g_sort += timer()-t;
transactionConflictStatus = new bool[ transactionCount ];
memset(transactionConflictStatus, 0, transactionCount*sizeof(bool));
t = timer();
checkReadConflictRanges();
g_checkRead += timer()-t;
t = timer();
checkIntraBatchConflicts();
g_checkBatch += timer()-t;
t = timer();
combineWriteConflictRanges();
g_combine += timer()-t;
t = timer();
mergeWriteConflictRanges(now);
g_merge += timer()-t;
for (int i = 0; i < transactionCount; i++)
{
if (!transactionConflictStatus[i])
nonConflicting.push_back( i );
if (tooOldTransactions && transactionInfo[i]->tooOld)
tooOldTransactions->push_back(i);
}
delete[] transactionConflictStatus;
t = timer();
if (newOldestVersion > cs->oldestVersion) {
cs->oldestVersion = newOldestVersion;
SkipList::Finger finger;
int temp;
cs->versionHistory.find( &cs->removalKey, &finger, &temp, 1 );
cs->versionHistory.removeBefore( cs->oldestVersion, finger, combinedWriteConflictRanges.size()*3 + 10 );
cs->removalKey = finger.getValue();
}
g_removeBefore += timer()-t;
}
void ConflictBatch::checkReadConflictRanges() {
if (!combinedReadConflictRanges.size())
return;
if (PARALLEL_THREAD_COUNT) {
Event done[PARALLEL_THREAD_COUNT?PARALLEL_THREAD_COUNT:1];
for(int t=0; t<PARALLEL_THREAD_COUNT; t++) {
cs->worker_nextAction[t] = action( [&,t] {
#pragma GCC diagnostic push
DISABLE_ZERO_DIVISION_FLAG
auto begin = &combinedReadConflictRanges[0] + t*combinedReadConflictRanges.size()/PARALLEL_THREAD_COUNT;
auto end = &combinedReadConflictRanges[0] + (t+1)*combinedReadConflictRanges.size()/PARALLEL_THREAD_COUNT;
#pragma GCC diagnostic pop
cs->versionHistory.detectConflicts( begin, end-begin, transactionConflictStatus );
done[t].set();
});
cs->worker_ready[t]->set();
}
for(int i=0; i<PARALLEL_THREAD_COUNT; i++)
done[i].block();
} else {
cs->versionHistory.detectConflicts( &combinedReadConflictRanges[0], combinedReadConflictRanges.size(), transactionConflictStatus );
}
}
void ConflictBatch::addConflictRanges(Version now, std::vector< std::pair<StringRef,StringRef> >::iterator begin, std::vector< std::pair<StringRef,StringRef> >::iterator end,SkipList* part) {
int count = end-begin;
#if 0
//for(auto w = begin; w != end; ++w)
for(auto w = end-1; w != begin-1; --w)
part->addConflictRange( w->first, w->second, now );
#else
static_assert( sizeof( begin[0] ) == sizeof(StringRef)*2, "Write Conflict Range type not convertible to two StringPtrs" );
const StringRef* strings = reinterpret_cast<const StringRef*>( &*begin );
int stringCount = count*2;
static const int stripeSize = 16;
SkipList::Finger fingers[ stripeSize ];
int temp[ stripeSize ];
int stripes = (stringCount+stripeSize-1)/stripeSize;
int ss = stringCount - (stripes-1)*stripeSize;
for(int s=stripes-1; s>=0; s--) {
part->find( &strings[s * stripeSize], &fingers[0], temp, ss );
part->addConflictRanges( &fingers[0], ss/2, now );
ss = stripeSize;
}
#endif
}
void ConflictBatch::mergeWriteConflictRanges(Version now) {
if (!combinedWriteConflictRanges.size())
return;
if (PARALLEL_THREAD_COUNT) {
std::vector<SkipList> parts;
for (int i = 0; i < PARALLEL_THREAD_COUNT; i++)
parts.emplace_back();
std::vector<StringRef> splits( parts.size()-1 );
for(int s=0; s<splits.size(); s++)
splits[s] = combinedWriteConflictRanges[ (s+1)*combinedWriteConflictRanges.size()/parts.size() ].first;
cs->versionHistory.partition( splits.size() ? &splits[0] : NULL, splits.size(), &parts[0] );
std::vector<double> tstart(PARALLEL_THREAD_COUNT), tend(PARALLEL_THREAD_COUNT);
Event done[PARALLEL_THREAD_COUNT ? PARALLEL_THREAD_COUNT : 1];
double before = timer();
for(int t=0; t<parts.size(); t++) {
cs->worker_nextAction[t] = action( [&,t] {
tstart[t] = timer();
auto begin = combinedWriteConflictRanges.begin() + (t*combinedWriteConflictRanges.size()/parts.size());
auto end = combinedWriteConflictRanges.begin() + ((t+1)*combinedWriteConflictRanges.size()/parts.size());
addConflictRanges(now, begin, end, &parts[t]);
tend[t] = timer();
done[t].set();
});
cs->worker_ready[t]->set();
}
double launch = timer();
for(int i=0; i<PARALLEL_THREAD_COUNT; i++)
done[i].block();
double after = timer();
g_merge_launch += launch-before;
//g_merge_start_var += *std::max_element(tstart.begin(), tstart.end()) - before;
g_merge_fork += *std::min_element(tstart.begin(), tstart.end()) - before;
g_merge_start_var += *std::max_element(tstart.begin(), tstart.end()) - *std::min_element(tstart.begin(), tstart.end());
g_merge_end_var += *std::max_element(tend.begin(), tend.end()) - *std::min_element(tend.begin(), tend.end());
g_merge_join += after - *std::max_element(tend.begin(), tend.end());
double run_max = 0, run_min = 1e9;
for(int i=0; i<tend.size(); i++) {
run_max = max(run_max, tend[i]-tstart[i]);
run_min = min(run_min, tend[i]-tstart[i]);
}
g_merge_run_var += run_max-run_min;
g_merge_run_shortest += run_min;
g_merge_run_longest += run_max;
g_merge_run_total += std::accumulate(tend.begin(),tend.end(),0.0)-std::accumulate(tstart.begin(),tstart.end(),0.0);
cs->versionHistory.concatenate( &parts[0], parts.size() );
} else {
addConflictRanges( now, combinedWriteConflictRanges.begin(), combinedWriteConflictRanges.end(), &cs->versionHistory );
}
//for(auto w = combinedWriteConflictRanges.begin(); w != combinedWriteConflictRanges.end(); ++w)
// versionHistory.addConflictRange( w->first.begin(), w->first.size(), w->second.begin(), w->second.size(), now );
}
void ConflictBatch::combineWriteConflictRanges()
{
int activeWriteCount = 0;
for(int i=0; i<points.size(); i++) {
KeyInfo& point = points[i];
if (point.write && !transactionConflictStatus[ point.transaction ]) {
if (point.begin) {
activeWriteCount++;
if (activeWriteCount == 1)
combinedWriteConflictRanges.emplace_back(point.key, KeyRef());
} else /*if (point.end)*/ {
activeWriteCount--;
if (activeWriteCount == 0)
combinedWriteConflictRanges.back().second = point.key;
}
}
}
}
//void showNumaStatus();
/*
bool sse4Less( const uint8_t* a, int aLen, const uint8_t* b, int bLen ) {
while (true) {
int res = _mm_cmpestri(*(__m128i*)a, aLen, *(__m128i*)b, bLen, _SIDD_UBYTE_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_NEGATIVE_POLARITY | _SIDD_LEAST_SIGNIFICANT );
printf("%d ", res);
if (res == 16) {
if (bLen < 16) return false;
a += 16; b += 16; aLen -= 16; bLen -= 16;
}
if (res == bLen) return false;
if (res == aLen) return true;
return a[res] < b[res];
}
}
void tless( const char* a, const char* b ) {
bool x = sse4Less( (const uint8_t*)a, strlen(a), (const uint8_t*)b, strlen(b) );
if (x)
printf("%s < %s\n", a, b);
else
printf("%s >= %s\n", a, b);
}
void sse4Test(){
tless("hello", "world");
tless("a", "a");
tless("world", "hello");
tless("world", "worry");
tless("worry", "world");
tless("hello", "hello1");
tless("hello1", "hello");
tless("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaahello", "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaworld");
tless("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaworld", "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaahello");
tless("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaworld", "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaworry");
tless("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaworry", "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaworld");
tless("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaahello", "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaahello1");
tless("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaahello1", "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaahello");
char *a = "hello1worldthisisalonglonglongstring";
char *b = "hello";
__m128i aa = *(__m128i*)a;
__m128i bb = *(__m128i*)a;
int res = _mm_cmpestri(aa, 2, bb, 2, _SIDD_UBYTE_OPS | _SIDD_CMP_EQUAL_EACH | _SIDD_NEGATIVE_POLARITY | _SIDD_LEAST_SIGNIFICANT );
cout << res << endl;
}
*/
void miniConflictSetTest() {
for(int i=0; i<2000000; i++) {
int size = 64*5; // Also run 64*64*5 to test multiple words of andValues and orValues
MiniConflictSet mini(size);
for(int j=0; j<2; j++) {
int a = deterministicRandom()->randomInt(0, size);
int b = deterministicRandom()->randomInt(a, size);
mini.set( a, b );
}
for(int j=0; j<4; j++) {
int a = deterministicRandom()->randomInt(0, size);
int b = deterministicRandom()->randomInt(a, size);
mini.any( a, b ); // Tests correctness internally
}
}
printf("miniConflictSetTest complete\n");
}
void skipListTest() {
printf("Skip list test\n");
//sse4Test();
//A test case that breaks the old operator<
//KeyInfo a( LiteralStringRef("hello"), true, false, true, -1 );
//KeyInfo b( LiteralStringRef("hello\0"), false, false, false, 0 );
miniConflictSetTest();
setAffinity(0);
//showNumaStatus();
double start;
ConflictSet* cs = newConflictSet();
Arena testDataArena;
VectorRef< VectorRef<KeyRangeRef> > testData;
testData.resize(testDataArena, 500);
std::vector<std::vector<uint8_t>> success( testData.size() );
std::vector<std::vector<uint8_t>> success2( testData.size() );
for(int i=0; i<testData.size(); i++) {
testData[i].resize(testDataArena, 5000);
success[i].assign( testData[i].size(), false );
success2[i].assign( testData[i].size(), false );
for(int j=0; j<testData[i].size(); j++) {
int key = deterministicRandom()->randomInt(0, 20000000);
int key2 = key + 1 + deterministicRandom()->randomInt(0, 10);
testData[i][j] = KeyRangeRef(
setK( testDataArena, key ),
setK( testDataArena, key2 ) );
}
}
printf("Test data generated (%d)\n", deterministicRandom()->randomInt(0,100000));
printf(" %d threads, %d batches, %d/batch\n", PARALLEL_THREAD_COUNT, testData.size(), testData[0].size());
printf("Running\n");
int readCount = 1, writeCount = 1;
int cranges = 0, tcount = 0;
start = timer();
std::vector<std::vector<int>> nonConflict( testData.size() );
for(int i=0; i<testData.size(); i++) {
Arena buf;
std::vector<CommitTransactionRef> trs;
double t = timer();
for(int j=0; j+readCount+writeCount<=testData[i].size(); j+=readCount+writeCount) {
CommitTransactionRef tr;
for(int k=0; k<readCount; k++) {
KeyRangeRef r( buf, testData[i][j+k] );
tr.read_conflict_ranges.push_back( buf, r );
}
for(int k=0; k<writeCount; k++) {
KeyRangeRef r( buf, testData[i][j+readCount+k] );
tr.write_conflict_ranges.push_back( buf, r );
}
cranges += tr.read_conflict_ranges.size() + tr.write_conflict_ranges.size();
tr.read_snapshot = i;
trs.push_back(tr);
}
tcount += trs.size();
g_buildTest += timer()-t;
t = timer();
ConflictBatch batch( cs );
for(int j=0; j<trs.size(); j++)
batch.addTransaction( trs[j] );
g_add += timer()-t;
t = timer();
batch.detectConflicts( i+50, i, nonConflict[i] );
g_detectConflicts += timer()-t;
}
double elapsed = timer()-start;
printf("New conflict set: %0.3f sec\n", elapsed);
printf(" %0.3f Mtransactions/sec\n", tcount/elapsed/1e6);
printf(" %0.3f Mkeys/sec\n", cranges*2/elapsed/1e6);
elapsed = g_detectConflicts.getValue();
printf("Detect only: %0.3f sec\n", elapsed);
printf(" %0.3f Mtransactions/sec\n", tcount/elapsed/1e6);
printf(" %0.3f Mkeys/sec\n", cranges*2/elapsed/1e6);
elapsed = g_checkRead.getValue() + g_merge.getValue();
printf("Skiplist only: %0.3f sec\n", elapsed);
printf(" %0.3f Mtransactions/sec\n", tcount/elapsed/1e6);
printf(" %0.3f Mkeys/sec\n", cranges*2/elapsed/1e6);
printf("Performance counters:\n");
for(int c=0; c<skc.size(); c++) {
printf("%20s: %s\n", skc[c]->getMetric().name().c_str(), skc[c]->getMetric().formatted().c_str());
}
//showNumaStatus();
printf("%d entries in version history\n", cs->versionHistory.count());
/*start = timer();
vector<vector<int>> nonConflict2( testData.size() );
SlowConflictSet scs;
Standalone<VectorRef<KeyRangeRef>> ranges;
ranges.resize( ranges.arena(), 1 );
for(int i=0; i<testData.size(); i++) {
for(int j=0; j<testData[i].size(); j++) {
ranges[0] = testData[i][j];
if (!scs.is_conflict( ranges, i )) {
nonConflict2[i].push_back( j );
scs.add( ranges, VectorRef<KeyValueRef>(), i + 50 );
}
}
}
printf("Old conflict set: %0.3f sec\n", timer()-start);
int aminusb=0, bminusa=0, atotal=0;
for(int i=0; i<testData.size(); i++) {
vector<bool> a( testData[i].size() ), b( testData[i].size() );
for(int j=0; j<nonConflict[i].size(); j++)
a[ nonConflict[i][j] ] = true;
for(int j=0; j<nonConflict2[i].size(); j++)
b[ nonConflict2[i][j] ] = true;
for(int j=0; j<a.size(); j++) {
if (a[j]) atotal++;
if (a[j] && !b[j]) aminusb++;
else if (b[j] && !a[j]) bminusa++;
}
}
printf("%d transactions accepted\n", atotal);
if (bminusa)
printf("ERROR: %d transactions unnecessarily rejected!\n", bminusa);
if (aminusb)
printf("ERROR: %d transactions incorrectly accepted!\n", aminusb);
*/
//for(int i=0; i<testData.size(); i++)
// printf("%d %d %d %d\n", i, nonConflict[i].size(), nonConflict2[i].size()-nonConflict[i].size(), nonConflict[i] != nonConflict2[i]);
}