foundationdb/fdbclient/BlobGranuleReader.actor.cpp

239 lines
8.4 KiB
C++

/*
* BlobGranuleReader.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2024 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <map>
#include <vector>
#include "fmt/format.h"
#include "fdbclient/AsyncFileS3BlobStore.actor.h"
#include "fdbclient/BlobGranuleCommon.h"
#include "fdbclient/BlobGranuleFiles.h"
#include "fdbclient/BlobGranuleReader.actor.h"
#include "fdbclient/BlobWorkerCommon.h"
#include "fdbclient/BlobWorkerInterface.h"
#include "fdbclient/FDBTypes.h"
#include "flow/actorcompiler.h" // This must be the last #include.
ACTOR Future<Standalone<StringRef>> readFile(Reference<BlobConnectionProvider> bstoreProvider, BlobFilePointerRef f) {
try {
state Arena arena;
std::string fname = f.filename.toString();
state Reference<BackupContainerFileSystem> bstore = bstoreProvider->getForRead(fname);
state Reference<IAsyncFile> reader = wait(bstore->readFile(fname));
state uint8_t* data = new (arena) uint8_t[f.length];
int readSize = wait(reader->read(data, f.length, f.offset));
ASSERT(f.length == readSize);
StringRef dataRef(data, f.length);
return Standalone<StringRef>(dataRef, arena);
} catch (Error& e) {
throw e;
}
}
// TODO: improve the interface of this function so that it doesn't need
// to be passed the entire BlobWorkerStats object
// FIXME: probably want to chunk this up with yields to avoid slow task for blob worker re-snapshotting by calling the
// sub-functions that BlobGranuleFiles actually exposes?
ACTOR Future<RangeResult> readBlobGranule(BlobGranuleChunkRef chunk,
KeyRangeRef keyRange,
Version beginVersion,
Version readVersion,
Reference<BlobConnectionProvider> bstore,
Optional<BlobWorkerStats*> stats) {
// TODO REMOVE with early replying
ASSERT(readVersion == chunk.includedVersion);
state Arena arena;
try {
Future<Standalone<StringRef>> readSnapshotFuture;
if (chunk.snapshotFile.present()) {
readSnapshotFuture = readFile(bstore, chunk.snapshotFile.get());
if (stats.present()) {
++stats.get()->s3GetReqs;
}
}
state std::vector<Future<Standalone<StringRef>>> readDeltaFutures;
readDeltaFutures.reserve(chunk.deltaFiles.size());
for (BlobFilePointerRef deltaFile : chunk.deltaFiles) {
readDeltaFutures.push_back(readFile(bstore, deltaFile));
if (stats.present()) {
++stats.get()->s3GetReqs;
}
}
state Optional<StringRef> snapshotData; // not present if snapshotFile isn't present
if (chunk.snapshotFile.present()) {
state Standalone<StringRef> s = wait(readSnapshotFuture);
arena.dependsOn(s.arena());
snapshotData = s;
}
state int numDeltaFiles = chunk.deltaFiles.size();
state std::vector<StringRef> deltaData;
state int deltaIdx;
deltaData.reserve(numDeltaFiles);
for (deltaIdx = 0; deltaIdx < numDeltaFiles; deltaIdx++) {
Standalone<StringRef> data = wait(readDeltaFutures[deltaIdx]);
deltaData.push_back(data);
arena.dependsOn(data.arena());
}
// TODO do something useful with stats?
GranuleMaterializeStats stats;
return materializeBlobGranule(chunk, keyRange, beginVersion, readVersion, snapshotData, deltaData, stats);
} catch (Error& e) {
throw e;
}
}
// TODO probably should add things like limit/bytelimit at some point?
ACTOR Future<Void> readBlobGranules(BlobGranuleFileRequest request,
BlobGranuleFileReply reply,
Reference<BlobConnectionProvider> bstore,
PromiseStream<RangeResult> results) {
// TODO for large amount of chunks, this should probably have some sort of buffer limit like ReplyPromiseStream.
// Maybe just use ReplyPromiseStream instead of PromiseStream?
try {
state int i;
for (i = 0; i < reply.chunks.size(); i++) {
RangeResult chunkResult = wait(
readBlobGranule(reply.chunks[i], request.keyRange, request.beginVersion, request.readVersion, bstore));
results.send(std::move(chunkResult));
}
results.sendError(end_of_stream());
} catch (Error& e) {
results.sendError(e);
}
return Void();
}
// Return true if a given range is fully covered by blob chunks
bool isRangeFullyCovered(KeyRange range, Standalone<VectorRef<BlobGranuleChunkRef>> blobChunks) {
std::vector<KeyRangeRef> blobRanges;
for (const BlobGranuleChunkRef& chunk : blobChunks) {
blobRanges.push_back(chunk.keyRange);
}
return range.isCovered(blobRanges);
}
void testAddChunkRange(KeyRef begin, KeyRef end, Standalone<VectorRef<BlobGranuleChunkRef>>& chunks) {
BlobGranuleChunkRef chunk;
chunk.keyRange = KeyRangeRef(begin, end);
chunks.push_back(chunks.arena(), chunk);
}
TEST_CASE("/fdbserver/blobgranule/isRangeCoveredByBlob") {
Standalone<VectorRef<BlobGranuleChunkRef>> chunks;
// chunk1 key_a1 - key_a9
testAddChunkRange("key_a1"_sr, "key_a9"_sr, chunks);
// chunk2 key_b1 - key_b9
testAddChunkRange("key_b1"_sr, "key_b9"_sr, chunks);
// check empty range. not covered
{ ASSERT(isRangeFullyCovered(KeyRangeRef(), chunks) == false); }
// check empty chunks. not covered
{
Standalone<VectorRef<BlobGranuleChunkRef>> empyChunks;
ASSERT(isRangeFullyCovered(KeyRangeRef(), empyChunks) == false);
}
// check '' to \xff
{ ASSERT(isRangeFullyCovered(KeyRangeRef(""_sr, "\xff"_sr), chunks) == false); }
// check {key_a1, key_a9}
{ ASSERT(isRangeFullyCovered(KeyRangeRef("key_a1"_sr, "key_a9"_sr), chunks)); }
// check {key_a1, key_a3}
{ ASSERT(isRangeFullyCovered(KeyRangeRef("key_a1"_sr, "key_a3"_sr), chunks)); }
// check {key_a0, key_a3}
{ ASSERT(isRangeFullyCovered(KeyRangeRef("key_a0"_sr, "key_a3"_sr), chunks) == false); }
// check {key_a5, key_b2}
{
auto range = KeyRangeRef("key_a5"_sr, "key_b5"_sr);
ASSERT(isRangeFullyCovered(range, chunks) == false);
ASSERT(range.begin == "key_a5"_sr);
ASSERT(range.end == "key_b5"_sr);
}
// check continued chunks
{
Standalone<VectorRef<BlobGranuleChunkRef>> continuedChunks;
testAddChunkRange("key_a1"_sr, "key_a9"_sr, continuedChunks);
testAddChunkRange("key_a9"_sr, "key_b1"_sr, continuedChunks);
testAddChunkRange("key_b1"_sr, "key_b9"_sr, continuedChunks);
ASSERT(isRangeFullyCovered(KeyRangeRef("key_a1"_sr, "key_b9"_sr), continuedChunks));
}
// check functionality of isCovered()
{
std::vector<KeyRangeRef> ranges;
ranges.push_back(KeyRangeRef("key_a"_sr, "key_b"_sr));
ranges.push_back(KeyRangeRef("key_x"_sr, "key_y"_sr));
ASSERT(KeyRangeRef("key_x"_sr, "key_y"_sr).isCovered(ranges));
ranges.clear();
ranges.push_back(KeyRangeRef("key_a"_sr, "key_b"_sr));
ranges.push_back(KeyRangeRef("key_v"_sr, "key_y"_sr));
ASSERT(KeyRangeRef("key_x"_sr, "key_y"_sr).isCovered(ranges));
ranges.clear();
ranges.push_back(KeyRangeRef("key_a"_sr, "key_b"_sr));
ranges.push_back(KeyRangeRef("key_x"_sr, "key_xa"_sr));
ranges.push_back(KeyRangeRef("key_xa"_sr, "key_ya"_sr));
ASSERT(KeyRangeRef("key_x"_sr, "key_y"_sr).isCovered(ranges));
ranges.clear();
ranges.push_back(KeyRangeRef("key_a"_sr, "key_b"_sr));
ranges.push_back(KeyRangeRef("key_x"_sr, "key_xa"_sr));
ranges.push_back(KeyRangeRef("key_xa"_sr, "key_xb"_sr));
ASSERT(!KeyRangeRef("key_x"_sr, "key_y"_sr).isCovered(ranges));
ranges.clear();
ranges.push_back(KeyRangeRef("key_a"_sr, "key_b"_sr));
ranges.push_back(KeyRangeRef("key_x"_sr, "key_xa"_sr));
ASSERT(!KeyRangeRef("key_x"_sr, "key_y"_sr).isCovered(ranges));
ranges.clear();
ranges.push_back(KeyRangeRef("key_a"_sr, "key_b"_sr));
ranges.push_back(KeyRangeRef("key_xa"_sr, "key_y"_sr));
ASSERT(!KeyRangeRef("key_x"_sr, "key_y"_sr).isCovered(ranges));
ranges.clear();
ranges.push_back(KeyRangeRef("key_a"_sr, "key_b"_sr));
ranges.push_back(KeyRangeRef("key_x"_sr, "key_y"_sr));
ASSERT(!KeyRangeRef("key_a"_sr, "key_y"_sr).isCovered(ranges));
}
return Void();
}