foundationdb/fdbserver/workloads/AsyncFileRead.actor.cpp

334 lines
10 KiB
C++

/*
* AsyncFileRead.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <utility>
#include <vector>
#include "fdbserver/workloads/workloads.actor.h"
#include "flow/ActorCollection.h"
#include "flow/SystemMonitor.h"
#include "fdbrpc/IAsyncFile.h"
#include "fdbserver/workloads/AsyncFile.actor.h"
#include "flow/DeterministicRandom.h"
#include "flow/actorcompiler.h" // This must be the last #include.
static const double ROLL_TIME = 5.0;
struct IOLog {
struct ProcessLog {
double startTime;
double lastTime;
double sumSq, sum, max, count;
bool logLatency; // when false, log times and compute elapsed, else, interpret the log'd time as a latency
ProcessLog() : logLatency(false){};
virtual void reset() {
startTime = now();
lastTime = startTime;
sumSq = 0.0;
sum = 0.0;
max = 0.0;
count = 0.0;
}
void log(double time) {
count++;
auto l = logLatency ? time : (time - lastTime); // see logLatency comment above
sum += l;
sumSq += l * l;
max = std::max<double>(max, l);
lastTime = time;
}
void dumpMetrics(std::string name) {
double elapsed = now() - startTime;
TraceEvent("ProcessLog")
.detail("Name", name)
.detail("Hz", count / elapsed)
.detail("Latency", sumSq / elapsed / 2.0)
.detail("AvgLatency", sum / count)
.detail("MaxLatency", max)
.detail("StartTime", startTime)
.detail("Elapsed", elapsed);
}
};
double lastRoll;
ProcessLog issue, completion, duration;
ProcessLog issueR, completionR, durationR;
ProcessLog issueW, completionW, durationW;
std::vector<std::pair<std::string, ProcessLog*>> logs;
IOLog() {
logs.emplace_back("issue", &issue);
logs.emplace_back("completion", &completion);
logs.emplace_back("duration", &duration);
logs.emplace_back("issueR", &issueR);
logs.emplace_back("completionR", &completionR);
logs.emplace_back("durationR", &durationR);
logs.emplace_back("issueW", &issueW);
logs.emplace_back("completionW", &completionW);
logs.emplace_back("durationW", &durationW);
duration.logLatency = true;
durationR.logLatency = true;
durationW.logLatency = true;
lastRoll = now();
for (int i = 0; i < logs.size(); i++)
logs[i].second->reset();
}
~IOLog() { roll(); }
void roll() {
for (int i = 0; i < logs.size(); i++) {
logs[i].second->dumpMetrics(logs[i].first);
logs[i].second->reset();
}
}
void checkRoll(double time) {
if (time - lastRoll > ROLL_TIME) {
roll();
lastRoll = time;
}
}
void logIOIssue(bool isWrite, double issueTime) {
issue.log(issueTime);
if (isWrite)
issueW.log(issueTime);
else
issueR.log(issueTime);
checkRoll(issueTime);
}
void logIOCompletion(bool isWrite, double start, double end) {
completion.log(end);
if (isWrite)
completionW.log(end);
else
completionR.log(end);
auto elapsed = end - start;
duration.log(elapsed);
if (isWrite)
durationW.log(elapsed);
else
durationR.log(elapsed);
checkRoll(end);
}
};
struct AsyncFileReadWorkload : public AsyncFileWorkload {
// Buffers used to store what is being read or written
std::vector<Reference<AsyncFileBuffer>> readBuffers;
// The futures for the asynchronous read operations
std::vector<Future<int>> readFutures;
// Number of reads to perform in parallel. Read tests are performed only if this is greater than zero
int numParallelReads;
// The number of bytes read in each call of read
int readSize;
// Whether or not I/O should be performed sequentially
bool sequential;
bool randomData; // if true, randomize the data in writes
bool unbatched; // If true, issue reads continuously instead of waiting for all numParallelReads reads to complete
double writeFraction;
double fixedRate;
double averageCpuUtilization;
PerfIntCounter bytesRead;
IOLog* ioLog;
RandomByteGenerator rbg;
AsyncFileReadWorkload(WorkloadContext const& wcx) : AsyncFileWorkload(wcx), bytesRead("Bytes Read"), ioLog(0) {
// Only run on one client
numParallelReads = getOption(options, LiteralStringRef("numParallelReads"), 0);
readSize = getOption(options, LiteralStringRef("readSize"), _PAGE_SIZE);
fileSize =
getOption(options, LiteralStringRef("fileSize"), (int64_t)0); // 0 = use existing, else, change file size
unbatched = getOption(options, LiteralStringRef("unbatched"), false);
sequential = getOption(options, LiteralStringRef("sequential"), true);
writeFraction = getOption(options, LiteralStringRef("writeFraction"), 0.0);
randomData = getOption(options, LiteralStringRef("randomData"), true);
fixedRate = getOption(options, LiteralStringRef("fixedRate"), 0.0);
}
~AsyncFileReadWorkload() override {}
std::string description() const override { return "AsyncFileRead"; }
Future<Void> setup(Database const& cx) override {
if (enabled)
return _setup(this);
return Void();
}
ACTOR Future<Void> _setup(AsyncFileReadWorkload* self) {
// Allow only 4K aligned reads if doing unbuffered IO
if (self->unbufferedIO && self->readSize % AsyncFileWorkload::_PAGE_SIZE != 0)
self->readSize = std::max(AsyncFileWorkload::_PAGE_SIZE,
self->readSize - self->readSize % AsyncFileWorkload::_PAGE_SIZE);
// Allocate the read buffers
for (int i = 0; i < self->numParallelReads; i++)
self->readBuffers.push_back(self->allocateBuffer(self->readSize));
wait(self->openFile(
self, IAsyncFile::OPEN_CREATE | IAsyncFile::OPEN_READWRITE, 0666, self->fileSize, self->fileSize != 0));
int64_t fileSize = wait(self->fileHandle->file->size());
self->fileSize = fileSize;
return Void();
}
Future<Void> start(Database const& cx) override {
if (enabled)
return _start(this);
return Void();
}
ACTOR Future<Void> _start(AsyncFileReadWorkload* self) {
state StatisticsState statState;
customSystemMonitor("AsyncFile Metrics", &statState);
wait(timeout(self->runReadTest(self), self->testDuration, Void()));
SystemStatistics stats = customSystemMonitor("AsyncFile Metrics", &statState);
self->averageCpuUtilization = stats.processCPUSeconds / stats.elapsed;
// Try to let the IO operations finish so we can clean up after them
wait(timeout(waitForAll(self->readFutures), 10, Void()));
return Void();
}
ACTOR static Future<Void> readLoop(AsyncFileReadWorkload* self, int bufferIndex, double fixedRate) {
state bool writeFlag = false;
state double begin = 0.0;
state double lastTime = now();
loop {
if (fixedRate)
wait(poisson(&lastTime, 1.0 / fixedRate));
// state Future<Void> d = delay( 1/25. * (.75 + 0.5*deterministicRandom()->random01()) );
int64_t offset;
if (self->unbufferedIO)
offset = (int64_t)(deterministicRandom()->random01() * (self->fileSize - 1) /
AsyncFileWorkload::_PAGE_SIZE) *
AsyncFileWorkload::_PAGE_SIZE;
else
offset = (int64_t)(deterministicRandom()->random01() * (self->fileSize - 1));
writeFlag = deterministicRandom()->random01() < self->writeFraction;
if (writeFlag)
self->rbg.writeRandomBytesToBuffer((char*)self->readBuffers[bufferIndex]->buffer, self->readSize);
auto r =
writeFlag
? tag(self->fileHandle->file->write(self->readBuffers[bufferIndex]->buffer, self->readSize, offset),
self->readSize)
: self->fileHandle->file->read(self->readBuffers[bufferIndex]->buffer, self->readSize, offset);
begin = now();
if (self->ioLog)
self->ioLog->logIOIssue(writeFlag, begin);
wait(success(uncancellable(holdWhile(self->fileHandle, holdWhile(self->readBuffers[bufferIndex], r)))));
if (self->ioLog)
self->ioLog->logIOCompletion(writeFlag, begin, now());
self->bytesRead += self->readSize;
// wait(d);
}
}
ACTOR Future<Void> runReadTest(AsyncFileReadWorkload* self) {
if (self->unbatched) {
self->ioLog = new IOLog();
std::vector<Future<Void>> readers;
readers.reserve(self->numParallelReads);
for (int i = 0; i < self->numParallelReads; i++)
readers.push_back(readLoop(self, i, self->fixedRate / self->numParallelReads));
wait(waitForAll(readers));
delete self->ioLog;
return Void();
}
state int64_t offset = self->fileSize;
loop {
// Read consecutive chunks of the file using different actors
for (int i = 0; i < self->numParallelReads; i++) {
if (self->sequential) {
offset += self->readSize;
// If the file is exhausted, start over at the beginning
if (offset >= self->fileSize)
offset = 0;
} else if (self->unbufferedIO)
offset = (int64_t)(deterministicRandom()->random01() * (self->fileSize - 1) /
AsyncFileWorkload::_PAGE_SIZE) *
AsyncFileWorkload::_PAGE_SIZE;
else
offset = (int64_t)(deterministicRandom()->random01() * (self->fileSize - 1));
// Perform the read. Don't allow it to be cancelled (because the underlying IO may not be cancellable)
// and don't allow objects that the read uses to be deleted
self->readFutures.push_back(uncancellable(holdWhile(
self->fileHandle,
holdWhile(self->readBuffers[i],
self->fileHandle->file->read(self->readBuffers[i]->buffer, self->readSize, offset)))));
}
wait(waitForAll(self->readFutures));
self->bytesRead += self->readSize * self->numParallelReads;
self->readFutures.clear();
wait(delay(0));
}
}
void getMetrics(std::vector<PerfMetric>& m) override {
if (enabled) {
m.emplace_back("Bytes read/sec", bytesRead.getValue() / testDuration, Averaged::False);
m.emplace_back("Average CPU Utilization (Percentage)", averageCpuUtilization * 100, Averaged::False);
}
}
};
WorkloadFactory<AsyncFileReadWorkload> AsyncFileReadWorkloadFactory("AsyncFileRead");