1137 lines
46 KiB
C++
1137 lines
46 KiB
C++
/*
|
|
* DataDistributionTracker.actor.cpp
|
|
*
|
|
* This source file is part of the FoundationDB open source project
|
|
*
|
|
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "fdbrpc/FailureMonitor.h"
|
|
#include "fdbclient/SystemData.h"
|
|
#include "fdbserver/DataDistribution.actor.h"
|
|
#include "fdbserver/Knobs.h"
|
|
#include "fdbclient/DatabaseContext.h"
|
|
#include "flow/ActorCollection.h"
|
|
#include "flow/FastRef.h"
|
|
#include "flow/Trace.h"
|
|
#include "flow/actorcompiler.h" // This must be the last #include.
|
|
|
|
// The used bandwidth of a shard. The higher the value is, the busier the shard is.
|
|
enum BandwidthStatus { BandwidthStatusLow, BandwidthStatusNormal, BandwidthStatusHigh };
|
|
|
|
enum ReadBandwidthStatus { ReadBandwidthStatusNormal, ReadBandwidthStatusHigh };
|
|
|
|
BandwidthStatus getBandwidthStatus(StorageMetrics const& metrics) {
|
|
if (metrics.bytesPerKSecond > SERVER_KNOBS->SHARD_MAX_BYTES_PER_KSEC)
|
|
return BandwidthStatusHigh;
|
|
else if (metrics.bytesPerKSecond < SERVER_KNOBS->SHARD_MIN_BYTES_PER_KSEC)
|
|
return BandwidthStatusLow;
|
|
|
|
return BandwidthStatusNormal;
|
|
}
|
|
|
|
ReadBandwidthStatus getReadBandwidthStatus(StorageMetrics const& metrics) {
|
|
if (metrics.bytesReadPerKSecond <= SERVER_KNOBS->SHARD_READ_HOT_BANDWITH_MIN_PER_KSECONDS ||
|
|
metrics.bytesReadPerKSecond <= SERVER_KNOBS->SHARD_MAX_READ_DENSITY_RATIO * metrics.bytes *
|
|
SERVER_KNOBS->STORAGE_METRICS_AVERAGE_INTERVAL_PER_KSECONDS) {
|
|
return ReadBandwidthStatusNormal;
|
|
} else {
|
|
return ReadBandwidthStatusHigh;
|
|
}
|
|
}
|
|
|
|
ACTOR Future<Void> updateMaxShardSize(Reference<AsyncVar<int64_t>> dbSizeEstimate,
|
|
Reference<AsyncVar<Optional<int64_t>>> maxShardSize) {
|
|
state int64_t lastDbSize = 0;
|
|
state int64_t granularity = g_network->isSimulated() ? SERVER_KNOBS->DD_SHARD_SIZE_GRANULARITY_SIM
|
|
: SERVER_KNOBS->DD_SHARD_SIZE_GRANULARITY;
|
|
loop {
|
|
auto sizeDelta = std::abs(dbSizeEstimate->get() - lastDbSize);
|
|
if (sizeDelta > granularity || !maxShardSize->get().present()) {
|
|
auto v = getMaxShardSize(dbSizeEstimate->get());
|
|
maxShardSize->set(v);
|
|
lastDbSize = dbSizeEstimate->get();
|
|
}
|
|
wait(dbSizeEstimate->onChange());
|
|
}
|
|
}
|
|
|
|
struct DataDistributionTracker {
|
|
Database cx;
|
|
UID distributorId;
|
|
KeyRangeMap<ShardTrackedData>& shards;
|
|
ActorCollection sizeChanges;
|
|
|
|
int64_t systemSizeEstimate;
|
|
Reference<AsyncVar<int64_t>> dbSizeEstimate;
|
|
Reference<AsyncVar<Optional<int64_t>>> maxShardSize;
|
|
Future<Void> maxShardSizeUpdater;
|
|
|
|
// CapacityTracker
|
|
PromiseStream<RelocateShard> output;
|
|
Reference<ShardsAffectedByTeamFailure> shardsAffectedByTeamFailure;
|
|
|
|
Promise<Void> readyToStart;
|
|
Reference<AsyncVar<bool>> anyZeroHealthyTeams;
|
|
|
|
// Read hot detection
|
|
PromiseStream<KeyRange> readHotShard;
|
|
|
|
// The reference to trackerCancelled must be extracted by actors,
|
|
// because by the time (trackerCancelled == true) this memory cannot
|
|
// be accessed
|
|
bool& trackerCancelled;
|
|
|
|
// This class extracts the trackerCancelled reference from a DataDistributionTracker object
|
|
// Because some actors spawned by the dataDistributionTracker outlive the DataDistributionTracker
|
|
// object, we must guard against memory errors by using a GetTracker functor to access
|
|
// the DataDistributionTracker object.
|
|
class SafeAccessor {
|
|
bool const& trackerCancelled;
|
|
DataDistributionTracker& tracker;
|
|
|
|
public:
|
|
SafeAccessor(DataDistributionTracker* tracker)
|
|
: trackerCancelled(tracker->trackerCancelled), tracker(*tracker) {
|
|
ASSERT(!trackerCancelled);
|
|
}
|
|
|
|
DataDistributionTracker* operator()() {
|
|
if (trackerCancelled) {
|
|
TEST(true); // Trying to access DataDistributionTracker after tracker has been cancelled
|
|
throw dd_tracker_cancelled();
|
|
}
|
|
return &tracker;
|
|
}
|
|
};
|
|
|
|
DataDistributionTracker(Database cx,
|
|
UID distributorId,
|
|
Promise<Void> const& readyToStart,
|
|
PromiseStream<RelocateShard> const& output,
|
|
Reference<ShardsAffectedByTeamFailure> shardsAffectedByTeamFailure,
|
|
Reference<AsyncVar<bool>> anyZeroHealthyTeams,
|
|
KeyRangeMap<ShardTrackedData>& shards,
|
|
bool& trackerCancelled)
|
|
: cx(cx), distributorId(distributorId), shards(shards), sizeChanges(false), systemSizeEstimate(0),
|
|
dbSizeEstimate(new AsyncVar<int64_t>()), maxShardSize(new AsyncVar<Optional<int64_t>>()), output(output),
|
|
shardsAffectedByTeamFailure(shardsAffectedByTeamFailure), readyToStart(readyToStart),
|
|
anyZeroHealthyTeams(anyZeroHealthyTeams), trackerCancelled(trackerCancelled) {}
|
|
|
|
~DataDistributionTracker() {
|
|
trackerCancelled = true;
|
|
// Cancel all actors so they aren't waiting on sizeChanged broken promise
|
|
sizeChanges.clear(false);
|
|
}
|
|
};
|
|
|
|
void restartShardTrackers(DataDistributionTracker* self,
|
|
KeyRangeRef keys,
|
|
Optional<ShardMetrics> startingMetrics = Optional<ShardMetrics>());
|
|
|
|
// Gets the permitted size and IO bounds for a shard. A shard that starts at allKeys.begin
|
|
// (i.e. '') will have a permitted size of 0, since the database can contain no data.
|
|
ShardSizeBounds getShardSizeBounds(KeyRangeRef shard, int64_t maxShardSize) {
|
|
ShardSizeBounds bounds;
|
|
|
|
if (shard.begin >= keyServersKeys.begin) {
|
|
bounds.max.bytes = SERVER_KNOBS->KEY_SERVER_SHARD_BYTES;
|
|
} else {
|
|
bounds.max.bytes = maxShardSize;
|
|
}
|
|
|
|
bounds.max.bytesPerKSecond = bounds.max.infinity;
|
|
bounds.max.iosPerKSecond = bounds.max.infinity;
|
|
bounds.max.bytesReadPerKSecond = bounds.max.infinity;
|
|
|
|
// The first shard can have arbitrarily small size
|
|
if (shard.begin == allKeys.begin) {
|
|
bounds.min.bytes = 0;
|
|
} else {
|
|
bounds.min.bytes = maxShardSize / SERVER_KNOBS->SHARD_BYTES_RATIO;
|
|
}
|
|
|
|
bounds.min.bytesPerKSecond = 0;
|
|
bounds.min.iosPerKSecond = 0;
|
|
bounds.min.bytesReadPerKSecond = 0;
|
|
|
|
// The permitted error is 1/3 of the general-case minimum bytes (even in the special case where this is the last
|
|
// shard)
|
|
bounds.permittedError.bytes = bounds.max.bytes / SERVER_KNOBS->SHARD_BYTES_RATIO / 3;
|
|
bounds.permittedError.bytesPerKSecond = bounds.permittedError.infinity;
|
|
bounds.permittedError.iosPerKSecond = bounds.permittedError.infinity;
|
|
bounds.permittedError.bytesReadPerKSecond = bounds.permittedError.infinity;
|
|
|
|
return bounds;
|
|
}
|
|
|
|
int64_t getMaxShardSize(double dbSizeEstimate) {
|
|
return std::min((SERVER_KNOBS->MIN_SHARD_BYTES + (int64_t)std::sqrt(std::max<double>(dbSizeEstimate, 0)) *
|
|
SERVER_KNOBS->SHARD_BYTES_PER_SQRT_BYTES) *
|
|
SERVER_KNOBS->SHARD_BYTES_RATIO,
|
|
(int64_t)SERVER_KNOBS->MAX_SHARD_BYTES);
|
|
}
|
|
|
|
ACTOR Future<Void> trackShardMetrics(DataDistributionTracker::SafeAccessor self,
|
|
KeyRange keys,
|
|
Reference<AsyncVar<Optional<ShardMetrics>>> shardMetrics) {
|
|
state BandwidthStatus bandwidthStatus =
|
|
shardMetrics->get().present() ? getBandwidthStatus(shardMetrics->get().get().metrics) : BandwidthStatusNormal;
|
|
state double lastLowBandwidthStartTime =
|
|
shardMetrics->get().present() ? shardMetrics->get().get().lastLowBandwidthStartTime : now();
|
|
state int shardCount = shardMetrics->get().present() ? shardMetrics->get().get().shardCount : 1;
|
|
state ReadBandwidthStatus readBandwidthStatus = shardMetrics->get().present()
|
|
? getReadBandwidthStatus(shardMetrics->get().get().metrics)
|
|
: ReadBandwidthStatusNormal;
|
|
|
|
wait(delay(0, TaskPriority::DataDistribution));
|
|
|
|
/*TraceEvent("TrackShardMetricsStarting")
|
|
.detail("TrackerID", trackerID)
|
|
.detail("Keys", keys)
|
|
.detail("TrackedBytesInitiallyPresent", shardMetrics->get().present())
|
|
.detail("StartingMetrics", shardMetrics->get().present() ? shardMetrics->get().get().metrics.bytes : 0)
|
|
.detail("StartingMerges", shardMetrics->get().present() ? shardMetrics->get().get().merges : 0);*/
|
|
|
|
try {
|
|
loop {
|
|
state ShardSizeBounds bounds;
|
|
if (shardMetrics->get().present()) {
|
|
auto bytes = shardMetrics->get().get().metrics.bytes;
|
|
auto readBandwidthStatus = getReadBandwidthStatus(shardMetrics->get().get().metrics);
|
|
|
|
bounds.max.bytes = std::max(int64_t(bytes * 1.1), (int64_t)SERVER_KNOBS->MIN_SHARD_BYTES);
|
|
bounds.min.bytes = std::min(
|
|
int64_t(bytes * 0.9), std::max(int64_t(bytes - (SERVER_KNOBS->MIN_SHARD_BYTES * 0.1)), (int64_t)0));
|
|
bounds.permittedError.bytes = bytes * 0.1;
|
|
if (bandwidthStatus == BandwidthStatusNormal) { // Not high or low
|
|
bounds.max.bytesPerKSecond = SERVER_KNOBS->SHARD_MAX_BYTES_PER_KSEC;
|
|
bounds.min.bytesPerKSecond = SERVER_KNOBS->SHARD_MIN_BYTES_PER_KSEC;
|
|
bounds.permittedError.bytesPerKSecond = bounds.min.bytesPerKSecond / 4;
|
|
} else if (bandwidthStatus == BandwidthStatusHigh) { // > 10MB/sec for 100MB shard, proportionally lower
|
|
// for smaller shard, > 200KB/sec no matter what
|
|
bounds.max.bytesPerKSecond = bounds.max.infinity;
|
|
bounds.min.bytesPerKSecond = SERVER_KNOBS->SHARD_MAX_BYTES_PER_KSEC;
|
|
bounds.permittedError.bytesPerKSecond = bounds.min.bytesPerKSecond / 4;
|
|
} else if (bandwidthStatus == BandwidthStatusLow) { // < 10KB/sec
|
|
bounds.max.bytesPerKSecond = SERVER_KNOBS->SHARD_MIN_BYTES_PER_KSEC;
|
|
bounds.min.bytesPerKSecond = 0;
|
|
bounds.permittedError.bytesPerKSecond = bounds.max.bytesPerKSecond / 4;
|
|
} else {
|
|
ASSERT(false);
|
|
}
|
|
// handle read bandkwith status
|
|
if (readBandwidthStatus == ReadBandwidthStatusNormal) {
|
|
bounds.max.bytesReadPerKSecond =
|
|
std::max((int64_t)(SERVER_KNOBS->SHARD_MAX_READ_DENSITY_RATIO * bytes *
|
|
SERVER_KNOBS->STORAGE_METRICS_AVERAGE_INTERVAL_PER_KSECONDS *
|
|
(1.0 + SERVER_KNOBS->SHARD_MAX_BYTES_READ_PER_KSEC_JITTER)),
|
|
SERVER_KNOBS->SHARD_READ_HOT_BANDWITH_MIN_PER_KSECONDS);
|
|
bounds.min.bytesReadPerKSecond = 0;
|
|
bounds.permittedError.bytesReadPerKSecond = bounds.min.bytesReadPerKSecond / 4;
|
|
} else if (readBandwidthStatus == ReadBandwidthStatusHigh) {
|
|
bounds.max.bytesReadPerKSecond = bounds.max.infinity;
|
|
bounds.min.bytesReadPerKSecond = SERVER_KNOBS->SHARD_MAX_READ_DENSITY_RATIO * bytes *
|
|
SERVER_KNOBS->STORAGE_METRICS_AVERAGE_INTERVAL_PER_KSECONDS *
|
|
(1.0 - SERVER_KNOBS->SHARD_MAX_BYTES_READ_PER_KSEC_JITTER);
|
|
bounds.permittedError.bytesReadPerKSecond = bounds.min.bytesReadPerKSecond / 4;
|
|
// TraceEvent("RHDTriggerReadHotLoggingForShard")
|
|
// .detail("ShardBegin", keys.begin.printable().c_str())
|
|
// .detail("ShardEnd", keys.end.printable().c_str());
|
|
self()->readHotShard.send(keys);
|
|
} else {
|
|
ASSERT(false);
|
|
}
|
|
} else {
|
|
bounds.max.bytes = -1;
|
|
bounds.min.bytes = -1;
|
|
bounds.permittedError.bytes = -1;
|
|
bounds.max.bytesPerKSecond = bounds.max.infinity;
|
|
bounds.min.bytesPerKSecond = 0;
|
|
bounds.permittedError.bytesPerKSecond = bounds.permittedError.infinity;
|
|
bounds.max.bytesReadPerKSecond = bounds.max.infinity;
|
|
bounds.min.bytesReadPerKSecond = 0;
|
|
bounds.permittedError.bytesReadPerKSecond = bounds.permittedError.infinity;
|
|
}
|
|
|
|
bounds.max.iosPerKSecond = bounds.max.infinity;
|
|
bounds.min.iosPerKSecond = 0;
|
|
bounds.permittedError.iosPerKSecond = bounds.permittedError.infinity;
|
|
|
|
loop {
|
|
Transaction tr(self()->cx);
|
|
// metrics.second is the number of key-ranges (i.e., shards) in the 'keys' key-range
|
|
std::pair<Optional<StorageMetrics>, int> metrics =
|
|
wait(self()->cx->waitStorageMetrics(keys,
|
|
bounds.min,
|
|
bounds.max,
|
|
bounds.permittedError,
|
|
CLIENT_KNOBS->STORAGE_METRICS_SHARD_LIMIT,
|
|
shardCount));
|
|
if (metrics.first.present()) {
|
|
BandwidthStatus newBandwidthStatus = getBandwidthStatus(metrics.first.get());
|
|
if (newBandwidthStatus == BandwidthStatusLow && bandwidthStatus != BandwidthStatusLow) {
|
|
lastLowBandwidthStartTime = now();
|
|
}
|
|
bandwidthStatus = newBandwidthStatus;
|
|
|
|
/*TraceEvent("ShardSizeUpdate")
|
|
.detail("Keys", keys)
|
|
.detail("UpdatedSize", metrics.metrics.bytes)
|
|
.detail("Bandwidth", metrics.metrics.bytesPerKSecond)
|
|
.detail("BandwithStatus", getBandwidthStatus(metrics))
|
|
.detail("BytesLower", bounds.min.bytes)
|
|
.detail("BytesUpper", bounds.max.bytes)
|
|
.detail("BandwidthLower", bounds.min.bytesPerKSecond)
|
|
.detail("BandwidthUpper", bounds.max.bytesPerKSecond)
|
|
.detail("ShardSizePresent", shardSize->get().present())
|
|
.detail("OldShardSize", shardSize->get().present() ? shardSize->get().get().metrics.bytes : 0)
|
|
.detail("TrackerID", trackerID);*/
|
|
|
|
if (shardMetrics->get().present()) {
|
|
self()->dbSizeEstimate->set(self()->dbSizeEstimate->get() + metrics.first.get().bytes -
|
|
shardMetrics->get().get().metrics.bytes);
|
|
if (keys.begin >= systemKeys.begin) {
|
|
self()->systemSizeEstimate +=
|
|
metrics.first.get().bytes - shardMetrics->get().get().metrics.bytes;
|
|
}
|
|
}
|
|
|
|
shardMetrics->set(ShardMetrics(metrics.first.get(), lastLowBandwidthStartTime, shardCount));
|
|
break;
|
|
} else {
|
|
shardCount = metrics.second;
|
|
if (shardMetrics->get().present()) {
|
|
auto newShardMetrics = shardMetrics->get().get();
|
|
newShardMetrics.shardCount = shardCount;
|
|
shardMetrics->set(newShardMetrics);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} catch (Error& e) {
|
|
if (e.code() != error_code_actor_cancelled && e.code() != error_code_dd_tracker_cancelled) {
|
|
self()->output.sendError(e); // Propagate failure to dataDistributionTracker
|
|
}
|
|
throw e;
|
|
}
|
|
}
|
|
|
|
ACTOR Future<Void> readHotDetector(DataDistributionTracker* self) {
|
|
try {
|
|
loop {
|
|
state KeyRange keys = waitNext(self->readHotShard.getFuture());
|
|
state Transaction tr(self->cx);
|
|
loop {
|
|
try {
|
|
Standalone<VectorRef<ReadHotRangeWithMetrics>> readHotRanges =
|
|
wait(self->cx->getReadHotRanges(keys));
|
|
for (const auto& keyRange : readHotRanges) {
|
|
TraceEvent("ReadHotRangeLog")
|
|
.detail("ReadDensity", keyRange.density)
|
|
.detail("ReadBandwidth", keyRange.readBandwidth)
|
|
.detail("ReadDensityThreshold", SERVER_KNOBS->SHARD_MAX_READ_DENSITY_RATIO)
|
|
.detail("KeyRangeBegin", keyRange.keys.begin)
|
|
.detail("KeyRangeEnd", keyRange.keys.end);
|
|
}
|
|
break;
|
|
} catch (Error& e) {
|
|
wait(tr.onError(e));
|
|
}
|
|
}
|
|
}
|
|
} catch (Error& e) {
|
|
if (e.code() != error_code_actor_cancelled)
|
|
self->output.sendError(e); // Propagate failure to dataDistributionTracker
|
|
throw e;
|
|
}
|
|
}
|
|
|
|
/*
|
|
ACTOR Future<Void> extrapolateShardBytes( Reference<AsyncVar<Optional<int64_t>>> inBytes,
|
|
Reference<AsyncVar<Optional<int64_t>>> outBytes ) { state std::deque< std::pair<double,int64_t> > past; loop { wait(
|
|
inBytes->onChange() ); if( inBytes->get().present() ) { past.emplace_back(now(),inBytes->get().get()); if
|
|
(past.size() < 2) outBytes->set( inBytes->get() ); else { while (past.size() > 1 && past.end()[-1].first -
|
|
past.begin()[1].first > 1.0) past.pop_front(); double rate = std::max(0.0,
|
|
double(past.end()[-1].second-past.begin()[0].second)/(past.end()[-1].first - past.begin()[0].first)); outBytes->set(
|
|
inBytes->get().get() + rate * 10.0 );
|
|
}
|
|
}
|
|
}
|
|
}*/
|
|
|
|
ACTOR Future<Standalone<VectorRef<KeyRef>>> getSplitKeys(DataDistributionTracker* self,
|
|
KeyRange splitRange,
|
|
StorageMetrics splitMetrics,
|
|
StorageMetrics estimated) {
|
|
loop {
|
|
state Transaction tr(self->cx);
|
|
try {
|
|
Standalone<VectorRef<KeyRef>> keys =
|
|
wait(self->cx->splitStorageMetrics(splitRange, splitMetrics, estimated));
|
|
return keys;
|
|
} catch (Error& e) {
|
|
wait(tr.onError(e));
|
|
}
|
|
}
|
|
}
|
|
|
|
ACTOR Future<int64_t> getFirstSize(Reference<AsyncVar<Optional<ShardMetrics>>> stats) {
|
|
loop {
|
|
if (stats->get().present())
|
|
return stats->get().get().metrics.bytes;
|
|
wait(stats->onChange());
|
|
}
|
|
}
|
|
|
|
ACTOR Future<Void> changeSizes(DataDistributionTracker* self, KeyRange keys, int64_t oldShardsEndingSize) {
|
|
state std::vector<Future<int64_t>> sizes;
|
|
state std::vector<Future<int64_t>> systemSizes;
|
|
for (auto it : self->shards.intersectingRanges(keys)) {
|
|
Future<int64_t> thisSize = getFirstSize(it->value().stats);
|
|
sizes.push_back(thisSize);
|
|
if (it->range().begin >= systemKeys.begin) {
|
|
systemSizes.push_back(thisSize);
|
|
}
|
|
}
|
|
|
|
wait(waitForAll(sizes));
|
|
wait(yield(TaskPriority::DataDistribution));
|
|
|
|
int64_t newShardsStartingSize = 0;
|
|
for (const auto& size : sizes) {
|
|
newShardsStartingSize += size.get();
|
|
}
|
|
|
|
int64_t newSystemShardsStartingSize = 0;
|
|
for (const auto& systemSize : systemSizes) {
|
|
newSystemShardsStartingSize += systemSize.get();
|
|
}
|
|
|
|
int64_t totalSizeEstimate = self->dbSizeEstimate->get();
|
|
/*TraceEvent("TrackerChangeSizes")
|
|
.detail("TotalSizeEstimate", totalSizeEstimate)
|
|
.detail("EndSizeOfOldShards", oldShardsEndingSize)
|
|
.detail("StartingSizeOfNewShards", newShardsStartingSize);*/
|
|
self->dbSizeEstimate->set(totalSizeEstimate + newShardsStartingSize - oldShardsEndingSize);
|
|
self->systemSizeEstimate += newSystemShardsStartingSize;
|
|
if (keys.begin >= systemKeys.begin) {
|
|
self->systemSizeEstimate -= oldShardsEndingSize;
|
|
}
|
|
return Void();
|
|
}
|
|
|
|
struct HasBeenTrueFor : ReferenceCounted<HasBeenTrueFor> {
|
|
explicit HasBeenTrueFor(const Optional<ShardMetrics>& value) {
|
|
if (value.present()) {
|
|
lowBandwidthStartTime = value.get().lastLowBandwidthStartTime;
|
|
trigger =
|
|
delayJittered(std::max(0.0, SERVER_KNOBS->DD_MERGE_COALESCE_DELAY + lowBandwidthStartTime - now()),
|
|
TaskPriority::DataDistributionLow) ||
|
|
cleared.getFuture();
|
|
}
|
|
}
|
|
|
|
Future<Void> set(double lastLowBandwidthStartTime) {
|
|
if (!trigger.isValid() || lowBandwidthStartTime != lastLowBandwidthStartTime) {
|
|
cleared = Promise<Void>();
|
|
trigger =
|
|
delayJittered(SERVER_KNOBS->DD_MERGE_COALESCE_DELAY + std::max(lastLowBandwidthStartTime - now(), 0.0),
|
|
TaskPriority::DataDistributionLow) ||
|
|
cleared.getFuture();
|
|
|
|
lowBandwidthStartTime = lastLowBandwidthStartTime;
|
|
}
|
|
return trigger;
|
|
}
|
|
void clear() {
|
|
if (!trigger.isValid()) {
|
|
return;
|
|
}
|
|
trigger = Future<Void>();
|
|
cleared.send(Void());
|
|
lowBandwidthStartTime = 0;
|
|
}
|
|
|
|
// True if this->value is true and has been true for this->seconds
|
|
bool hasBeenTrueForLongEnough() const { return trigger.isValid() && trigger.isReady(); }
|
|
|
|
private:
|
|
double lowBandwidthStartTime = 0;
|
|
Future<Void> trigger;
|
|
Promise<Void> cleared;
|
|
};
|
|
|
|
ACTOR Future<Void> shardSplitter(DataDistributionTracker* self,
|
|
KeyRange keys,
|
|
Reference<AsyncVar<Optional<ShardMetrics>>> shardSize,
|
|
ShardSizeBounds shardBounds) {
|
|
state StorageMetrics metrics = shardSize->get().get().metrics;
|
|
state BandwidthStatus bandwidthStatus = getBandwidthStatus(metrics);
|
|
|
|
// Split
|
|
TEST(true); // shard to be split
|
|
|
|
StorageMetrics splitMetrics;
|
|
splitMetrics.bytes = shardBounds.max.bytes / 2;
|
|
splitMetrics.bytesPerKSecond =
|
|
keys.begin >= keyServersKeys.begin ? splitMetrics.infinity : SERVER_KNOBS->SHARD_SPLIT_BYTES_PER_KSEC;
|
|
splitMetrics.iosPerKSecond = splitMetrics.infinity;
|
|
splitMetrics.bytesReadPerKSecond = splitMetrics.infinity; // Don't split by readBandwidth
|
|
|
|
state Standalone<VectorRef<KeyRef>> splitKeys = wait(getSplitKeys(self, keys, splitMetrics, metrics));
|
|
// fprintf(stderr, "split keys:\n");
|
|
// for( int i = 0; i < splitKeys.size(); i++ ) {
|
|
// fprintf(stderr, " %s\n", printable(splitKeys[i]).c_str());
|
|
//}
|
|
int numShards = splitKeys.size() - 1;
|
|
|
|
if (deterministicRandom()->random01() < 0.01) {
|
|
TraceEvent("RelocateShardStartSplitx100", self->distributorId)
|
|
.detail("Begin", keys.begin)
|
|
.detail("End", keys.end)
|
|
.detail("MaxBytes", shardBounds.max.bytes)
|
|
.detail("MetricsBytes", metrics.bytes)
|
|
.detail("Bandwidth",
|
|
bandwidthStatus == BandwidthStatusHigh ? "High"
|
|
: bandwidthStatus == BandwidthStatusNormal ? "Normal"
|
|
: "Low")
|
|
.detail("BytesPerKSec", metrics.bytesPerKSecond)
|
|
.detail("NumShards", numShards);
|
|
}
|
|
|
|
if (numShards > 1) {
|
|
int skipRange = deterministicRandom()->randomInt(0, numShards);
|
|
// The queue can't deal with RelocateShard requests which split an existing shard into three pieces, so
|
|
// we have to send the unskipped ranges in this order (nibbling in from the edges of the old range)
|
|
for (int i = 0; i < skipRange; i++)
|
|
restartShardTrackers(self, KeyRangeRef(splitKeys[i], splitKeys[i + 1]));
|
|
restartShardTrackers(self, KeyRangeRef(splitKeys[skipRange], splitKeys[skipRange + 1]));
|
|
for (int i = numShards - 1; i > skipRange; i--)
|
|
restartShardTrackers(self, KeyRangeRef(splitKeys[i], splitKeys[i + 1]));
|
|
|
|
for (int i = 0; i < skipRange; i++) {
|
|
KeyRangeRef r(splitKeys[i], splitKeys[i + 1]);
|
|
self->shardsAffectedByTeamFailure->defineShard(r);
|
|
self->output.send(RelocateShard(r, SERVER_KNOBS->PRIORITY_SPLIT_SHARD));
|
|
}
|
|
for (int i = numShards - 1; i > skipRange; i--) {
|
|
KeyRangeRef r(splitKeys[i], splitKeys[i + 1]);
|
|
self->shardsAffectedByTeamFailure->defineShard(r);
|
|
self->output.send(RelocateShard(r, SERVER_KNOBS->PRIORITY_SPLIT_SHARD));
|
|
}
|
|
|
|
self->sizeChanges.add(changeSizes(self, keys, shardSize->get().get().metrics.bytes));
|
|
} else {
|
|
wait(delay(1.0, TaskPriority::DataDistribution)); // In case the reason the split point was off was due to a
|
|
// discrepancy between storage servers
|
|
}
|
|
return Void();
|
|
}
|
|
|
|
ACTOR Future<Void> brokenPromiseToReady(Future<Void> f) {
|
|
try {
|
|
wait(f);
|
|
} catch (Error& e) {
|
|
if (e.code() != error_code_broken_promise) {
|
|
throw;
|
|
}
|
|
}
|
|
return Void();
|
|
}
|
|
|
|
Future<Void> shardMerger(DataDistributionTracker* self,
|
|
KeyRange const& keys,
|
|
Reference<AsyncVar<Optional<ShardMetrics>>> shardSize) {
|
|
int64_t maxShardSize = self->maxShardSize->get().get();
|
|
|
|
auto prevIter = self->shards.rangeContaining(keys.begin);
|
|
auto nextIter = self->shards.rangeContaining(keys.begin);
|
|
|
|
TEST(true); // shard to be merged
|
|
ASSERT(keys.begin > allKeys.begin);
|
|
|
|
// This will merge shards both before and after "this" shard in keyspace.
|
|
int shardsMerged = 1;
|
|
bool forwardComplete = false;
|
|
KeyRangeRef merged;
|
|
StorageMetrics endingStats = shardSize->get().get().metrics;
|
|
int shardCount = shardSize->get().get().shardCount;
|
|
double lastLowBandwidthStartTime = shardSize->get().get().lastLowBandwidthStartTime;
|
|
if (FLOW_KNOBS->DELAY_JITTER_OFFSET * SERVER_KNOBS->DD_MERGE_COALESCE_DELAY >
|
|
SERVER_KNOBS->DD_LOW_BANDWIDTH_DELAY &&
|
|
now() - lastLowBandwidthStartTime < SERVER_KNOBS->DD_LOW_BANDWIDTH_DELAY) {
|
|
TraceEvent(g_network->isSimulated() ? SevError : SevWarnAlways, "ShardMergeTooSoon", self->distributorId)
|
|
.detail("Keys", keys)
|
|
.detail("LastLowBandwidthStartTime", lastLowBandwidthStartTime);
|
|
}
|
|
|
|
int64_t systemBytes = keys.begin >= systemKeys.begin ? shardSize->get().get().metrics.bytes : 0;
|
|
|
|
loop {
|
|
Optional<ShardMetrics> newMetrics;
|
|
if (!forwardComplete) {
|
|
if (nextIter->range().end == allKeys.end) {
|
|
forwardComplete = true;
|
|
continue;
|
|
}
|
|
++nextIter;
|
|
newMetrics = nextIter->value().stats->get();
|
|
|
|
// If going forward, give up when the next shard's stats are not yet present.
|
|
if (!newMetrics.present() || shardCount + newMetrics.get().shardCount >= CLIENT_KNOBS->SHARD_COUNT_LIMIT) {
|
|
--nextIter;
|
|
forwardComplete = true;
|
|
continue;
|
|
}
|
|
} else {
|
|
--prevIter;
|
|
newMetrics = prevIter->value().stats->get();
|
|
|
|
// If going backward, stop when the stats are not present or if the shard is already over the merge
|
|
// bounds. If this check triggers right away (if we have not merged anything) then return a trigger
|
|
// on the previous shard changing "size".
|
|
if (!newMetrics.present() || shardCount + newMetrics.get().shardCount >= CLIENT_KNOBS->SHARD_COUNT_LIMIT) {
|
|
if (shardsMerged == 1) {
|
|
TEST(true); // shardMerger cannot merge anything
|
|
return brokenPromiseToReady(prevIter->value().stats->onChange());
|
|
}
|
|
|
|
++prevIter;
|
|
break;
|
|
}
|
|
}
|
|
|
|
merged = KeyRangeRef(prevIter->range().begin, nextIter->range().end);
|
|
endingStats += newMetrics.get().metrics;
|
|
shardCount += newMetrics.get().shardCount;
|
|
lastLowBandwidthStartTime = newMetrics.get().lastLowBandwidthStartTime;
|
|
if ((forwardComplete ? prevIter->range().begin : nextIter->range().begin) >= systemKeys.begin) {
|
|
systemBytes += newMetrics.get().metrics.bytes;
|
|
}
|
|
shardsMerged++;
|
|
|
|
auto shardBounds = getShardSizeBounds(merged, maxShardSize);
|
|
// If we just recently get the current shard's metrics (i.e., less than DD_LOW_BANDWIDTH_DELAY ago), it means
|
|
// the shard's metric may not be stable yet. So we cannot continue merging in this direction.
|
|
if (endingStats.bytes >= shardBounds.min.bytes || getBandwidthStatus(endingStats) != BandwidthStatusLow ||
|
|
now() - lastLowBandwidthStartTime < SERVER_KNOBS->DD_LOW_BANDWIDTH_DELAY ||
|
|
shardsMerged >= SERVER_KNOBS->DD_MERGE_LIMIT) {
|
|
// The merged range is larger than the min bounds so we cannot continue merging in this direction.
|
|
// This means that:
|
|
// 1. If we were going forwards (the starting direction), we roll back the last speculative merge.
|
|
// In this direction we do not want to go above this boundary since we will merge at least one in
|
|
// the other direction, even when that goes over the bounds.
|
|
// 2. If we were going backwards we always want to merge one more shard on (to make sure we go over
|
|
// the shard min bounds) so we "break" without resetting the merged range.
|
|
if (forwardComplete)
|
|
break;
|
|
|
|
// If going forward, remove most recently added range
|
|
endingStats -= newMetrics.get().metrics;
|
|
shardCount -= newMetrics.get().shardCount;
|
|
if (nextIter->range().begin >= systemKeys.begin) {
|
|
systemBytes -= newMetrics.get().metrics.bytes;
|
|
}
|
|
shardsMerged--;
|
|
--nextIter;
|
|
merged = KeyRangeRef(prevIter->range().begin, nextIter->range().end);
|
|
forwardComplete = true;
|
|
}
|
|
}
|
|
|
|
// restarting shard tracker will derefenced values in the shard map, so make a copy
|
|
KeyRange mergeRange = merged;
|
|
|
|
// OldKeys: Shards in the key range are merged as one shard defined by NewKeys;
|
|
// NewKeys: New key range after shards are merged;
|
|
// EndingSize: The new merged shard size in bytes;
|
|
// BatchedMerges: The number of shards merged. Each shard is defined in self->shards;
|
|
// LastLowBandwidthStartTime: When does a shard's bandwidth status becomes BandwidthStatusLow. If a shard's status
|
|
// becomes BandwidthStatusLow less than DD_LOW_BANDWIDTH_DELAY ago, the merging logic will stop at the shard;
|
|
// ShardCount: The number of non-splittable shards that are merged. Each shard is defined in self->shards may have
|
|
// more than 1 shards.
|
|
TraceEvent("RelocateShardMergeMetrics", self->distributorId)
|
|
.detail("OldKeys", keys)
|
|
.detail("NewKeys", mergeRange)
|
|
.detail("EndingSize", endingStats.bytes)
|
|
.detail("BatchedMerges", shardsMerged)
|
|
.detail("LastLowBandwidthStartTime", lastLowBandwidthStartTime)
|
|
.detail("ShardCount", shardCount);
|
|
|
|
if (mergeRange.begin < systemKeys.begin) {
|
|
self->systemSizeEstimate -= systemBytes;
|
|
}
|
|
restartShardTrackers(self, mergeRange, ShardMetrics(endingStats, lastLowBandwidthStartTime, shardCount));
|
|
self->shardsAffectedByTeamFailure->defineShard(mergeRange);
|
|
self->output.send(RelocateShard(mergeRange, SERVER_KNOBS->PRIORITY_MERGE_SHARD));
|
|
|
|
// We are about to be cancelled by the call to restartShardTrackers
|
|
return Void();
|
|
}
|
|
|
|
ACTOR Future<Void> shardEvaluator(DataDistributionTracker* self,
|
|
KeyRange keys,
|
|
Reference<AsyncVar<Optional<ShardMetrics>>> shardSize,
|
|
Reference<HasBeenTrueFor> wantsToMerge) {
|
|
Future<Void> onChange = shardSize->onChange() || yieldedFuture(self->maxShardSize->onChange());
|
|
|
|
// There are the bounds inside of which we are happy with the shard size.
|
|
// getShardSizeBounds() will allways have shardBounds.min.bytes == 0 for shards that start at allKeys.begin,
|
|
// so will will never attempt to merge that shard with the one previous.
|
|
ShardSizeBounds shardBounds = getShardSizeBounds(keys, self->maxShardSize->get().get());
|
|
StorageMetrics const& stats = shardSize->get().get().metrics;
|
|
auto bandwidthStatus = getBandwidthStatus(stats);
|
|
|
|
bool shouldSplit = stats.bytes > shardBounds.max.bytes ||
|
|
(bandwidthStatus == BandwidthStatusHigh && keys.begin < keyServersKeys.begin);
|
|
bool shouldMerge = stats.bytes < shardBounds.min.bytes && bandwidthStatus == BandwidthStatusLow;
|
|
|
|
// Every invocation must set this or clear it
|
|
if (shouldMerge && !self->anyZeroHealthyTeams->get()) {
|
|
auto whenLongEnough = wantsToMerge->set(shardSize->get().get().lastLowBandwidthStartTime);
|
|
if (!wantsToMerge->hasBeenTrueForLongEnough()) {
|
|
onChange = onChange || whenLongEnough;
|
|
}
|
|
} else {
|
|
wantsToMerge->clear();
|
|
if (shouldMerge) {
|
|
onChange = onChange || self->anyZeroHealthyTeams->onChange();
|
|
}
|
|
}
|
|
|
|
/*TraceEvent("EdgeCaseTraceShardEvaluator", self->distributorId)
|
|
// .detail("TrackerId", trackerID)
|
|
.detail("BeginKey", keys.begin.printableNonNull())
|
|
.detail("EndKey", keys.end.printableNonNull())
|
|
.detail("ShouldSplit", shouldSplit)
|
|
.detail("ShouldMerge", shouldMerge)
|
|
.detail("HasBeenTrueLongEnough", wantsToMerge->hasBeenTrueForLongEnough())
|
|
.detail("CurrentMetrics", stats.toString())
|
|
.detail("ShardBoundsMaxBytes", shardBounds.max.bytes)
|
|
.detail("ShardBoundsMinBytes", shardBounds.min.bytes)
|
|
.detail("WriteBandwitdhStatus", bandwidthStatus)
|
|
.detail("SplitBecauseHighWriteBandWidth", ( bandwidthStatus == BandwidthStatusHigh && keys.begin <
|
|
keyServersKeys.begin ) ? "Yes" :"No");*/
|
|
|
|
if (!self->anyZeroHealthyTeams->get() && wantsToMerge->hasBeenTrueForLongEnough()) {
|
|
onChange = onChange || shardMerger(self, keys, shardSize);
|
|
}
|
|
if (shouldSplit) {
|
|
onChange = onChange || shardSplitter(self, keys, shardSize, shardBounds);
|
|
}
|
|
|
|
wait(onChange);
|
|
return Void();
|
|
}
|
|
|
|
ACTOR Future<Void> shardTracker(DataDistributionTracker::SafeAccessor self,
|
|
KeyRange keys,
|
|
Reference<AsyncVar<Optional<ShardMetrics>>> shardSize) {
|
|
wait(yieldedFuture(self()->readyToStart.getFuture()));
|
|
|
|
if (!shardSize->get().present())
|
|
wait(shardSize->onChange());
|
|
|
|
if (!self()->maxShardSize->get().present())
|
|
wait(yieldedFuture(self()->maxShardSize->onChange()));
|
|
|
|
// Since maxShardSize will become present for all shards at once, avoid slow tasks with a short delay
|
|
wait(delay(0, TaskPriority::DataDistribution));
|
|
|
|
// Survives multiple calls to shardEvaluator and keeps merges from happening too quickly.
|
|
state Reference<HasBeenTrueFor> wantsToMerge(new HasBeenTrueFor(shardSize->get()));
|
|
|
|
/*TraceEvent("ShardTracker", self()->distributorId)
|
|
.detail("Begin", keys.begin)
|
|
.detail("End", keys.end)
|
|
.detail("TrackerID", trackerID)
|
|
.detail("MaxBytes", self()->maxShardSize->get().get())
|
|
.detail("ShardSize", shardSize->get().get().bytes)
|
|
.detail("BytesPerKSec", shardSize->get().get().bytesPerKSecond);*/
|
|
|
|
try {
|
|
loop {
|
|
// Use the current known size to check for (and start) splits and merges.
|
|
wait(shardEvaluator(self(), keys, shardSize, wantsToMerge));
|
|
|
|
// We could have a lot of actors being released from the previous wait at the same time. Immediately calling
|
|
// delay(0) mitigates the resulting SlowTask
|
|
wait(delay(0, TaskPriority::DataDistribution));
|
|
}
|
|
} catch (Error& e) {
|
|
if (e.code() != error_code_actor_cancelled && e.code() != error_code_dd_tracker_cancelled) {
|
|
self()->output.sendError(e); // Propagate failure to dataDistributionTracker
|
|
}
|
|
throw e;
|
|
}
|
|
}
|
|
|
|
void restartShardTrackers(DataDistributionTracker* self, KeyRangeRef keys, Optional<ShardMetrics> startingMetrics) {
|
|
auto ranges = self->shards.getAffectedRangesAfterInsertion(keys, ShardTrackedData());
|
|
for (int i = 0; i < ranges.size(); i++) {
|
|
if (!ranges[i].value.trackShard.isValid() && ranges[i].begin != keys.begin) {
|
|
// When starting, key space will be full of "dummy" default contructed entries.
|
|
// This should happen when called from trackInitialShards()
|
|
ASSERT(!self->readyToStart.isSet());
|
|
continue;
|
|
}
|
|
|
|
auto shardMetrics = makeReference<AsyncVar<Optional<ShardMetrics>>>();
|
|
|
|
// For the case where the new tracker will take over at the boundaries of current shard(s)
|
|
// we can use the old size if it is available. This will be the case when merging shards.
|
|
if (startingMetrics.present()) {
|
|
ASSERT(ranges.size() == 1);
|
|
/*TraceEvent("ShardTrackerSizePreset", self->distributorId)
|
|
.detail("Keys", keys)
|
|
.detail("Size", startingMetrics.get().metrics.bytes)
|
|
.detail("Merges", startingMetrics.get().merges);*/
|
|
TEST(true); // shardTracker started with trackedBytes already set
|
|
shardMetrics->set(startingMetrics);
|
|
}
|
|
|
|
ShardTrackedData data;
|
|
data.stats = shardMetrics;
|
|
data.trackShard = shardTracker(DataDistributionTracker::SafeAccessor(self), ranges[i], shardMetrics);
|
|
data.trackBytes = trackShardMetrics(DataDistributionTracker::SafeAccessor(self), ranges[i], shardMetrics);
|
|
self->shards.insert(ranges[i], data);
|
|
}
|
|
}
|
|
|
|
ACTOR Future<Void> trackInitialShards(DataDistributionTracker* self, Reference<InitialDataDistribution> initData) {
|
|
TraceEvent("TrackInitialShards", self->distributorId).detail("InitialShardCount", initData->shards.size());
|
|
|
|
// This line reduces the priority of shard initialization to prevent interference with failure monitoring.
|
|
// SOMEDAY: Figure out what this priority should actually be
|
|
wait(delay(0.0, TaskPriority::DataDistribution));
|
|
|
|
state int s;
|
|
for (s = 0; s < initData->shards.size() - 1; s++) {
|
|
restartShardTrackers(self, KeyRangeRef(initData->shards[s].key, initData->shards[s + 1].key));
|
|
wait(yield(TaskPriority::DataDistribution));
|
|
}
|
|
|
|
Future<Void> initialSize = changeSizes(self, KeyRangeRef(allKeys.begin, allKeys.end), 0);
|
|
self->readyToStart.send(Void());
|
|
wait(initialSize);
|
|
self->maxShardSizeUpdater = updateMaxShardSize(self->dbSizeEstimate, self->maxShardSize);
|
|
|
|
return Void();
|
|
}
|
|
|
|
ACTOR Future<Void> fetchShardMetrics_impl(DataDistributionTracker* self, GetMetricsRequest req) {
|
|
try {
|
|
loop {
|
|
Future<Void> onChange;
|
|
StorageMetrics returnMetrics;
|
|
for (auto t : self->shards.intersectingRanges(req.keys)) {
|
|
auto& stats = t.value().stats;
|
|
if (!stats->get().present()) {
|
|
onChange = stats->onChange();
|
|
break;
|
|
}
|
|
returnMetrics += t.value().stats->get().get().metrics;
|
|
}
|
|
|
|
if (!onChange.isValid()) {
|
|
req.reply.send(returnMetrics);
|
|
return Void();
|
|
}
|
|
|
|
wait(onChange);
|
|
}
|
|
} catch (Error& e) {
|
|
if (e.code() != error_code_actor_cancelled && !req.reply.isSet())
|
|
req.reply.sendError(e);
|
|
throw;
|
|
}
|
|
}
|
|
|
|
ACTOR Future<Void> fetchShardMetrics(DataDistributionTracker* self, GetMetricsRequest req) {
|
|
choose {
|
|
when(wait(fetchShardMetrics_impl(self, req))) {}
|
|
when(wait(delay(SERVER_KNOBS->DD_SHARD_METRICS_TIMEOUT, TaskPriority::DataDistribution))) {
|
|
TEST(true); // DD_SHARD_METRICS_TIMEOUT
|
|
StorageMetrics largeMetrics;
|
|
largeMetrics.bytes = getMaxShardSize(self->dbSizeEstimate->get());
|
|
req.reply.send(largeMetrics);
|
|
}
|
|
}
|
|
return Void();
|
|
}
|
|
|
|
ACTOR Future<Void> fetchShardMetricsList_impl(DataDistributionTracker* self, GetMetricsListRequest req) {
|
|
try {
|
|
loop {
|
|
// used to control shard limit
|
|
int shardNum = 0;
|
|
// list of metrics, regenerate on loop when full range unsuccessful
|
|
Standalone<VectorRef<DDMetricsRef>> result;
|
|
Future<Void> onChange;
|
|
auto beginIter = self->shards.containedRanges(req.keys).begin();
|
|
auto endIter = self->shards.intersectingRanges(req.keys).end();
|
|
for (auto t = beginIter; t != endIter; ++t) {
|
|
auto& stats = t.value().stats;
|
|
if (!stats->get().present()) {
|
|
onChange = stats->onChange();
|
|
break;
|
|
}
|
|
result.push_back_deep(result.arena(),
|
|
DDMetricsRef(stats->get().get().metrics.bytes, KeyRef(t.begin().toString())));
|
|
++shardNum;
|
|
if (shardNum >= req.shardLimit) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!onChange.isValid()) {
|
|
req.reply.send(result);
|
|
return Void();
|
|
}
|
|
|
|
wait(onChange);
|
|
}
|
|
} catch (Error& e) {
|
|
if (e.code() != error_code_actor_cancelled && !req.reply.isSet())
|
|
req.reply.sendError(e);
|
|
throw;
|
|
}
|
|
}
|
|
|
|
ACTOR Future<Void> fetchShardMetricsList(DataDistributionTracker* self, GetMetricsListRequest req) {
|
|
choose {
|
|
when(wait(fetchShardMetricsList_impl(self, req))) {}
|
|
when(wait(delay(SERVER_KNOBS->DD_SHARD_METRICS_TIMEOUT))) { req.reply.sendError(timed_out()); }
|
|
}
|
|
return Void();
|
|
}
|
|
|
|
ACTOR Future<Void> dataDistributionTracker(Reference<InitialDataDistribution> initData,
|
|
Database cx,
|
|
PromiseStream<RelocateShard> output,
|
|
Reference<ShardsAffectedByTeamFailure> shardsAffectedByTeamFailure,
|
|
PromiseStream<GetMetricsRequest> getShardMetrics,
|
|
PromiseStream<GetMetricsListRequest> getShardMetricsList,
|
|
FutureStream<Promise<int64_t>> getAverageShardBytes,
|
|
Promise<Void> readyToStart,
|
|
Reference<AsyncVar<bool>> anyZeroHealthyTeams,
|
|
UID distributorId,
|
|
KeyRangeMap<ShardTrackedData>* shards,
|
|
bool* trackerCancelled) {
|
|
state DataDistributionTracker self(cx,
|
|
distributorId,
|
|
readyToStart,
|
|
output,
|
|
shardsAffectedByTeamFailure,
|
|
anyZeroHealthyTeams,
|
|
*shards,
|
|
*trackerCancelled);
|
|
state Future<Void> loggingTrigger = Void();
|
|
state Future<Void> readHotDetect = readHotDetector(&self);
|
|
state Reference<EventCacheHolder> ddTrackerStatsEventHolder = makeReference<EventCacheHolder>("DDTrackerStats");
|
|
try {
|
|
wait(trackInitialShards(&self, initData));
|
|
initData = Reference<InitialDataDistribution>();
|
|
|
|
loop choose {
|
|
when(Promise<int64_t> req = waitNext(getAverageShardBytes)) {
|
|
req.send(self.maxShardSize->get().get() / 2);
|
|
}
|
|
when(wait(loggingTrigger)) {
|
|
TraceEvent("DDTrackerStats", self.distributorId)
|
|
.detail("Shards", self.shards.size())
|
|
.detail("TotalSizeBytes", self.dbSizeEstimate->get())
|
|
.detail("SystemSizeBytes", self.systemSizeEstimate)
|
|
.trackLatest(ddTrackerStatsEventHolder->trackingKey);
|
|
|
|
loggingTrigger = delay(SERVER_KNOBS->DATA_DISTRIBUTION_LOGGING_INTERVAL, TaskPriority::FlushTrace);
|
|
}
|
|
when(GetMetricsRequest req = waitNext(getShardMetrics.getFuture())) {
|
|
self.sizeChanges.add(fetchShardMetrics(&self, req));
|
|
}
|
|
when(GetMetricsListRequest req = waitNext(getShardMetricsList.getFuture())) {
|
|
self.sizeChanges.add(fetchShardMetricsList(&self, req));
|
|
}
|
|
when(wait(self.sizeChanges.getResult())) {}
|
|
}
|
|
} catch (Error& e) {
|
|
TraceEvent(SevError, "DataDistributionTrackerError", self.distributorId).error(e);
|
|
throw e;
|
|
}
|
|
}
|
|
|
|
std::vector<KeyRange> ShardsAffectedByTeamFailure::getShardsFor(Team team) {
|
|
std::vector<KeyRange> r;
|
|
for (auto it = team_shards.lower_bound(std::pair<Team, KeyRange>(team, KeyRangeRef()));
|
|
it != team_shards.end() && it->first == team;
|
|
++it)
|
|
r.push_back(it->second);
|
|
return r;
|
|
}
|
|
|
|
bool ShardsAffectedByTeamFailure::hasShards(Team team) const {
|
|
auto it = team_shards.lower_bound(std::pair<Team, KeyRange>(team, KeyRangeRef()));
|
|
return it != team_shards.end() && it->first == team;
|
|
}
|
|
|
|
int ShardsAffectedByTeamFailure::getNumberOfShards(UID ssID) const {
|
|
auto it = storageServerShards.find(ssID);
|
|
return it == storageServerShards.end() ? 0 : it->second;
|
|
}
|
|
|
|
std::pair<std::vector<ShardsAffectedByTeamFailure::Team>, std::vector<ShardsAffectedByTeamFailure::Team>>
|
|
ShardsAffectedByTeamFailure::getTeamsFor(KeyRangeRef keys) {
|
|
return shard_teams[keys.begin];
|
|
}
|
|
|
|
void ShardsAffectedByTeamFailure::erase(Team team, KeyRange const& range) {
|
|
if (team_shards.erase(std::pair<Team, KeyRange>(team, range)) > 0) {
|
|
for (auto uid = team.servers.begin(); uid != team.servers.end(); ++uid) {
|
|
// Safeguard against going negative after eraseServer() sets value to 0
|
|
if (storageServerShards[*uid] > 0) {
|
|
storageServerShards[*uid]--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ShardsAffectedByTeamFailure::insert(Team team, KeyRange const& range) {
|
|
if (team_shards.insert(std::pair<Team, KeyRange>(team, range)).second) {
|
|
for (auto uid = team.servers.begin(); uid != team.servers.end(); ++uid)
|
|
storageServerShards[*uid]++;
|
|
}
|
|
}
|
|
|
|
void ShardsAffectedByTeamFailure::defineShard(KeyRangeRef keys) {
|
|
std::vector<Team> teams;
|
|
std::vector<Team> prevTeams;
|
|
auto rs = shard_teams.intersectingRanges(keys);
|
|
for (auto it = rs.begin(); it != rs.end(); ++it) {
|
|
for (auto t = it->value().first.begin(); t != it->value().first.end(); ++t) {
|
|
teams.push_back(*t);
|
|
erase(*t, it->range());
|
|
}
|
|
for (auto t = it->value().second.begin(); t != it->value().second.end(); ++t) {
|
|
prevTeams.push_back(*t);
|
|
}
|
|
}
|
|
uniquify(teams);
|
|
uniquify(prevTeams);
|
|
|
|
/*TraceEvent("ShardsAffectedByTeamFailureDefine")
|
|
.detail("KeyBegin", keys.begin)
|
|
.detail("KeyEnd", keys.end)
|
|
.detail("TeamCount", teams.size());*/
|
|
|
|
auto affectedRanges = shard_teams.getAffectedRangesAfterInsertion(keys);
|
|
shard_teams.insert(keys, std::make_pair(teams, prevTeams));
|
|
|
|
for (auto r = affectedRanges.begin(); r != affectedRanges.end(); ++r) {
|
|
auto& t = shard_teams[r->begin];
|
|
for (auto it = t.first.begin(); it != t.first.end(); ++it) {
|
|
insert(*it, *r);
|
|
}
|
|
}
|
|
check();
|
|
}
|
|
|
|
// Move keys to destinationTeams by updating shard_teams
|
|
void ShardsAffectedByTeamFailure::moveShard(KeyRangeRef keys, std::vector<Team> destinationTeams) {
|
|
/*TraceEvent("ShardsAffectedByTeamFailureMove")
|
|
.detail("KeyBegin", keys.begin)
|
|
.detail("KeyEnd", keys.end)
|
|
.detail("NewTeamSize", destinationTeam.size())
|
|
.detail("NewTeam", describe(destinationTeam));*/
|
|
|
|
auto ranges = shard_teams.intersectingRanges(keys);
|
|
std::vector<std::pair<std::pair<std::vector<Team>, std::vector<Team>>, KeyRange>> modifiedShards;
|
|
for (auto it = ranges.begin(); it != ranges.end(); ++it) {
|
|
if (keys.contains(it->range())) {
|
|
// erase the many teams that were associated with this one shard
|
|
for (auto t = it->value().first.begin(); t != it->value().first.end(); ++t) {
|
|
erase(*t, it->range());
|
|
}
|
|
|
|
// save this modification for later insertion
|
|
std::vector<Team> prevTeams = it->value().second;
|
|
prevTeams.insert(prevTeams.end(), it->value().first.begin(), it->value().first.end());
|
|
uniquify(prevTeams);
|
|
|
|
modifiedShards.push_back(std::pair<std::pair<std::vector<Team>, std::vector<Team>>, KeyRange>(
|
|
std::make_pair(destinationTeams, prevTeams), it->range()));
|
|
} else {
|
|
// for each range that touches this move, add our team as affecting this range
|
|
for (auto& team : destinationTeams) {
|
|
insert(team, it->range());
|
|
}
|
|
|
|
// if we are not in the list of teams associated with this shard, add us in
|
|
auto& teams = it->value();
|
|
teams.second.insert(teams.second.end(), teams.first.begin(), teams.first.end());
|
|
uniquify(teams.second);
|
|
|
|
teams.first.insert(teams.first.end(), destinationTeams.begin(), destinationTeams.end());
|
|
uniquify(teams.first);
|
|
}
|
|
}
|
|
|
|
// we cannot modify the KeyRangeMap while iterating through it, so add saved modifications now
|
|
for (int i = 0; i < modifiedShards.size(); i++) {
|
|
for (auto& t : modifiedShards[i].first.first) {
|
|
insert(t, modifiedShards[i].second);
|
|
}
|
|
shard_teams.insert(modifiedShards[i].second, modifiedShards[i].first);
|
|
}
|
|
|
|
check();
|
|
}
|
|
|
|
void ShardsAffectedByTeamFailure::finishMove(KeyRangeRef keys) {
|
|
auto ranges = shard_teams.containedRanges(keys);
|
|
for (auto it = ranges.begin(); it != ranges.end(); ++it) {
|
|
it.value().second.clear();
|
|
}
|
|
}
|
|
|
|
void ShardsAffectedByTeamFailure::check() {
|
|
if (EXPENSIVE_VALIDATION) {
|
|
for (auto t = team_shards.begin(); t != team_shards.end(); ++t) {
|
|
auto i = shard_teams.rangeContaining(t->second.begin);
|
|
if (i->range() != t->second || !std::count(i->value().first.begin(), i->value().first.end(), t->first)) {
|
|
ASSERT(false);
|
|
}
|
|
}
|
|
auto rs = shard_teams.ranges();
|
|
for (auto i = rs.begin(); i != rs.end(); ++i)
|
|
for (std::vector<Team>::iterator t = i->value().first.begin(); t != i->value().first.end(); ++t)
|
|
if (!team_shards.count(std::make_pair(*t, i->range()))) {
|
|
std::string teamDesc, shards;
|
|
for (int k = 0; k < t->servers.size(); k++)
|
|
teamDesc += format("%llx ", t->servers[k].first());
|
|
for (auto x = team_shards.lower_bound(std::make_pair(*t, KeyRangeRef()));
|
|
x != team_shards.end() && x->first == *t;
|
|
++x)
|
|
shards += printable(x->second.begin) + "-" + printable(x->second.end) + ",";
|
|
TraceEvent(SevError, "SATFInvariantError2")
|
|
.detail("KB", i->begin())
|
|
.detail("KE", i->end())
|
|
.detail("Team", teamDesc)
|
|
.detail("Shards", shards);
|
|
ASSERT(false);
|
|
}
|
|
}
|
|
}
|