foundationdb/fdbclient/ActorLineageProfiler.cpp

413 lines
12 KiB
C++

/*
* ActorLineageProfiler.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2021 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "flow/flow.h"
#include "flow/singleton.h"
#include "fdbrpc/IAsyncFile.h"
#include "fdbclient/ActorLineageProfiler.h"
#include "fdbclient/NameLineage.h"
#include <msgpack.hpp>
#include <memory>
#include <boost/endian/conversion.hpp>
#include <boost/asio.hpp>
using namespace std::literals;
// TODO: For debugging, remove
LineageReference* curLineage() {
return currentLineage;
}
class Packer : public msgpack::packer<msgpack::sbuffer> {
struct visitor_t {
using VisitorMap = std::unordered_map<std::type_index, std::function<void(std::any const&, Packer& packer)>>;
VisitorMap visitorMap;
template <class T>
static void any_visitor(std::any const& val, Packer& packer) {
const T& v = std::any_cast<const T&>(val);
packer.pack(v);
}
template <class... Args>
struct populate_visitor_map;
template <class Head, class... Tail>
struct populate_visitor_map<Head, Tail...> {
static void populate(VisitorMap& map) {
map.emplace(std::type_index(typeid(Head)), any_visitor<Head>);
populate_visitor_map<Tail...>::populate(map);
}
};
template <class Head>
struct populate_visitor_map<Head> {
static void populate(VisitorMap&) {}
};
visitor_t() {
populate_visitor_map<int64_t,
uint64_t,
bool,
float,
double,
std::string,
std::string_view,
std::vector<std::any>,
std::vector<std::string>,
std::vector<std::string_view>,
std::map<std::string, std::any>,
std::map<std::string_view, std::any>,
std::vector<std::map<std::string_view, std::any>>>::populate(visitorMap);
}
void visit(const std::any& val, Packer& packer) {
auto iter = visitorMap.find(val.type());
if (iter == visitorMap.end()) {
TraceEvent(SevError, "PackerTypeNotFound").detail("Type", val.type().name());
} else {
iter->second(val, packer);
}
}
};
msgpack::sbuffer sbuffer;
// Initializing visitor_t involves building a type-map. As this is a relatively expensive operation, we don't want
// to do this each time we create a Packer object. So visitor_t is a stateless class and we only use it as a
// visitor.
crossbow::singleton<visitor_t> visitor;
public:
Packer() : msgpack::packer<msgpack::sbuffer>(sbuffer) {}
void pack(std::any const& val) { visitor->visit(val, *this); }
void pack(bool val) {
if (val) {
pack_true();
} else {
pack_false();
}
}
void pack(uint64_t val) {
if (val <= std::numeric_limits<uint8_t>::max()) {
pack_uint8(uint8_t(val));
} else if (val <= std::numeric_limits<uint16_t>::max()) {
pack_uint16(uint16_t(val));
} else if (val <= std::numeric_limits<uint32_t>::max()) {
pack_uint32(uint32_t(val));
} else {
pack_uint64(val);
}
}
void pack(int64_t val) {
if (val >= 0) {
this->pack(uint64_t(val));
} else if (val >= std::numeric_limits<uint8_t>::min()) {
pack_int8(int8_t(val));
} else if (val >= std::numeric_limits<int16_t>::min()) {
pack_int16(int16_t(val));
} else if (val >= std::numeric_limits<int32_t>::min()) {
pack_int32(int32_t(val));
} else if (val >= std::numeric_limits<int64_t>::min()) {
pack_int64(int64_t(val));
}
}
void pack(float val) { pack_float(val); }
void pack(double val) { pack_double(val); }
void pack(std::string const& str) {
pack_str(str.size());
pack_str_body(str.data(), str.size());
}
void pack(std::string_view val) {
pack_str(val.size());
pack_str_body(val.data(), val.size());
}
template <class K, class V>
void pack(std::map<K, V> const& map) {
pack_map(map.size());
for (const auto& p : map) {
pack(p.first);
pack(p.second);
}
}
template <class T>
void pack(std::vector<T> const& val) {
pack_array(val.size());
for (const auto& v : val) {
pack(v);
}
}
std::pair<char*, unsigned> getbuf() {
unsigned size = sbuffer.size();
return std::make_pair(sbuffer.release(), size);
}
};
IALPCollectorBase::IALPCollectorBase() {
SampleCollector::instance().addCollector(this);
}
std::shared_ptr<Sample> SampleCollectorT::collect(ActorLineage* lineage) {
ASSERT(lineage != nullptr);
auto sample = std::make_shared<Sample>();
double time = g_network->now();
sample->time = time;
Packer packer;
std::map<std::string_view, std::any> out;
for (auto& collector : collectors) {
auto val = collector->collect(lineage);
if (val.has_value()) {
out[collector->name()] = val.value();
}
}
if (!out.empty()) {
packer.pack(out);
sample->data[WaitState::Running] = packer.getbuf();
}
return sample;
}
// TODO: Remove
void SampleCollection_t::refresh() {
if (data.empty()) {
return;
}
auto min = std::min(data.back()->time - windowSize, data.back()->time);
double oldest = data.front()->time;
// we don't need to check for data.empty() in this loop (or the inner loop) as we know that we will end
// up with at least one entry which is the most recent sample
while (oldest < min) {
Lock _{ mutex };
// we remove at most 10 elements at a time. This is so we don't block the main thread for too long.
for (int i = 0; i < 10 && oldest < min; ++i) {
data.pop_front();
oldest = data.front()->time;
}
}
}
void SampleCollection_t::collect(const Reference<ActorLineage>& lineage) {
if (!lineage.isValid()) {
return;
}
auto sample = _collector->collect(lineage.getPtr());
{
Lock _{ mutex };
data.emplace_back(sample);
}
auto min = std::min(data.back()->time - windowSize, data.back()->time);
double oldest = data.front()->time;
// we don't need to check for data.empty() in this loop (or the inner loop) as we know that we will end
// up with at least one entry which is the most recent sample
while (oldest < min) {
Lock _{ mutex };
// we remove at most 10 elements at a time. This is so we don't block the main thread for too long.
for (int i = 0; i < 10 && oldest < min; ++i) {
data.pop_front();
oldest = data.front()->time;
}
}
// TODO: Should only call ingest when deleting from memory
if (sample.get() != 0) {
config->ingest(sample);
}
}
std::vector<std::shared_ptr<Sample>> SampleCollection_t::get(double from /*= 0.0*/,
double to /*= std::numeric_limits<double>::max()*/) const {
Lock _{ mutex };
std::vector<std::shared_ptr<Sample>> res;
for (const auto& sample : data) {
if (sample->time > to) {
break;
} else if (sample->time >= from) {
res.push_back(sample);
}
}
return res;
}
void sample(LineageReference* lineagePtr) {
if (!lineagePtr->isValid()) { return; }
(*lineagePtr)->modify(&NameLineage::actorName) = lineagePtr->actorName();
boost::asio::post(ActorLineageProfiler::instance().context(), [lineage = LineageReference::addRef(lineagePtr->getPtr())]() {
SampleCollection::instance().collect(lineage);
});
}
struct ProfilerImpl {
boost::asio::io_context context;
boost::asio::executor_work_guard<decltype(context.get_executor())> workGuard;
boost::asio::steady_timer timer;
std::thread mainThread;
unsigned frequency;
SampleCollection collection;
ProfilerImpl() : workGuard(context.get_executor()), timer(context) {
mainThread = std::thread([this]() { context.run(); });
}
~ProfilerImpl() {
setFrequency(0);
workGuard.reset();
mainThread.join();
}
void profileHandler(boost::system::error_code const& ec) {
if (ec) {
return;
}
// collection->refresh();
startSampling = true;
timer = boost::asio::steady_timer(context, std::chrono::microseconds(1000000 / frequency));
timer.async_wait([this](auto const& ec) { profileHandler(ec); });
}
void setFrequency(unsigned frequency) {
boost::asio::post(context, [this, frequency]() {
this->frequency = frequency;
timer.cancel();
if (frequency > 0) {
profileHandler(boost::system::error_code{});
}
});
}
};
// TODO: Remove
ActorLineageProfilerT::ActorLineageProfilerT() : impl(new ProfilerImpl()) {
// collection->collector()->addGetter(WaitState::Network,
// std::bind(&ActorLineageSet::copy, std::ref(g_network->getActorLineageSet())));
// collection->collector()->addGetter(
// WaitState::Disk,
// std::bind(&ActorLineageSet::copy, std::ref(IAsyncFileSystem::filesystem()->getActorLineageSet())));
// collection->collector()->addGetter(WaitState::Running, []() {
// auto res = currentLineageThreadSafe.get();
// if (res.isValid()) {
// return std::vector<Reference<ActorLineage>>({ res });
// }
// return std::vector<Reference<ActorLineage>>();
// });
}
ActorLineageProfilerT::~ActorLineageProfilerT() {
delete impl;
}
void ActorLineageProfilerT::setFrequency(unsigned frequency) {
impl->setFrequency(frequency);
}
boost::asio::io_context& ActorLineageProfilerT::context() {
return impl->context;
}
SampleIngestor::~SampleIngestor() {}
void ProfilerConfigT::reset(std::map<std::string, std::string> const& config) {
bool expectNoMore = false, useFluentD = false, useTCP = false;
std::string endpoint;
ConfigError err;
for (auto& kv : config) {
if (expectNoMore) {
err.description = format("Unexpected option %s", kv.first.c_str());
throw err;
}
if (kv.first == "ingestor") {
std::string val = kv.second;
std::for_each(val.begin(), val.end(), [](auto c) { return std::tolower(c); });
if (val == "none") {
setBackend(std::make_shared<NoneIngestor>());
} else if (val == "fluentd") {
useFluentD = true;
} else {
err.description = format("Unsupported ingestor: %s", val.c_str());
throw err;
}
} else if (kv.first == "ingestor_endpoint") {
endpoint = kv.second;
} else if (kv.first == "ingestor_protocol") {
auto val = kv.second;
std::for_each(val.begin(), val.end(), [](auto c) { return std::tolower(c); });
if (val == "tcp") {
useTCP = true;
} else if (val == "udp") {
useTCP = false;
} else {
err.description = format("Unsupported protocol for fluentd: %s", kv.second.c_str());
throw err;
}
} else {
err.description = format("Unknown option %s", kv.first.c_str());
throw err;
}
}
if (useFluentD) {
if (endpoint.empty()) {
err.description = "Endpoint is required for fluentd ingestor";
throw err;
}
NetworkAddress address;
try {
address = NetworkAddress::parse(endpoint);
} catch (Error& e) {
err.description = format("Can't parse address %s", endpoint.c_str());
throw err;
}
setBackend(std::make_shared<FluentDIngestor>(
useTCP ? FluentDIngestor::Protocol::TCP : FluentDIngestor::Protocol::UDP, address));
}
}
std::map<std::string, std::string> ProfilerConfigT::getConfig() const {
std::map<std::string, std::string> res;
if (ingestor) {
ingestor->getConfig(res);
}
return res;
}
// Callback used to update the sampling profilers run frequency whenever the
// frequency changes.
void samplingProfilerUpdateFrequency(std::optional<std::any> freq) {
double frequency = 0;
if (freq.has_value()) {
frequency = std::any_cast<double>(freq.value());
}
TraceEvent(SevInfo, "SamplingProfilerUpdateFrequency").detail("Frequency", frequency);
ActorLineageProfiler::instance().setFrequency(frequency);
}
// Callback used to update the sample collector window size.
void samplingProfilerUpdateWindow(std::optional<std::any> window) {
double duration = 0;
if (window.has_value()) {
duration = std::any_cast<double>(window.value());
}
TraceEvent(SevInfo, "SamplingProfilerUpdateWindow").detail("Duration", duration);
SampleCollection::instance().setWindowSize(duration);
}