foundationdb/fdbserver/masterserver.actor.cpp

2072 lines
87 KiB
C++

/*
* masterserver.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <iterator>
#include "fdbclient/NativeAPI.actor.h"
#include "fdbclient/Notified.h"
#include "fdbclient/SystemData.h"
#include "fdbrpc/FailureMonitor.h"
#include "fdbrpc/PerfMetric.h"
#include "fdbrpc/sim_validation.h"
#include "fdbrpc/simulator.h"
#include "fdbserver/ApplyMetadataMutation.h"
#include "fdbserver/BackupProgress.actor.h"
#include "fdbserver/ConflictSet.h"
#include "fdbserver/CoordinatedState.h"
#include "fdbserver/CoordinationInterface.h" // copy constructors for ServerCoordinators class
#include "fdbserver/DBCoreState.h"
#include "fdbserver/DataDistribution.actor.h"
#include "fdbserver/IKeyValueStore.h"
#include "fdbserver/Knobs.h"
#include "fdbserver/LogSystem.h"
#include "fdbserver/LogSystemDiskQueueAdapter.h"
#include "fdbserver/MasterInterface.h"
#include "fdbserver/ProxyCommitData.actor.h"
#include "fdbserver/RecoveryState.h"
#include "fdbserver/ServerDBInfo.h"
#include "fdbserver/WaitFailure.h"
#include "fdbserver/WorkerInterface.actor.h"
#include "flow/ActorCollection.h"
#include "flow/Trace.h"
#include "flow/actorcompiler.h" // This must be the last #include.
struct CommitProxyVersionReplies {
std::map<uint64_t, GetCommitVersionReply> replies;
NotifiedVersion latestRequestNum;
CommitProxyVersionReplies(CommitProxyVersionReplies&& r) noexcept
: replies(std::move(r.replies)), latestRequestNum(std::move(r.latestRequestNum)) {}
void operator=(CommitProxyVersionReplies&& r) noexcept {
replies = std::move(r.replies);
latestRequestNum = std::move(r.latestRequestNum);
}
CommitProxyVersionReplies() : latestRequestNum(0) {}
};
ACTOR Future<Void> masterTerminateOnConflict(UID dbgid,
Promise<Void> fullyRecovered,
Future<Void> onConflict,
Future<Void> switchedState) {
choose {
when(wait(onConflict)) {
if (!fullyRecovered.isSet()) {
TraceEvent("MasterTerminated", dbgid).detail("Reason", "Conflict");
TEST(true); // Coordinated state conflict, master dying
throw worker_removed();
}
return Void();
}
when(wait(switchedState)) { return Void(); }
}
}
class ReusableCoordinatedState : NonCopyable {
public:
Promise<Void> fullyRecovered;
DBCoreState prevDBState;
DBCoreState myDBState;
bool finalWriteStarted;
Future<Void> previousWrite;
ReusableCoordinatedState(ServerCoordinators const& coordinators,
PromiseStream<Future<Void>> const& addActor,
UID const& dbgid)
: finalWriteStarted(false), previousWrite(Void()), cstate(coordinators), coordinators(coordinators),
addActor(addActor), dbgid(dbgid) {}
Future<Void> read() { return _read(this); }
Future<Void> write(DBCoreState newState, bool finalWrite = false) {
previousWrite = _write(this, newState, finalWrite);
return previousWrite;
}
Future<Void> move(ClusterConnectionString const& nc) { return cstate.move(nc); }
private:
MovableCoordinatedState cstate;
ServerCoordinators coordinators;
PromiseStream<Future<Void>> addActor;
Promise<Void> switchedState;
UID dbgid;
ACTOR Future<Void> _read(ReusableCoordinatedState* self) {
Value prevDBStateRaw = wait(self->cstate.read());
Future<Void> onConflict = masterTerminateOnConflict(
self->dbgid, self->fullyRecovered, self->cstate.onConflict(), self->switchedState.getFuture());
if (onConflict.isReady() && onConflict.isError()) {
throw onConflict.getError();
}
self->addActor.send(onConflict);
if (prevDBStateRaw.size()) {
self->prevDBState = BinaryReader::fromStringRef<DBCoreState>(prevDBStateRaw, IncludeVersion());
self->myDBState = self->prevDBState;
}
return Void();
}
ACTOR Future<Void> _write(ReusableCoordinatedState* self, DBCoreState newState, bool finalWrite) {
if (self->finalWriteStarted) {
wait(Future<Void>(Never()));
}
if (finalWrite) {
self->finalWriteStarted = true;
}
try {
wait(self->cstate.setExclusive(
BinaryWriter::toValue(newState, IncludeVersion(ProtocolVersion::withDBCoreState()))));
} catch (Error& e) {
TEST(true); // Master displaced during writeMasterState
throw;
}
self->myDBState = newState;
if (!finalWrite) {
self->switchedState.send(Void());
self->cstate = MovableCoordinatedState(self->coordinators);
Value rereadDBStateRaw = wait(self->cstate.read());
DBCoreState readState;
if (rereadDBStateRaw.size())
readState = BinaryReader::fromStringRef<DBCoreState>(rereadDBStateRaw, IncludeVersion());
if (readState != newState) {
TraceEvent("MasterTerminated", self->dbgid).detail("Reason", "CStateChanged");
TEST(true); // Coordinated state changed between writing and reading, master dying
throw worker_removed();
}
self->switchedState = Promise<Void>();
self->addActor.send(masterTerminateOnConflict(
self->dbgid, self->fullyRecovered, self->cstate.onConflict(), self->switchedState.getFuture()));
} else {
self->fullyRecovered.send(Void());
}
return Void();
}
};
struct MasterData : NonCopyable, ReferenceCounted<MasterData> {
UID dbgid;
AsyncTrigger registrationTrigger;
Version lastEpochEnd, // The last version in the old epoch not (to be) rolled back in this recovery
recoveryTransactionVersion; // The first version in this epoch
double lastCommitTime;
Version liveCommittedVersion; // The largest live committed version reported by commit proxies.
bool databaseLocked;
Optional<Value> proxyMetadataVersion;
Version minKnownCommittedVersion;
DatabaseConfiguration originalConfiguration;
DatabaseConfiguration configuration;
std::vector<Optional<Key>> primaryDcId;
std::vector<Optional<Key>> remoteDcIds;
bool hasConfiguration;
ServerCoordinators coordinators;
Reference<ILogSystem> logSystem;
Version version; // The last version assigned to a proxy by getVersion()
double lastVersionTime;
LogSystemDiskQueueAdapter* txnStateLogAdapter;
IKeyValueStore* txnStateStore;
int64_t memoryLimit;
std::map<Optional<Value>, int8_t> dcId_locality;
std::vector<Tag> allTags;
int8_t getNextLocality() {
int8_t maxLocality = -1;
for (auto it : dcId_locality) {
maxLocality = std::max(maxLocality, it.second);
}
return maxLocality + 1;
}
std::vector<CommitProxyInterface> commitProxies;
std::vector<CommitProxyInterface> provisionalCommitProxies;
std::vector<GrvProxyInterface> grvProxies;
std::vector<GrvProxyInterface> provisionalGrvProxies;
std::vector<ResolverInterface> resolvers;
std::map<UID, CommitProxyVersionReplies> lastCommitProxyVersionReplies;
Standalone<StringRef> dbId;
MasterInterface myInterface;
const ClusterControllerFullInterface
clusterController; // If the cluster controller changes, this master will die, so this is immutable.
ReusableCoordinatedState cstate;
Promise<Void> cstateUpdated;
Reference<AsyncVar<ServerDBInfo> const> dbInfo;
int64_t registrationCount; // Number of different MasterRegistrationRequests sent to clusterController
RecoveryState recoveryState;
AsyncVar<Standalone<VectorRef<ResolverMoveRef>>> resolverChanges;
Version resolverChangesVersion;
std::set<UID> resolverNeedingChanges;
PromiseStream<Future<Void>> addActor;
Reference<AsyncVar<bool>> recruitmentStalled;
bool forceRecovery;
bool neverCreated;
int8_t safeLocality;
int8_t primaryLocality;
std::vector<WorkerInterface> backupWorkers; // Recruited backup workers from cluster controller.
CounterCollection cc;
Counter changeCoordinatorsRequests;
Counter getCommitVersionRequests;
Counter backupWorkerDoneRequests;
Counter getLiveCommittedVersionRequests;
Counter reportLiveCommittedVersionRequests;
Future<Void> logger;
Reference<EventCacheHolder> masterRecoveryStateEventHolder;
Reference<EventCacheHolder> masterRecoveryGenerationsEventHolder;
Reference<EventCacheHolder> masterRecoveryDurationEventHolder;
Reference<EventCacheHolder> masterRecoveryAvailableEventHolder;
Reference<EventCacheHolder> recoveredConfigEventHolder;
MasterData(Reference<AsyncVar<ServerDBInfo> const> const& dbInfo,
MasterInterface const& myInterface,
ServerCoordinators const& coordinators,
ClusterControllerFullInterface const& clusterController,
Standalone<StringRef> const& dbId,
PromiseStream<Future<Void>> const& addActor,
bool forceRecovery)
: dbgid(myInterface.id()), lastEpochEnd(invalidVersion), recoveryTransactionVersion(invalidVersion),
lastCommitTime(0), liveCommittedVersion(invalidVersion), databaseLocked(false),
minKnownCommittedVersion(invalidVersion), hasConfiguration(false), coordinators(coordinators),
version(invalidVersion), lastVersionTime(0), txnStateStore(nullptr), memoryLimit(2e9), dbId(dbId),
myInterface(myInterface), clusterController(clusterController), cstate(coordinators, addActor, dbgid),
dbInfo(dbInfo), registrationCount(0), addActor(addActor),
recruitmentStalled(makeReference<AsyncVar<bool>>(false)), forceRecovery(forceRecovery), neverCreated(false),
safeLocality(tagLocalityInvalid), primaryLocality(tagLocalityInvalid), cc("Master", dbgid.toString()),
changeCoordinatorsRequests("ChangeCoordinatorsRequests", cc),
getCommitVersionRequests("GetCommitVersionRequests", cc),
backupWorkerDoneRequests("BackupWorkerDoneRequests", cc),
getLiveCommittedVersionRequests("GetLiveCommittedVersionRequests", cc),
reportLiveCommittedVersionRequests("ReportLiveCommittedVersionRequests", cc),
masterRecoveryStateEventHolder(makeReference<EventCacheHolder>("MasterRecoveryState")),
masterRecoveryGenerationsEventHolder(makeReference<EventCacheHolder>("MasterRecoveryGenerations")),
masterRecoveryDurationEventHolder(makeReference<EventCacheHolder>("MasterRecoveryDuration")),
masterRecoveryAvailableEventHolder(makeReference<EventCacheHolder>("MasterRecoveryAvailable")),
recoveredConfigEventHolder(makeReference<EventCacheHolder>("RecoveredConfig")) {
logger = traceCounters("MasterMetrics", dbgid, SERVER_KNOBS->WORKER_LOGGING_INTERVAL, &cc, "MasterMetrics");
if (forceRecovery && !myInterface.locality.dcId().present()) {
TraceEvent(SevError, "ForcedRecoveryRequiresDcID").log();
forceRecovery = false;
}
}
~MasterData() {
if (txnStateStore)
txnStateStore->close();
}
};
ACTOR Future<Void> newCommitProxies(Reference<MasterData> self, RecruitFromConfigurationReply recr) {
std::vector<Future<CommitProxyInterface>> initializationReplies;
for (int i = 0; i < recr.commitProxies.size(); i++) {
InitializeCommitProxyRequest req;
req.master = self->myInterface;
req.recoveryCount = self->cstate.myDBState.recoveryCount + 1;
req.recoveryTransactionVersion = self->recoveryTransactionVersion;
req.firstProxy = i == 0;
TraceEvent("CommitProxyReplies", self->dbgid)
.detail("WorkerID", recr.commitProxies[i].id())
.detail("FirstProxy", req.firstProxy ? "True" : "False");
initializationReplies.push_back(
transformErrors(throwErrorOr(recr.commitProxies[i].commitProxy.getReplyUnlessFailedFor(
req, SERVER_KNOBS->TLOG_TIMEOUT, SERVER_KNOBS->MASTER_FAILURE_SLOPE_DURING_RECOVERY)),
master_recovery_failed()));
}
std::vector<CommitProxyInterface> newRecruits = wait(getAll(initializationReplies));
// It is required for the correctness of COMMIT_ON_FIRST_PROXY that self->commitProxies[0] is the firstCommitProxy.
self->commitProxies = newRecruits;
return Void();
}
ACTOR Future<Void> newGrvProxies(Reference<MasterData> self, RecruitFromConfigurationReply recr) {
std::vector<Future<GrvProxyInterface>> initializationReplies;
for (int i = 0; i < recr.grvProxies.size(); i++) {
InitializeGrvProxyRequest req;
req.master = self->myInterface;
req.recoveryCount = self->cstate.myDBState.recoveryCount + 1;
TraceEvent("GrvProxyReplies", self->dbgid).detail("WorkerID", recr.grvProxies[i].id());
initializationReplies.push_back(
transformErrors(throwErrorOr(recr.grvProxies[i].grvProxy.getReplyUnlessFailedFor(
req, SERVER_KNOBS->TLOG_TIMEOUT, SERVER_KNOBS->MASTER_FAILURE_SLOPE_DURING_RECOVERY)),
master_recovery_failed()));
}
std::vector<GrvProxyInterface> newRecruits = wait(getAll(initializationReplies));
self->grvProxies = newRecruits;
return Void();
}
ACTOR Future<Void> newResolvers(Reference<MasterData> self, RecruitFromConfigurationReply recr) {
std::vector<Future<ResolverInterface>> initializationReplies;
for (int i = 0; i < recr.resolvers.size(); i++) {
InitializeResolverRequest req;
req.recoveryCount = self->cstate.myDBState.recoveryCount + 1;
req.commitProxyCount = recr.commitProxies.size();
req.resolverCount = recr.resolvers.size();
TraceEvent("ResolverReplies", self->dbgid).detail("WorkerID", recr.resolvers[i].id());
initializationReplies.push_back(
transformErrors(throwErrorOr(recr.resolvers[i].resolver.getReplyUnlessFailedFor(
req, SERVER_KNOBS->TLOG_TIMEOUT, SERVER_KNOBS->MASTER_FAILURE_SLOPE_DURING_RECOVERY)),
master_recovery_failed()));
}
std::vector<ResolverInterface> newRecruits = wait(getAll(initializationReplies));
self->resolvers = newRecruits;
return Void();
}
ACTOR Future<Void> newTLogServers(Reference<MasterData> self,
RecruitFromConfigurationReply recr,
Reference<ILogSystem> oldLogSystem,
std::vector<Standalone<CommitTransactionRef>>* initialConfChanges) {
if (self->configuration.usableRegions > 1) {
state Optional<Key> remoteDcId = self->remoteDcIds.size() ? self->remoteDcIds[0] : Optional<Key>();
if (!self->dcId_locality.count(recr.dcId)) {
int8_t loc = self->getNextLocality();
Standalone<CommitTransactionRef> tr;
tr.set(tr.arena(), tagLocalityListKeyFor(recr.dcId), tagLocalityListValue(loc));
initialConfChanges->push_back(tr);
self->dcId_locality[recr.dcId] = loc;
TraceEvent(SevWarn, "UnknownPrimaryDCID", self->dbgid).detail("PrimaryId", recr.dcId).detail("Loc", loc);
}
if (!self->dcId_locality.count(remoteDcId)) {
int8_t loc = self->getNextLocality();
Standalone<CommitTransactionRef> tr;
tr.set(tr.arena(), tagLocalityListKeyFor(remoteDcId), tagLocalityListValue(loc));
initialConfChanges->push_back(tr);
self->dcId_locality[remoteDcId] = loc;
TraceEvent(SevWarn, "UnknownRemoteDCID", self->dbgid).detail("RemoteId", remoteDcId).detail("Loc", loc);
}
std::vector<UID> exclusionWorkerIds;
std::transform(recr.tLogs.begin(),
recr.tLogs.end(),
std::back_inserter(exclusionWorkerIds),
[](const WorkerInterface& in) { return in.id(); });
std::transform(recr.satelliteTLogs.begin(),
recr.satelliteTLogs.end(),
std::back_inserter(exclusionWorkerIds),
[](const WorkerInterface& in) { return in.id(); });
Future<RecruitRemoteFromConfigurationReply> fRemoteWorkers = brokenPromiseToNever(
self->clusterController.recruitRemoteFromConfiguration.getReply(RecruitRemoteFromConfigurationRequest(
self->configuration,
remoteDcId,
recr.tLogs.size() *
std::max<int>(1, self->configuration.desiredLogRouterCount / std::max<int>(1, recr.tLogs.size())),
exclusionWorkerIds)));
self->primaryLocality = self->dcId_locality[recr.dcId];
self->logSystem = Reference<ILogSystem>(); // Cancels the actors in the previous log system.
Reference<ILogSystem> newLogSystem = wait(oldLogSystem->newEpoch(recr,
fRemoteWorkers,
self->configuration,
self->cstate.myDBState.recoveryCount + 1,
self->primaryLocality,
self->dcId_locality[remoteDcId],
self->allTags,
self->recruitmentStalled));
self->logSystem = newLogSystem;
} else {
self->primaryLocality = tagLocalitySpecial;
self->logSystem = Reference<ILogSystem>(); // Cancels the actors in the previous log system.
Reference<ILogSystem> newLogSystem = wait(oldLogSystem->newEpoch(recr,
Never(),
self->configuration,
self->cstate.myDBState.recoveryCount + 1,
self->primaryLocality,
tagLocalitySpecial,
self->allTags,
self->recruitmentStalled));
self->logSystem = newLogSystem;
}
return Void();
}
ACTOR Future<Void> newSeedServers(Reference<MasterData> self,
RecruitFromConfigurationReply recruits,
std::vector<StorageServerInterface>* servers) {
// This is only necessary if the database is at version 0
servers->clear();
if (self->lastEpochEnd)
return Void();
state int idx = 0;
state std::map<Optional<Value>, Tag> dcId_tags;
state int8_t nextLocality = 0;
while (idx < recruits.storageServers.size()) {
TraceEvent("MasterRecruitingInitialStorageServer", self->dbgid)
.detail("CandidateWorker", recruits.storageServers[idx].locality.toString());
InitializeStorageRequest isr;
isr.seedTag = dcId_tags.count(recruits.storageServers[idx].locality.dcId())
? dcId_tags[recruits.storageServers[idx].locality.dcId()]
: Tag(nextLocality, 0);
isr.storeType = self->configuration.storageServerStoreType;
isr.reqId = deterministicRandom()->randomUniqueID();
isr.interfaceId = deterministicRandom()->randomUniqueID();
ErrorOr<InitializeStorageReply> newServer = wait(recruits.storageServers[idx].storage.tryGetReply(isr));
if (newServer.isError()) {
if (!newServer.isError(error_code_recruitment_failed) &&
!newServer.isError(error_code_request_maybe_delivered))
throw newServer.getError();
TEST(true); // masterserver initial storage recuitment loop failed to get new server
wait(delay(SERVER_KNOBS->STORAGE_RECRUITMENT_DELAY));
} else {
if (!dcId_tags.count(recruits.storageServers[idx].locality.dcId())) {
dcId_tags[recruits.storageServers[idx].locality.dcId()] = Tag(nextLocality, 0);
nextLocality++;
}
Tag& tag = dcId_tags[recruits.storageServers[idx].locality.dcId()];
tag.id++;
idx++;
servers->push_back(newServer.get().interf);
}
}
self->dcId_locality.clear();
for (auto& it : dcId_tags) {
self->dcId_locality[it.first] = it.second.locality;
}
TraceEvent("MasterRecruitedInitialStorageServers", self->dbgid)
.detail("TargetCount", self->configuration.storageTeamSize)
.detail("Servers", describe(*servers));
return Void();
}
Future<Void> waitCommitProxyFailure(std::vector<CommitProxyInterface> const& commitProxies) {
std::vector<Future<Void>> failed;
failed.reserve(commitProxies.size());
for (auto commitProxy : commitProxies) {
failed.push_back(waitFailureClient(commitProxy.waitFailure,
SERVER_KNOBS->TLOG_TIMEOUT,
-SERVER_KNOBS->TLOG_TIMEOUT / SERVER_KNOBS->SECONDS_BEFORE_NO_FAILURE_DELAY,
/*trace=*/true));
}
ASSERT(failed.size() >= 1);
return tagError<Void>(quorum(failed, 1), commit_proxy_failed());
}
Future<Void> waitGrvProxyFailure(std::vector<GrvProxyInterface> const& grvProxies) {
std::vector<Future<Void>> failed;
failed.reserve(grvProxies.size());
for (int i = 0; i < grvProxies.size(); i++)
failed.push_back(waitFailureClient(grvProxies[i].waitFailure,
SERVER_KNOBS->TLOG_TIMEOUT,
-SERVER_KNOBS->TLOG_TIMEOUT / SERVER_KNOBS->SECONDS_BEFORE_NO_FAILURE_DELAY,
/*trace=*/true));
ASSERT(failed.size() >= 1);
return tagError<Void>(quorum(failed, 1), grv_proxy_failed());
}
Future<Void> waitResolverFailure(std::vector<ResolverInterface> const& resolvers) {
std::vector<Future<Void>> failed;
failed.reserve(resolvers.size());
for (auto resolver : resolvers) {
failed.push_back(waitFailureClient(resolver.waitFailure,
SERVER_KNOBS->TLOG_TIMEOUT,
-SERVER_KNOBS->TLOG_TIMEOUT / SERVER_KNOBS->SECONDS_BEFORE_NO_FAILURE_DELAY,
/*trace=*/true));
}
ASSERT(failed.size() >= 1);
return tagError<Void>(quorum(failed, 1), master_resolver_failed());
}
ACTOR Future<Void> updateLogsValue(Reference<MasterData> self, Database cx) {
state Transaction tr(cx);
loop {
try {
Optional<Standalone<StringRef>> value = wait(tr.get(logsKey));
ASSERT(value.present());
auto logs = decodeLogsValue(value.get());
std::set<UID> logIds;
for (auto& log : logs.first) {
logIds.insert(log.first);
}
bool found = false;
for (auto& logSet : self->logSystem->getLogSystemConfig().tLogs) {
for (auto& log : logSet.tLogs) {
if (logIds.count(log.id())) {
found = true;
break;
}
}
if (found) {
break;
}
}
if (!found) {
TEST(true); // old master attempted to change logsKey
return Void();
}
tr.set(logsKey, self->logSystem->getLogsValue());
wait(tr.commit());
return Void();
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
Future<Void> sendMasterRegistration(MasterData* self,
LogSystemConfig const& logSystemConfig,
std::vector<CommitProxyInterface> commitProxies,
std::vector<GrvProxyInterface> grvProxies,
std::vector<ResolverInterface> resolvers,
DBRecoveryCount recoveryCount,
std::vector<UID> priorCommittedLogServers) {
RegisterMasterRequest masterReq;
masterReq.id = self->myInterface.id();
masterReq.mi = self->myInterface.locality;
masterReq.logSystemConfig = logSystemConfig;
masterReq.commitProxies = commitProxies;
masterReq.grvProxies = grvProxies;
masterReq.resolvers = resolvers;
masterReq.recoveryCount = recoveryCount;
if (self->hasConfiguration)
masterReq.configuration = self->configuration;
masterReq.registrationCount = ++self->registrationCount;
masterReq.priorCommittedLogServers = priorCommittedLogServers;
masterReq.recoveryState = self->recoveryState;
masterReq.recoveryStalled = self->recruitmentStalled->get();
return brokenPromiseToNever(self->clusterController.registerMaster.getReply(masterReq));
}
ACTOR Future<Void> updateRegistration(Reference<MasterData> self, Reference<ILogSystem> logSystem) {
state Database cx = openDBOnServer(self->dbInfo, TaskPriority::DefaultEndpoint, LockAware::True);
state Future<Void> trigger = self->registrationTrigger.onTrigger();
state Future<Void> updateLogsKey;
loop {
wait(trigger);
wait(delay(.001)); // Coalesce multiple changes
trigger = self->registrationTrigger.onTrigger();
auto logSystemConfig = logSystem->getLogSystemConfig();
TraceEvent("MasterUpdateRegistration", self->dbgid)
.detail("RecoveryCount", self->cstate.myDBState.recoveryCount)
.detail("OldestBackupEpoch", logSystemConfig.oldestBackupEpoch)
.detail("Logs", describe(logSystemConfig.tLogs));
if (!self->cstateUpdated.isSet()) {
wait(sendMasterRegistration(self.getPtr(),
logSystemConfig,
self->provisionalCommitProxies,
self->provisionalGrvProxies,
self->resolvers,
self->cstate.myDBState.recoveryCount,
self->cstate.prevDBState.getPriorCommittedLogServers()));
} else {
updateLogsKey = updateLogsValue(self, cx);
wait(sendMasterRegistration(self.getPtr(),
logSystemConfig,
self->commitProxies,
self->grvProxies,
self->resolvers,
self->cstate.myDBState.recoveryCount,
std::vector<UID>()));
}
}
}
ACTOR Future<Standalone<CommitTransactionRef>> provisionalMaster(Reference<MasterData> parent, Future<Void> activate) {
wait(activate);
// Register a fake commit proxy (to be provided right here) to make ourselves available to clients
parent->provisionalCommitProxies = std::vector<CommitProxyInterface>(1);
parent->provisionalCommitProxies[0].provisional = true;
parent->provisionalCommitProxies[0].initEndpoints();
parent->provisionalGrvProxies = std::vector<GrvProxyInterface>(1);
parent->provisionalGrvProxies[0].provisional = true;
parent->provisionalGrvProxies[0].initEndpoints();
state Future<Void> waitCommitProxyFailure =
waitFailureServer(parent->provisionalCommitProxies[0].waitFailure.getFuture());
state Future<Void> waitGrvProxyFailure =
waitFailureServer(parent->provisionalGrvProxies[0].waitFailure.getFuture());
parent->registrationTrigger.trigger();
auto lockedKey = parent->txnStateStore->readValue(databaseLockedKey).get();
state bool locked = lockedKey.present() && lockedKey.get().size();
state Optional<Value> metadataVersion = parent->txnStateStore->readValue(metadataVersionKey).get();
// We respond to a minimal subset of the commit proxy protocol. Our sole purpose is to receive a single write-only
// transaction which might repair our configuration, and return it.
loop choose {
when(GetReadVersionRequest req =
waitNext(parent->provisionalGrvProxies[0].getConsistentReadVersion.getFuture())) {
if ((req.flags & GetReadVersionRequest::FLAG_CAUSAL_READ_RISKY) &&
(req.flags & GetReadVersionRequest::FLAG_USE_PROVISIONAL_PROXIES) && parent->lastEpochEnd) {
GetReadVersionReply rep;
rep.version = parent->lastEpochEnd;
rep.locked = locked;
rep.metadataVersion = metadataVersion;
req.reply.send(rep);
} else
req.reply.send(Never()); // We can't perform causally consistent reads without recovering
}
when(CommitTransactionRequest req = waitNext(parent->provisionalCommitProxies[0].commit.getFuture())) {
req.reply.send(Never()); // don't reply (clients always get commit_unknown_result)
auto t = &req.transaction;
if (t->read_snapshot == parent->lastEpochEnd && //< So no transactions can fall between the read snapshot
// and the recovery transaction this (might) be merged with
// vvv and also the changes we will make in the recovery
// transaction (most notably to lastEpochEndKey) BEFORE we
// merge initialConfChanges won't conflict
!std::any_of(t->read_conflict_ranges.begin(), t->read_conflict_ranges.end(), [](KeyRangeRef const& r) {
return r.contains(lastEpochEndKey);
})) {
for (auto m = t->mutations.begin(); m != t->mutations.end(); ++m) {
TraceEvent("PM_CTM", parent->dbgid)
.detail("MType", m->type)
.detail("Param1", m->param1)
.detail("Param2", m->param2);
if (isMetadataMutation(*m)) {
// We keep the mutations and write conflict ranges from this transaction, but not its read
// conflict ranges
Standalone<CommitTransactionRef> out;
out.read_snapshot = invalidVersion;
out.mutations.append_deep(out.arena(), t->mutations.begin(), t->mutations.size());
out.write_conflict_ranges.append_deep(
out.arena(), t->write_conflict_ranges.begin(), t->write_conflict_ranges.size());
return out;
}
}
}
}
when(GetKeyServerLocationsRequest req =
waitNext(parent->provisionalCommitProxies[0].getKeyServersLocations.getFuture())) {
req.reply.send(Never());
}
when(wait(waitCommitProxyFailure)) { throw worker_removed(); }
when(wait(waitGrvProxyFailure)) { throw worker_removed(); }
}
}
ACTOR Future<std::vector<Standalone<CommitTransactionRef>>> recruitEverything(
Reference<MasterData> self,
std::vector<StorageServerInterface>* seedServers,
Reference<ILogSystem> oldLogSystem) {
if (!self->configuration.isValid()) {
RecoveryStatus::RecoveryStatus status;
if (self->configuration.initialized) {
TraceEvent(SevWarn, "MasterRecoveryInvalidConfiguration", self->dbgid)
.setMaxEventLength(11000)
.setMaxFieldLength(10000)
.detail("Conf", self->configuration.toString());
status = RecoveryStatus::configuration_invalid;
} else if (!self->cstate.prevDBState.tLogs.size()) {
status = RecoveryStatus::configuration_never_created;
self->neverCreated = true;
} else {
status = RecoveryStatus::configuration_missing;
}
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", status)
.detail("Status", RecoveryStatus::names[status])
.trackLatest(self->masterRecoveryStateEventHolder->trackingKey);
return Never();
} else
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", RecoveryStatus::recruiting_transaction_servers)
.detail("Status", RecoveryStatus::names[RecoveryStatus::recruiting_transaction_servers])
.detail("Conf", self->configuration.toString())
.detail("RequiredCommitProxies", 1)
.detail("RequiredGrvProxies", 1)
.detail("RequiredResolvers", 1)
.trackLatest(self->masterRecoveryStateEventHolder->trackingKey);
// FIXME: we only need log routers for the same locality as the master
int maxLogRouters = self->cstate.prevDBState.logRouterTags;
for (auto& old : self->cstate.prevDBState.oldTLogData) {
maxLogRouters = std::max(maxLogRouters, old.logRouterTags);
}
state RecruitFromConfigurationReply recruits =
wait(brokenPromiseToNever(self->clusterController.recruitFromConfiguration.getReply(
RecruitFromConfigurationRequest(self->configuration, self->lastEpochEnd == 0, maxLogRouters))));
std::string primaryDcIds, remoteDcIds;
self->primaryDcId.clear();
self->remoteDcIds.clear();
if (recruits.dcId.present()) {
self->primaryDcId.push_back(recruits.dcId);
if (!primaryDcIds.empty()) {
primaryDcIds += ',';
}
primaryDcIds += printable(recruits.dcId);
if (self->configuration.regions.size() > 1) {
Key remoteDcId = recruits.dcId.get() == self->configuration.regions[0].dcId
? self->configuration.regions[1].dcId
: self->configuration.regions[0].dcId;
self->remoteDcIds.push_back(remoteDcId);
if (!remoteDcIds.empty()) {
remoteDcIds += ',';
}
remoteDcIds += printable(remoteDcId);
}
}
self->backupWorkers.swap(recruits.backupWorkers);
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", RecoveryStatus::initializing_transaction_servers)
.detail("Status", RecoveryStatus::names[RecoveryStatus::initializing_transaction_servers])
.detail("CommitProxies", recruits.commitProxies.size())
.detail("GrvProxies", recruits.grvProxies.size())
.detail("TLogs", recruits.tLogs.size())
.detail("Resolvers", recruits.resolvers.size())
.detail("SatelliteTLogs", recruits.satelliteTLogs.size())
.detail("OldLogRouters", recruits.oldLogRouters.size())
.detail("StorageServers", recruits.storageServers.size())
.detail("BackupWorkers", self->backupWorkers.size())
.detail("PrimaryDcIds", primaryDcIds)
.detail("RemoteDcIds", remoteDcIds)
.trackLatest(self->masterRecoveryStateEventHolder->trackingKey);
// Actually, newSeedServers does both the recruiting and initialization of the seed servers; so if this is a brand
// new database we are sort of lying that we are past the recruitment phase. In a perfect world we would split that
// up so that the recruitment part happens above (in parallel with recruiting the transaction servers?).
wait(newSeedServers(self, recruits, seedServers));
state std::vector<Standalone<CommitTransactionRef>> confChanges;
wait(newCommitProxies(self, recruits) && newGrvProxies(self, recruits) && newResolvers(self, recruits) &&
newTLogServers(self, recruits, oldLogSystem, &confChanges));
return confChanges;
}
ACTOR Future<Void> updateLocalityForDcId(Optional<Key> dcId,
Reference<ILogSystem> oldLogSystem,
Reference<AsyncVar<PeekTxsInfo>> locality) {
loop {
std::pair<int8_t, int8_t> loc = oldLogSystem->getLogSystemConfig().getLocalityForDcId(dcId);
Version ver = locality->get().knownCommittedVersion;
if (ver == invalidVersion) {
ver = oldLogSystem->getKnownCommittedVersion();
}
locality->set(PeekTxsInfo(loc.first, loc.second, ver));
TraceEvent("UpdatedLocalityForDcId")
.detail("DcId", dcId)
.detail("Locality0", loc.first)
.detail("Locality1", loc.second)
.detail("Version", ver);
wait(oldLogSystem->onLogSystemConfigChange() || oldLogSystem->onKnownCommittedVersionChange());
}
}
ACTOR Future<Void> readTransactionSystemState(Reference<MasterData> self,
Reference<ILogSystem> oldLogSystem,
Version txsPoppedVersion) {
state Reference<AsyncVar<PeekTxsInfo>> myLocality = Reference<AsyncVar<PeekTxsInfo>>(
new AsyncVar<PeekTxsInfo>(PeekTxsInfo(tagLocalityInvalid, tagLocalityInvalid, invalidVersion)));
state Future<Void> localityUpdater =
updateLocalityForDcId(self->myInterface.locality.dcId(), oldLogSystem, myLocality);
// Peek the txnStateTag in oldLogSystem and recover self->txnStateStore
// For now, we also obtain the recovery metadata that the log system obtained during the end_epoch process for
// comparison
// Sets self->lastEpochEnd and self->recoveryTransactionVersion
// Sets self->configuration to the configuration (FF/conf/ keys) at self->lastEpochEnd
// Recover transaction state store
if (self->txnStateStore)
self->txnStateStore->close();
self->txnStateLogAdapter = openDiskQueueAdapter(oldLogSystem, myLocality, txsPoppedVersion);
self->txnStateStore =
keyValueStoreLogSystem(self->txnStateLogAdapter, self->dbgid, self->memoryLimit, false, false, true);
// Versionstamped operations (particularly those applied from DR) define a minimum commit version
// that we may recover to, as they embed the version in user-readable data and require that no
// transactions will be committed at a lower version.
Optional<Standalone<StringRef>> requiredCommitVersion =
wait(self->txnStateStore->readValue(minRequiredCommitVersionKey));
Version minRequiredCommitVersion = -1;
if (requiredCommitVersion.present()) {
minRequiredCommitVersion = BinaryReader::fromStringRef<Version>(requiredCommitVersion.get(), Unversioned());
}
// Recover version info
self->lastEpochEnd = oldLogSystem->getEnd() - 1;
if (self->lastEpochEnd == 0) {
self->recoveryTransactionVersion = 1;
} else {
if (self->forceRecovery) {
self->recoveryTransactionVersion = self->lastEpochEnd + SERVER_KNOBS->MAX_VERSIONS_IN_FLIGHT_FORCED;
} else {
self->recoveryTransactionVersion = self->lastEpochEnd + SERVER_KNOBS->MAX_VERSIONS_IN_FLIGHT;
}
if (BUGGIFY) {
self->recoveryTransactionVersion +=
deterministicRandom()->randomInt64(0, SERVER_KNOBS->MAX_VERSIONS_IN_FLIGHT);
}
if (self->recoveryTransactionVersion < minRequiredCommitVersion)
self->recoveryTransactionVersion = minRequiredCommitVersion;
}
TraceEvent("MasterRecovering", self->dbgid)
.detail("LastEpochEnd", self->lastEpochEnd)
.detail("RecoveryTransactionVersion", self->recoveryTransactionVersion);
RangeResult rawConf = wait(self->txnStateStore->readRange(configKeys));
self->configuration.fromKeyValues(rawConf.castTo<VectorRef<KeyValueRef>>());
self->originalConfiguration = self->configuration;
self->hasConfiguration = true;
TraceEvent("MasterRecoveredConfig", self->dbgid)
.setMaxEventLength(11000)
.setMaxFieldLength(10000)
.detail("Conf", self->configuration.toString())
.trackLatest(self->recoveredConfigEventHolder->trackingKey);
RangeResult rawLocalities = wait(self->txnStateStore->readRange(tagLocalityListKeys));
self->dcId_locality.clear();
for (auto& kv : rawLocalities) {
self->dcId_locality[decodeTagLocalityListKey(kv.key)] = decodeTagLocalityListValue(kv.value);
}
RangeResult rawTags = wait(self->txnStateStore->readRange(serverTagKeys));
self->allTags.clear();
if (self->lastEpochEnd > 0) {
self->allTags.push_back(cacheTag);
}
if (self->forceRecovery) {
self->safeLocality = oldLogSystem->getLogSystemConfig().tLogs[0].locality;
for (auto& kv : rawTags) {
Tag tag = decodeServerTagValue(kv.value);
if (tag.locality == self->safeLocality) {
self->allTags.push_back(tag);
}
}
} else {
for (auto& kv : rawTags) {
self->allTags.push_back(decodeServerTagValue(kv.value));
}
}
RangeResult rawHistoryTags = wait(self->txnStateStore->readRange(serverTagHistoryKeys));
for (auto& kv : rawHistoryTags) {
self->allTags.push_back(decodeServerTagValue(kv.value));
}
uniquify(self->allTags);
// auto kvs = self->txnStateStore->readRange( systemKeys );
// for( auto & kv : kvs.get() )
// TraceEvent("MasterRecoveredTXS", self->dbgid).detail("K", kv.key).detail("V", kv.value);
self->txnStateLogAdapter->setNextVersion(
oldLogSystem->getEnd()); //< FIXME: (1) the log adapter should do this automatically after recovery; (2) if we
// make KeyValueStoreMemory guarantee immediate reads, we should be able to get rid of
// the discardCommit() below and not need a writable log adapter
TraceEvent("RTSSComplete", self->dbgid).log();
return Void();
}
ACTOR Future<Void> sendInitialCommitToResolvers(Reference<MasterData> self) {
state KeyRange txnKeys = allKeys;
state Sequence txnSequence = 0;
ASSERT(self->recoveryTransactionVersion);
state RangeResult data =
self->txnStateStore
->readRange(txnKeys, BUGGIFY ? 3 : SERVER_KNOBS->DESIRED_TOTAL_BYTES, SERVER_KNOBS->DESIRED_TOTAL_BYTES)
.get();
state std::vector<Future<Void>> txnReplies;
state int64_t dataOutstanding = 0;
state std::vector<Endpoint> endpoints;
for (auto& it : self->commitProxies) {
endpoints.push_back(it.txnState.getEndpoint());
}
loop {
if (!data.size())
break;
((KeyRangeRef&)txnKeys) = KeyRangeRef(keyAfter(data.back().key, txnKeys.arena()), txnKeys.end);
RangeResult nextData =
self->txnStateStore
->readRange(txnKeys, BUGGIFY ? 3 : SERVER_KNOBS->DESIRED_TOTAL_BYTES, SERVER_KNOBS->DESIRED_TOTAL_BYTES)
.get();
TxnStateRequest req;
req.arena = data.arena();
req.data = data;
req.sequence = txnSequence;
req.last = !nextData.size();
req.broadcastInfo = endpoints;
txnReplies.push_back(broadcastTxnRequest(req, SERVER_KNOBS->TXN_STATE_SEND_AMOUNT, false));
dataOutstanding += SERVER_KNOBS->TXN_STATE_SEND_AMOUNT * data.arena().getSize();
data = nextData;
txnSequence++;
if (dataOutstanding > SERVER_KNOBS->MAX_TXS_SEND_MEMORY) {
wait(waitForAll(txnReplies));
txnReplies = std::vector<Future<Void>>();
dataOutstanding = 0;
}
wait(yield());
}
wait(waitForAll(txnReplies));
TraceEvent("RecoveryInternal", self->dbgid)
.detail("StatusCode", RecoveryStatus::recovery_transaction)
.detail("Status", RecoveryStatus::names[RecoveryStatus::recovery_transaction])
.detail("Step", "SentTxnStateStoreToCommitProxies");
std::vector<Future<ResolveTransactionBatchReply>> replies;
for (auto& r : self->resolvers) {
ResolveTransactionBatchRequest req;
req.prevVersion = -1;
req.version = self->lastEpochEnd;
req.lastReceivedVersion = -1;
replies.push_back(brokenPromiseToNever(r.resolve.getReply(req)));
}
wait(waitForAll(replies));
TraceEvent("RecoveryInternal", self->dbgid)
.detail("StatusCode", RecoveryStatus::recovery_transaction)
.detail("Status", RecoveryStatus::names[RecoveryStatus::recovery_transaction])
.detail("Step", "InitializedAllResolvers");
return Void();
}
ACTOR Future<Void> triggerUpdates(Reference<MasterData> self, Reference<ILogSystem> oldLogSystem) {
loop {
wait(oldLogSystem->onLogSystemConfigChange() || self->cstate.fullyRecovered.getFuture() ||
self->recruitmentStalled->onChange());
if (self->cstate.fullyRecovered.isSet())
return Void();
self->registrationTrigger.trigger();
}
}
ACTOR Future<Void> discardCommit(IKeyValueStore* store, LogSystemDiskQueueAdapter* adapter) {
state Future<LogSystemDiskQueueAdapter::CommitMessage> fcm = adapter->getCommitMessage();
state Future<Void> committed = store->commit();
LogSystemDiskQueueAdapter::CommitMessage cm = wait(fcm);
ASSERT(!committed.isReady());
cm.acknowledge.send(Void());
ASSERT(committed.isReady());
return Void();
}
void updateConfigForForcedRecovery(Reference<MasterData> self,
std::vector<Standalone<CommitTransactionRef>>* initialConfChanges) {
bool regionsChanged = false;
for (auto& it : self->configuration.regions) {
if (it.dcId == self->myInterface.locality.dcId().get() && it.priority < 0) {
it.priority = 1;
regionsChanged = true;
} else if (it.dcId != self->myInterface.locality.dcId().get() && it.priority >= 0) {
it.priority = -1;
regionsChanged = true;
}
}
Standalone<CommitTransactionRef> regionCommit;
regionCommit.mutations.push_back_deep(
regionCommit.arena(),
MutationRef(MutationRef::SetValue, configKeysPrefix.toString() + "usable_regions", LiteralStringRef("1")));
self->configuration.applyMutation(regionCommit.mutations.back());
if (regionsChanged) {
std::sort(
self->configuration.regions.begin(), self->configuration.regions.end(), RegionInfo::sort_by_priority());
StatusObject regionJSON;
regionJSON["regions"] = self->configuration.getRegionJSON();
regionCommit.mutations.push_back_deep(
regionCommit.arena(),
MutationRef(MutationRef::SetValue,
configKeysPrefix.toString() + "regions",
BinaryWriter::toValue(regionJSON, IncludeVersion(ProtocolVersion::withRegionConfiguration()))
.toString()));
self->configuration.applyMutation(
regionCommit.mutations.back()); // modifying the configuration directly does not change the configuration
// when it is re-serialized unless we call applyMutation
TraceEvent("ForcedRecoveryConfigChange", self->dbgid)
.setMaxEventLength(11000)
.setMaxFieldLength(10000)
.detail("Conf", self->configuration.toString());
}
initialConfChanges->push_back(regionCommit);
}
ACTOR Future<Void> recoverFrom(Reference<MasterData> self,
Reference<ILogSystem> oldLogSystem,
std::vector<StorageServerInterface>* seedServers,
std::vector<Standalone<CommitTransactionRef>>* initialConfChanges,
Future<Version> poppedTxsVersion) {
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", RecoveryStatus::reading_transaction_system_state)
.detail("Status", RecoveryStatus::names[RecoveryStatus::reading_transaction_system_state])
.trackLatest(self->masterRecoveryStateEventHolder->trackingKey);
self->hasConfiguration = false;
if (BUGGIFY)
wait(delay(10.0));
Version txsPoppedVersion = wait(poppedTxsVersion);
wait(readTransactionSystemState(self, oldLogSystem, txsPoppedVersion));
for (auto& itr : *initialConfChanges) {
for (auto& m : itr.mutations) {
self->configuration.applyMutation(m);
}
}
if (self->forceRecovery) {
updateConfigForForcedRecovery(self, initialConfChanges);
}
debug_checkMaxRestoredVersion(UID(), self->lastEpochEnd, "DBRecovery");
// Ordinarily we pass through this loop once and recover. We go around the loop if recovery stalls for more than a
// second, a provisional master is initialized, and an "emergency transaction" is submitted that might change the
// configuration so that we can finish recovery.
state std::map<Optional<Value>, int8_t> originalLocalityMap = self->dcId_locality;
state Future<std::vector<Standalone<CommitTransactionRef>>> recruitments =
recruitEverything(self, seedServers, oldLogSystem);
state double provisionalDelay = SERVER_KNOBS->PROVISIONAL_START_DELAY;
loop {
state Future<Standalone<CommitTransactionRef>> provisional = provisionalMaster(self, delay(provisionalDelay));
provisionalDelay =
std::min(SERVER_KNOBS->PROVISIONAL_MAX_DELAY, provisionalDelay * SERVER_KNOBS->PROVISIONAL_DELAY_GROWTH);
choose {
when(std::vector<Standalone<CommitTransactionRef>> confChanges = wait(recruitments)) {
initialConfChanges->insert(initialConfChanges->end(), confChanges.begin(), confChanges.end());
provisional.cancel();
break;
}
when(Standalone<CommitTransactionRef> _req = wait(provisional)) {
state Standalone<CommitTransactionRef> req = _req; // mutable
TEST(true); // Emergency transaction processing during recovery
TraceEvent("EmergencyTransaction", self->dbgid).log();
for (auto m = req.mutations.begin(); m != req.mutations.end(); ++m)
TraceEvent("EmergencyTransactionMutation", self->dbgid)
.detail("MType", m->type)
.detail("P1", m->param1)
.detail("P2", m->param2);
DatabaseConfiguration oldConf = self->configuration;
self->configuration = self->originalConfiguration;
for (auto& m : req.mutations)
self->configuration.applyMutation(m);
initialConfChanges->clear();
if (self->originalConfiguration.isValid() &&
self->configuration.usableRegions != self->originalConfiguration.usableRegions) {
TraceEvent(SevWarnAlways, "CannotChangeUsableRegions", self->dbgid).log();
self->configuration = self->originalConfiguration;
} else {
initialConfChanges->push_back(req);
}
if (self->forceRecovery) {
updateConfigForForcedRecovery(self, initialConfChanges);
}
if (self->configuration != oldConf) { // confChange does not trigger when including servers
self->dcId_locality = originalLocalityMap;
recruitments = recruitEverything(self, seedServers, oldLogSystem);
}
}
}
provisional.cancel();
}
return Void();
}
ACTOR Future<Void> getVersion(Reference<MasterData> self, GetCommitVersionRequest req) {
state Span span("M:getVersion"_loc, { req.spanContext });
state std::map<UID, CommitProxyVersionReplies>::iterator proxyItr =
self->lastCommitProxyVersionReplies.find(req.requestingProxy); // lastCommitProxyVersionReplies never changes
++self->getCommitVersionRequests;
if (proxyItr == self->lastCommitProxyVersionReplies.end()) {
// Request from invalid proxy (e.g. from duplicate recruitment request)
req.reply.send(Never());
return Void();
}
TEST(proxyItr->second.latestRequestNum.get() < req.requestNum - 1); // Commit version request queued up
wait(proxyItr->second.latestRequestNum.whenAtLeast(req.requestNum - 1));
auto itr = proxyItr->second.replies.find(req.requestNum);
if (itr != proxyItr->second.replies.end()) {
TEST(true); // Duplicate request for sequence
req.reply.send(itr->second);
} else if (req.requestNum <= proxyItr->second.latestRequestNum.get()) {
TEST(true); // Old request for previously acknowledged sequence - may be impossible with current FlowTransport
ASSERT(req.requestNum <
proxyItr->second.latestRequestNum.get()); // The latest request can never be acknowledged
req.reply.send(Never());
} else {
GetCommitVersionReply rep;
if (self->version == invalidVersion) {
self->lastVersionTime = now();
self->version = self->recoveryTransactionVersion;
rep.prevVersion = self->lastEpochEnd;
} else {
double t1 = now();
if (BUGGIFY) {
t1 = self->lastVersionTime;
}
rep.prevVersion = self->version;
self->version +=
std::max<Version>(1,
std::min<Version>(SERVER_KNOBS->MAX_READ_TRANSACTION_LIFE_VERSIONS,
SERVER_KNOBS->VERSIONS_PER_SECOND * (t1 - self->lastVersionTime)));
TEST(self->version - rep.prevVersion == 1); // Minimum possible version gap
bool maxVersionGap = self->version - rep.prevVersion == SERVER_KNOBS->MAX_READ_TRANSACTION_LIFE_VERSIONS;
TEST(maxVersionGap); // Maximum possible version gap
self->lastVersionTime = t1;
if (self->resolverNeedingChanges.count(req.requestingProxy)) {
rep.resolverChanges = self->resolverChanges.get();
rep.resolverChangesVersion = self->resolverChangesVersion;
self->resolverNeedingChanges.erase(req.requestingProxy);
if (self->resolverNeedingChanges.empty())
self->resolverChanges.set(Standalone<VectorRef<ResolverMoveRef>>());
}
}
rep.version = self->version;
rep.requestNum = req.requestNum;
proxyItr->second.replies.erase(proxyItr->second.replies.begin(),
proxyItr->second.replies.upper_bound(req.mostRecentProcessedRequestNum));
proxyItr->second.replies[req.requestNum] = rep;
ASSERT(rep.prevVersion >= 0);
req.reply.send(rep);
ASSERT(proxyItr->second.latestRequestNum.get() == req.requestNum - 1);
proxyItr->second.latestRequestNum.set(req.requestNum);
}
return Void();
}
ACTOR Future<Void> provideVersions(Reference<MasterData> self) {
state ActorCollection versionActors(false);
for (auto& p : self->commitProxies)
self->lastCommitProxyVersionReplies[p.id()] = CommitProxyVersionReplies();
loop {
choose {
when(GetCommitVersionRequest req = waitNext(self->myInterface.getCommitVersion.getFuture())) {
versionActors.add(getVersion(self, req));
}
when(wait(versionActors.getResult())) {}
}
}
}
ACTOR Future<Void> serveLiveCommittedVersion(Reference<MasterData> self) {
loop {
choose {
when(GetRawCommittedVersionRequest req = waitNext(self->myInterface.getLiveCommittedVersion.getFuture())) {
if (req.debugID.present())
g_traceBatch.addEvent("TransactionDebug",
req.debugID.get().first(),
"MasterServer.serveLiveCommittedVersion.GetRawCommittedVersion");
if (self->liveCommittedVersion == invalidVersion) {
self->liveCommittedVersion = self->recoveryTransactionVersion;
}
++self->getLiveCommittedVersionRequests;
GetRawCommittedVersionReply reply;
reply.version = self->liveCommittedVersion;
reply.locked = self->databaseLocked;
reply.metadataVersion = self->proxyMetadataVersion;
reply.minKnownCommittedVersion = self->minKnownCommittedVersion;
req.reply.send(reply);
}
when(ReportRawCommittedVersionRequest req =
waitNext(self->myInterface.reportLiveCommittedVersion.getFuture())) {
self->minKnownCommittedVersion = std::max(self->minKnownCommittedVersion, req.minKnownCommittedVersion);
if (req.version > self->liveCommittedVersion) {
self->liveCommittedVersion = req.version;
self->databaseLocked = req.locked;
self->proxyMetadataVersion = req.metadataVersion;
}
++self->reportLiveCommittedVersionRequests;
req.reply.send(Void());
}
}
}
}
std::pair<KeyRangeRef, bool> findRange(CoalescedKeyRangeMap<int>& key_resolver,
Standalone<VectorRef<ResolverMoveRef>>& movedRanges,
int src,
int dest) {
auto ranges = key_resolver.ranges();
auto prev = ranges.begin();
auto it = ranges.begin();
++it;
if (it == ranges.end()) {
if (ranges.begin().value() != src ||
std::find(movedRanges.begin(), movedRanges.end(), ResolverMoveRef(ranges.begin()->range(), dest)) !=
movedRanges.end())
throw operation_failed();
return std::make_pair(ranges.begin().range(), true);
}
std::set<int> borders;
// If possible expand an existing boundary between the two resolvers
for (; it != ranges.end(); ++it) {
if (it->value() == src && prev->value() == dest &&
std::find(movedRanges.begin(), movedRanges.end(), ResolverMoveRef(it->range(), dest)) ==
movedRanges.end()) {
return std::make_pair(it->range(), true);
}
if (it->value() == dest && prev->value() == src &&
std::find(movedRanges.begin(), movedRanges.end(), ResolverMoveRef(prev->range(), dest)) ==
movedRanges.end()) {
return std::make_pair(prev->range(), false);
}
if (it->value() == dest)
borders.insert(prev->value());
if (prev->value() == dest)
borders.insert(it->value());
++prev;
}
prev = ranges.begin();
it = ranges.begin();
++it;
// If possible create a new boundry which doesn't exist yet
for (; it != ranges.end(); ++it) {
if (it->value() == src && !borders.count(prev->value()) &&
std::find(movedRanges.begin(), movedRanges.end(), ResolverMoveRef(it->range(), dest)) ==
movedRanges.end()) {
return std::make_pair(it->range(), true);
}
if (prev->value() == src && !borders.count(it->value()) &&
std::find(movedRanges.begin(), movedRanges.end(), ResolverMoveRef(prev->range(), dest)) ==
movedRanges.end()) {
return std::make_pair(prev->range(), false);
}
++prev;
}
it = ranges.begin();
for (; it != ranges.end(); ++it) {
if (it->value() == src &&
std::find(movedRanges.begin(), movedRanges.end(), ResolverMoveRef(it->range(), dest)) ==
movedRanges.end()) {
return std::make_pair(it->range(), true);
}
}
throw operation_failed(); // we are already attempting to move all of the data one resolver is assigned, so do not
// move anything
}
ACTOR Future<Void> resolutionBalancing(Reference<MasterData> self) {
state CoalescedKeyRangeMap<int> key_resolver;
key_resolver.insert(allKeys, 0);
loop {
wait(delay(SERVER_KNOBS->MIN_BALANCE_TIME, TaskPriority::ResolutionMetrics));
while (self->resolverChanges.get().size())
wait(self->resolverChanges.onChange());
state std::vector<Future<ResolutionMetricsReply>> futures;
for (auto& p : self->resolvers)
futures.push_back(
brokenPromiseToNever(p.metrics.getReply(ResolutionMetricsRequest(), TaskPriority::ResolutionMetrics)));
wait(waitForAll(futures));
state IndexedSet<std::pair<int64_t, int>, NoMetric> metrics;
int64_t total = 0;
for (int i = 0; i < futures.size(); i++) {
total += futures[i].get().value;
metrics.insert(std::make_pair(futures[i].get().value, i), NoMetric());
//TraceEvent("ResolverMetric").detail("I", i).detail("Metric", futures[i].get());
}
if (metrics.lastItem()->first - metrics.begin()->first > SERVER_KNOBS->MIN_BALANCE_DIFFERENCE) {
try {
state int src = metrics.lastItem()->second;
state int dest = metrics.begin()->second;
state int64_t amount = std::min(metrics.lastItem()->first - total / self->resolvers.size(),
total / self->resolvers.size() - metrics.begin()->first) /
2;
state Standalone<VectorRef<ResolverMoveRef>> movedRanges;
loop {
state std::pair<KeyRangeRef, bool> range = findRange(key_resolver, movedRanges, src, dest);
ResolutionSplitRequest req;
req.front = range.second;
req.offset = amount;
req.range = range.first;
ResolutionSplitReply split =
wait(brokenPromiseToNever(self->resolvers[metrics.lastItem()->second].split.getReply(
req, TaskPriority::ResolutionMetrics)));
KeyRangeRef moveRange = range.second ? KeyRangeRef(range.first.begin, split.key)
: KeyRangeRef(split.key, range.first.end);
movedRanges.push_back_deep(movedRanges.arena(), ResolverMoveRef(moveRange, dest));
TraceEvent("MovingResolutionRange")
.detail("Src", src)
.detail("Dest", dest)
.detail("Amount", amount)
.detail("StartRange", range.first)
.detail("MoveRange", moveRange)
.detail("Used", split.used)
.detail("KeyResolverRanges", key_resolver.size());
amount -= split.used;
if (moveRange != range.first || amount <= 0)
break;
}
for (auto& it : movedRanges)
key_resolver.insert(it.range, it.dest);
// for(auto& it : key_resolver.ranges())
// TraceEvent("KeyResolver").detail("Range", it.range()).detail("Value", it.value());
self->resolverChangesVersion = self->version + 1;
for (auto& p : self->commitProxies)
self->resolverNeedingChanges.insert(p.id());
self->resolverChanges.set(movedRanges);
} catch (Error& e) {
if (e.code() != error_code_operation_failed)
throw;
}
}
}
}
static std::set<int> const& normalMasterErrors() {
static std::set<int> s;
if (s.empty()) {
s.insert(error_code_tlog_stopped);
s.insert(error_code_master_tlog_failed);
s.insert(error_code_commit_proxy_failed);
s.insert(error_code_grv_proxy_failed);
s.insert(error_code_master_resolver_failed);
s.insert(error_code_master_backup_worker_failed);
s.insert(error_code_recruitment_failed);
s.insert(error_code_no_more_servers);
s.insert(error_code_master_recovery_failed);
s.insert(error_code_coordinated_state_conflict);
s.insert(error_code_master_max_versions_in_flight);
s.insert(error_code_worker_removed);
s.insert(error_code_new_coordinators_timed_out);
s.insert(error_code_broken_promise);
}
return s;
}
ACTOR Future<Void> changeCoordinators(Reference<MasterData> self) {
loop {
ChangeCoordinatorsRequest req = waitNext(self->myInterface.changeCoordinators.getFuture());
++self->changeCoordinatorsRequests;
state ChangeCoordinatorsRequest changeCoordinatorsRequest = req;
while (!self->cstate.previousWrite.isReady()) {
wait(self->cstate.previousWrite);
wait(delay(
0)); // if a new core state is ready to be written, have that take priority over our finalizing write;
}
if (!self->cstate.fullyRecovered.isSet()) {
wait(self->cstate.write(self->cstate.myDBState, true));
}
try {
wait(self->cstate.move(ClusterConnectionString(changeCoordinatorsRequest.newConnectionString.toString())));
} catch (Error& e) {
if (e.code() != error_code_actor_cancelled)
changeCoordinatorsRequest.reply.sendError(e);
throw;
}
throw internal_error();
}
}
ACTOR Future<Void> rejoinRequestHandler(Reference<MasterData> self) {
loop {
TLogRejoinRequest req = waitNext(self->myInterface.tlogRejoin.getFuture());
req.reply.send(true);
}
}
// Keeps the coordinated state (cstate) updated as the set of recruited tlogs change through recovery.
ACTOR Future<Void> trackTlogRecovery(Reference<MasterData> self,
Reference<AsyncVar<Reference<ILogSystem>>> oldLogSystems,
Future<Void> minRecoveryDuration) {
state Future<Void> rejoinRequests = Never();
state DBRecoveryCount recoverCount = self->cstate.myDBState.recoveryCount + 1;
state DatabaseConfiguration configuration =
self->configuration; // self-configuration can be changed by configurationMonitor so we need a copy
loop {
state DBCoreState newState;
self->logSystem->toCoreState(newState);
newState.recoveryCount = recoverCount;
state Future<Void> changed = self->logSystem->onCoreStateChanged();
ASSERT(newState.tLogs[0].tLogWriteAntiQuorum == configuration.tLogWriteAntiQuorum &&
newState.tLogs[0].tLogReplicationFactor == configuration.tLogReplicationFactor);
state bool allLogs =
newState.tLogs.size() ==
configuration.expectedLogSets(self->primaryDcId.size() ? self->primaryDcId[0] : Optional<Key>());
state bool finalUpdate = !newState.oldTLogData.size() && allLogs;
wait(self->cstate.write(newState, finalUpdate));
wait(minRecoveryDuration);
self->logSystem->coreStateWritten(newState);
if (self->cstateUpdated.canBeSet()) {
self->cstateUpdated.send(Void());
}
if (finalUpdate) {
self->recoveryState = RecoveryState::FULLY_RECOVERED;
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", RecoveryStatus::fully_recovered)
.detail("Status", RecoveryStatus::names[RecoveryStatus::fully_recovered])
.detail("FullyRecoveredAtVersion", self->version)
.trackLatest(self->masterRecoveryStateEventHolder->trackingKey);
TraceEvent("MasterRecoveryGenerations", self->dbgid)
.detail("ActiveGenerations", 1)
.trackLatest("MasterRecoveryGenerations");
} else if (!newState.oldTLogData.size() && self->recoveryState < RecoveryState::STORAGE_RECOVERED) {
self->recoveryState = RecoveryState::STORAGE_RECOVERED;
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", RecoveryStatus::storage_recovered)
.detail("Status", RecoveryStatus::names[RecoveryStatus::storage_recovered])
.trackLatest(self->masterRecoveryStateEventHolder->trackingKey);
} else if (allLogs && self->recoveryState < RecoveryState::ALL_LOGS_RECRUITED) {
self->recoveryState = RecoveryState::ALL_LOGS_RECRUITED;
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", RecoveryStatus::all_logs_recruited)
.detail("Status", RecoveryStatus::names[RecoveryStatus::all_logs_recruited])
.trackLatest(self->masterRecoveryStateEventHolder->trackingKey);
}
if (newState.oldTLogData.size() && configuration.repopulateRegionAntiQuorum > 0 &&
self->logSystem->remoteStorageRecovered()) {
TraceEvent(SevWarnAlways, "RecruitmentStalled_RemoteStorageRecovered", self->dbgid).log();
self->recruitmentStalled->set(true);
}
self->registrationTrigger.trigger();
if (finalUpdate) {
oldLogSystems->get()->stopRejoins();
rejoinRequests = rejoinRequestHandler(self);
return Void();
}
wait(changed);
}
}
ACTOR Future<Void> configurationMonitor(Reference<MasterData> self, Database cx) {
loop {
state ReadYourWritesTransaction tr(cx);
loop {
try {
tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
RangeResult results = wait(tr.getRange(configKeys, CLIENT_KNOBS->TOO_MANY));
ASSERT(!results.more && results.size() < CLIENT_KNOBS->TOO_MANY);
DatabaseConfiguration conf;
conf.fromKeyValues((VectorRef<KeyValueRef>)results);
if (conf != self->configuration) {
if (self->recoveryState != RecoveryState::ALL_LOGS_RECRUITED &&
self->recoveryState != RecoveryState::FULLY_RECOVERED) {
throw master_recovery_failed();
}
self->configuration = conf;
self->registrationTrigger.trigger();
}
state Future<Void> watchFuture =
tr.watch(moveKeysLockOwnerKey) || tr.watch(excludedServersVersionKey) ||
tr.watch(failedServersVersionKey) || tr.watch(excludedLocalityVersionKey) ||
tr.watch(failedLocalityVersionKey);
wait(tr.commit());
wait(watchFuture);
break;
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
}
ACTOR static Future<Optional<Version>> getMinBackupVersion(Reference<MasterData> self, Database cx) {
loop {
state ReadYourWritesTransaction tr(cx);
try {
tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr.setOption(FDBTransactionOptions::LOCK_AWARE);
Optional<Value> value = wait(tr.get(backupStartedKey));
Optional<Version> minVersion;
if (value.present()) {
auto uidVersions = decodeBackupStartedValue(value.get());
TraceEvent e("GotBackupStartKey", self->dbgid);
int i = 1;
for (auto [uid, version] : uidVersions) {
e.detail(format("BackupID%d", i), uid).detail(format("Version%d", i), version);
i++;
minVersion = minVersion.present() ? std::min(version, minVersion.get()) : version;
}
} else {
TraceEvent("EmptyBackupStartKey", self->dbgid).log();
}
return minVersion;
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
ACTOR static Future<Void> recruitBackupWorkers(Reference<MasterData> self, Database cx) {
ASSERT(self->backupWorkers.size() > 0);
// Avoid race between a backup worker's save progress and the reads below.
wait(delay(SERVER_KNOBS->SECONDS_BEFORE_RECRUIT_BACKUP_WORKER));
state LogEpoch epoch = self->cstate.myDBState.recoveryCount;
state Reference<BackupProgress> backupProgress(
new BackupProgress(self->dbgid, self->logSystem->getOldEpochTagsVersionsInfo()));
state Future<Void> gotProgress = getBackupProgress(cx, self->dbgid, backupProgress, /*logging=*/true);
state std::vector<Future<InitializeBackupReply>> initializationReplies;
state std::vector<std::pair<UID, Tag>> idsTags; // worker IDs and tags for current epoch
state int logRouterTags = self->logSystem->getLogRouterTags();
idsTags.reserve(logRouterTags);
for (int i = 0; i < logRouterTags; i++) {
idsTags.emplace_back(deterministicRandom()->randomUniqueID(), Tag(tagLocalityLogRouter, i));
}
const Version startVersion = self->logSystem->getBackupStartVersion();
state int i = 0;
for (; i < logRouterTags; i++) {
const auto& worker = self->backupWorkers[i % self->backupWorkers.size()];
InitializeBackupRequest req(idsTags[i].first);
req.recruitedEpoch = epoch;
req.backupEpoch = epoch;
req.routerTag = idsTags[i].second;
req.totalTags = logRouterTags;
req.startVersion = startVersion;
TraceEvent("BackupRecruitment", self->dbgid)
.detail("RequestID", req.reqId)
.detail("Tag", req.routerTag.toString())
.detail("Epoch", epoch)
.detail("BackupEpoch", epoch)
.detail("StartVersion", req.startVersion);
initializationReplies.push_back(
transformErrors(throwErrorOr(worker.backup.getReplyUnlessFailedFor(
req, SERVER_KNOBS->BACKUP_TIMEOUT, SERVER_KNOBS->MASTER_FAILURE_SLOPE_DURING_RECOVERY)),
master_backup_worker_failed()));
}
state Future<Optional<Version>> fMinVersion = getMinBackupVersion(self, cx);
wait(gotProgress && success(fMinVersion));
TraceEvent("MinBackupVersion", self->dbgid).detail("Version", fMinVersion.get().present() ? fMinVersion.get() : -1);
std::map<std::tuple<LogEpoch, Version, int>, std::map<Tag, Version>> toRecruit =
backupProgress->getUnfinishedBackup();
for (const auto& [epochVersionTags, tagVersions] : toRecruit) {
const Version oldEpochEnd = std::get<1>(epochVersionTags);
if (!fMinVersion.get().present() || fMinVersion.get().get() + 1 >= oldEpochEnd) {
TraceEvent("SkipBackupRecruitment", self->dbgid)
.detail("MinVersion", fMinVersion.get().present() ? fMinVersion.get() : -1)
.detail("Epoch", epoch)
.detail("OldEpoch", std::get<0>(epochVersionTags))
.detail("OldEpochEnd", oldEpochEnd);
continue;
}
for (const auto& [tag, version] : tagVersions) {
const auto& worker = self->backupWorkers[i % self->backupWorkers.size()];
i++;
InitializeBackupRequest req(deterministicRandom()->randomUniqueID());
req.recruitedEpoch = epoch;
req.backupEpoch = std::get<0>(epochVersionTags);
req.routerTag = tag;
req.totalTags = std::get<2>(epochVersionTags);
req.startVersion = version; // savedVersion + 1
req.endVersion = std::get<1>(epochVersionTags) - 1;
TraceEvent("BackupRecruitment", self->dbgid)
.detail("RequestID", req.reqId)
.detail("Tag", req.routerTag.toString())
.detail("Epoch", epoch)
.detail("BackupEpoch", req.backupEpoch)
.detail("StartVersion", req.startVersion)
.detail("EndVersion", req.endVersion.get());
initializationReplies.push_back(transformErrors(
throwErrorOr(worker.backup.getReplyUnlessFailedFor(
req, SERVER_KNOBS->BACKUP_TIMEOUT, SERVER_KNOBS->MASTER_FAILURE_SLOPE_DURING_RECOVERY)),
master_backup_worker_failed()));
}
}
std::vector<InitializeBackupReply> newRecruits = wait(getAll(initializationReplies));
self->logSystem->setBackupWorkers(newRecruits);
TraceEvent("BackupRecruitmentDone", self->dbgid).log();
self->registrationTrigger.trigger();
return Void();
}
ACTOR Future<Void> masterCore(Reference<MasterData> self) {
state TraceInterval recoveryInterval("MasterRecovery");
state double recoverStartTime = now();
self->addActor.send(waitFailureServer(self->myInterface.waitFailure.getFuture()));
TraceEvent(recoveryInterval.begin(), self->dbgid);
self->recoveryState = RecoveryState::READING_CSTATE;
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", RecoveryStatus::reading_coordinated_state)
.detail("Status", RecoveryStatus::names[RecoveryStatus::reading_coordinated_state])
.trackLatest(self->masterRecoveryStateEventHolder->trackingKey);
wait(self->cstate.read());
self->recoveryState = RecoveryState::LOCKING_CSTATE;
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", RecoveryStatus::locking_coordinated_state)
.detail("Status", RecoveryStatus::names[RecoveryStatus::locking_coordinated_state])
.detail("TLogs", self->cstate.prevDBState.tLogs.size())
.detail("ActiveGenerations", self->cstate.myDBState.oldTLogData.size() + 1)
.detail("MyRecoveryCount", self->cstate.prevDBState.recoveryCount + 2)
.detail("ForceRecovery", self->forceRecovery)
.trackLatest(self->masterRecoveryStateEventHolder->trackingKey);
// for (const auto& old : self->cstate.prevDBState.oldTLogData) {
// TraceEvent("BWReadCoreState", self->dbgid).detail("Epoch", old.epoch).detail("Version", old.epochEnd);
//}
TraceEvent("MasterRecoveryGenerations", self->dbgid)
.detail("ActiveGenerations", self->cstate.myDBState.oldTLogData.size() + 1)
.trackLatest(self->masterRecoveryGenerationsEventHolder->trackingKey);
if (self->cstate.myDBState.oldTLogData.size() > CLIENT_KNOBS->MAX_GENERATIONS_OVERRIDE) {
if (self->cstate.myDBState.oldTLogData.size() >= CLIENT_KNOBS->MAX_GENERATIONS) {
TraceEvent(SevError, "RecoveryStoppedTooManyOldGenerations")
.detail("OldGenerations", self->cstate.myDBState.oldTLogData.size())
.detail("Reason",
"Recovery stopped because too many recoveries have happened since the last time the cluster "
"was fully_recovered. Set --knob_max_generations_override on your server processes to a value "
"larger than OldGenerations to resume recovery once the underlying problem has been fixed.");
wait(Future<Void>(Never()));
} else if (self->cstate.myDBState.oldTLogData.size() > CLIENT_KNOBS->RECOVERY_DELAY_START_GENERATION) {
TraceEvent(SevError, "RecoveryDelayedTooManyOldGenerations")
.detail("OldGenerations", self->cstate.myDBState.oldTLogData.size())
.detail("Reason",
"Recovery is delayed because too many recoveries have happened since the last time the cluster "
"was fully_recovered. Set --knob_max_generations_override on your server processes to a value "
"larger than OldGenerations to resume recovery once the underlying problem has been fixed.");
wait(delay(CLIENT_KNOBS->RECOVERY_DELAY_SECONDS_PER_GENERATION *
(self->cstate.myDBState.oldTLogData.size() - CLIENT_KNOBS->RECOVERY_DELAY_START_GENERATION)));
}
if (g_network->isSimulated() && self->cstate.myDBState.oldTLogData.size() > CLIENT_KNOBS->MAX_GENERATIONS_SIM) {
g_simulator.connectionFailuresDisableDuration = 1e6;
g_simulator.speedUpSimulation = true;
TraceEvent(SevWarnAlways, "DisableConnectionFailures_TooManyGenerations").log();
}
}
state Reference<AsyncVar<Reference<ILogSystem>>> oldLogSystems(new AsyncVar<Reference<ILogSystem>>);
state Future<Void> recoverAndEndEpoch = ILogSystem::recoverAndEndEpoch(oldLogSystems,
self->dbgid,
self->cstate.prevDBState,
self->myInterface.tlogRejoin.getFuture(),
self->myInterface.locality,
&self->forceRecovery);
DBCoreState newState = self->cstate.myDBState;
newState.recoveryCount++;
wait(self->cstate.write(newState) || recoverAndEndEpoch);
self->recoveryState = RecoveryState::RECRUITING;
state std::vector<StorageServerInterface> seedServers;
state std::vector<Standalone<CommitTransactionRef>> initialConfChanges;
state Future<Void> logChanges;
state Future<Void> minRecoveryDuration;
state Future<Version> poppedTxsVersion;
loop {
Reference<ILogSystem> oldLogSystem = oldLogSystems->get();
if (oldLogSystem) {
logChanges = triggerUpdates(self, oldLogSystem);
if (!minRecoveryDuration.isValid()) {
minRecoveryDuration = delay(SERVER_KNOBS->ENFORCED_MIN_RECOVERY_DURATION);
poppedTxsVersion = oldLogSystem->getTxsPoppedVersion();
}
}
state Future<Void> reg = oldLogSystem ? updateRegistration(self, oldLogSystem) : Never();
self->registrationTrigger.trigger();
choose {
when(wait(oldLogSystem
? recoverFrom(self, oldLogSystem, &seedServers, &initialConfChanges, poppedTxsVersion)
: Never())) {
reg.cancel();
break;
}
when(wait(oldLogSystems->onChange())) {}
when(wait(reg)) { throw internal_error(); }
when(wait(recoverAndEndEpoch)) { throw internal_error(); }
}
}
if (self->neverCreated) {
recoverStartTime = now();
}
recoverAndEndEpoch.cancel();
ASSERT(self->commitProxies.size() <= self->configuration.getDesiredCommitProxies());
ASSERT(self->commitProxies.size() >= 1);
ASSERT(self->grvProxies.size() <= self->configuration.getDesiredGrvProxies());
ASSERT(self->grvProxies.size() >= 1);
ASSERT(self->resolvers.size() <= self->configuration.getDesiredResolvers());
ASSERT(self->resolvers.size() >= 1);
self->recoveryState = RecoveryState::RECOVERY_TRANSACTION;
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", RecoveryStatus::recovery_transaction)
.detail("Status", RecoveryStatus::names[RecoveryStatus::recovery_transaction])
.detail("PrimaryLocality", self->primaryLocality)
.detail("DcId", self->myInterface.locality.dcId())
.trackLatest(self->masterRecoveryStateEventHolder->trackingKey);
// Recovery transaction
state bool debugResult = debug_checkMinRestoredVersion(UID(), self->lastEpochEnd, "DBRecovery", SevWarn);
CommitTransactionRequest recoveryCommitRequest;
recoveryCommitRequest.flags = recoveryCommitRequest.flags | CommitTransactionRequest::FLAG_IS_LOCK_AWARE;
CommitTransactionRef& tr = recoveryCommitRequest.transaction;
int mmApplied = 0; // The number of mutations in tr.mutations that have been applied to the txnStateStore so far
if (self->lastEpochEnd != 0) {
Optional<Value> snapRecoveryFlag = self->txnStateStore->readValue(writeRecoveryKey).get();
TraceEvent("MasterRecoverySnapshotCheck")
.detail("SnapRecoveryFlag", snapRecoveryFlag.present() ? snapRecoveryFlag.get().toString() : "N/A")
.detail("LastEpochEnd", self->lastEpochEnd);
if (snapRecoveryFlag.present()) {
TEST(true); // Recovering from snapshot, writing to snapShotEndVersionKey
BinaryWriter bw(Unversioned());
tr.set(recoveryCommitRequest.arena, snapshotEndVersionKey, (bw << self->lastEpochEnd).toValue());
// Pause the backups that got restored in this snapshot to avoid data corruption
// Requires further operational work to abort the backup
TraceEvent("MasterRecoveryPauseBackupAgents").log();
Key backupPauseKey = FileBackupAgent::getPauseKey();
tr.set(recoveryCommitRequest.arena, backupPauseKey, StringRef());
// Clear the key so multiple recoveries will not overwrite the first version recorded
tr.clear(recoveryCommitRequest.arena, singleKeyRange(writeRecoveryKey));
}
if (self->forceRecovery) {
BinaryWriter bw(Unversioned());
tr.set(recoveryCommitRequest.arena, killStorageKey, (bw << self->safeLocality).toValue());
}
// This transaction sets \xff/lastEpochEnd, which the shard servers can use to roll back speculatively
// processed semi-committed transactions from the previous epoch.
// It also guarantees the shard servers and tlog servers eventually get versions in the new epoch, which
// clients might rely on.
// This transaction is by itself in a batch (has its own version number), which simplifies storage servers
// slightly (they assume there are no modifications to serverKeys in the same batch) The proxy also expects the
// lastEpochEndKey mutation to be first in the transaction
BinaryWriter bw(Unversioned());
tr.set(recoveryCommitRequest.arena, lastEpochEndKey, (bw << self->lastEpochEnd).toValue());
if (self->forceRecovery) {
tr.set(recoveryCommitRequest.arena, rebootWhenDurableKey, StringRef());
tr.set(recoveryCommitRequest.arena,
moveKeysLockOwnerKey,
BinaryWriter::toValue(deterministicRandom()->randomUniqueID(), Unversioned()));
}
} else {
// Recruit and seed initial shard servers
// This transaction must be the very first one in the database (version 1)
seedShardServers(recoveryCommitRequest.arena, tr, seedServers);
}
// initialConfChanges have not been conflict checked against any earlier writes in the recovery transaction, so do
// this as early as possible in the recovery transaction but see above comments as to why it can't be absolutely
// first. Theoretically emergency transactions should conflict check against the lastEpochEndKey.
for (auto& itr : initialConfChanges) {
tr.mutations.append_deep(recoveryCommitRequest.arena, itr.mutations.begin(), itr.mutations.size());
tr.write_conflict_ranges.append_deep(
recoveryCommitRequest.arena, itr.write_conflict_ranges.begin(), itr.write_conflict_ranges.size());
}
tr.set(
recoveryCommitRequest.arena, primaryLocalityKey, BinaryWriter::toValue(self->primaryLocality, Unversioned()));
tr.set(recoveryCommitRequest.arena, backupVersionKey, backupVersionValue);
tr.set(recoveryCommitRequest.arena, coordinatorsKey, self->coordinators.ccf->getConnectionString().toString());
tr.set(recoveryCommitRequest.arena, logsKey, self->logSystem->getLogsValue());
tr.set(recoveryCommitRequest.arena,
primaryDatacenterKey,
self->myInterface.locality.dcId().present() ? self->myInterface.locality.dcId().get() : StringRef());
tr.clear(recoveryCommitRequest.arena, tLogDatacentersKeys);
for (auto& dc : self->primaryDcId) {
tr.set(recoveryCommitRequest.arena, tLogDatacentersKeyFor(dc), StringRef());
}
if (self->configuration.usableRegions > 1) {
for (auto& dc : self->remoteDcIds) {
tr.set(recoveryCommitRequest.arena, tLogDatacentersKeyFor(dc), StringRef());
}
}
applyMetadataMutations(SpanID(),
self->dbgid,
recoveryCommitRequest.arena,
tr.mutations.slice(mmApplied, tr.mutations.size()),
self->txnStateStore);
mmApplied = tr.mutations.size();
tr.read_snapshot = self->recoveryTransactionVersion; // lastEpochEnd would make more sense, but isn't in the initial
// window of the resolver(s)
TraceEvent("MasterRecoveryCommit", self->dbgid).log();
state Future<ErrorOr<CommitID>> recoveryCommit = self->commitProxies[0].commit.tryGetReply(recoveryCommitRequest);
self->addActor.send(self->logSystem->onError());
self->addActor.send(waitResolverFailure(self->resolvers));
self->addActor.send(waitCommitProxyFailure(self->commitProxies));
self->addActor.send(waitGrvProxyFailure(self->grvProxies));
self->addActor.send(provideVersions(self));
self->addActor.send(serveLiveCommittedVersion(self));
self->addActor.send(reportErrors(updateRegistration(self, self->logSystem), "UpdateRegistration", self->dbgid));
self->registrationTrigger.trigger();
wait(discardCommit(self->txnStateStore, self->txnStateLogAdapter));
// Wait for the recovery transaction to complete.
// SOMEDAY: For faster recovery, do this and setDBState asynchronously and don't wait for them
// unless we want to change TLogs
wait((success(recoveryCommit) && sendInitialCommitToResolvers(self)));
if (recoveryCommit.isReady() && recoveryCommit.get().isError()) {
TEST(true); // Master recovery failed because of the initial commit failed
throw master_recovery_failed();
}
ASSERT(self->recoveryTransactionVersion != 0);
self->recoveryState = RecoveryState::WRITING_CSTATE;
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", RecoveryStatus::writing_coordinated_state)
.detail("Status", RecoveryStatus::names[RecoveryStatus::writing_coordinated_state])
.detail("TLogList", self->logSystem->describe())
.trackLatest(self->masterRecoveryStateEventHolder->trackingKey);
// Multiple masters prevent conflicts between themselves via CoordinatedState (self->cstate)
// 1. If SetMaster succeeds, then by CS's contract, these "new" Tlogs are the immediate
// successors of the "old" ones we are replacing
// 2. logSystem->recoverAndEndEpoch ensured that a co-quorum of the "old" tLogs were stopped at
// versions <= self->lastEpochEnd, so no versions > self->lastEpochEnd could be (fully) committed to them.
// 3. No other master will attempt to commit anything to our "new" Tlogs
// because it didn't recruit them
// 4. Therefore, no full commit can come between self->lastEpochEnd and the first commit
// we made to the new Tlogs (self->recoveryTransactionVersion), and only our own semi-commits can come between
// our first commit and the next new TLogs
self->addActor.send(trackTlogRecovery(self, oldLogSystems, minRecoveryDuration));
debug_advanceMaxCommittedVersion(UID(), self->recoveryTransactionVersion);
wait(self->cstateUpdated.getFuture());
debug_advanceMinCommittedVersion(UID(), self->recoveryTransactionVersion);
if (debugResult) {
TraceEvent(self->forceRecovery ? SevWarn : SevError, "DBRecoveryDurabilityError").log();
}
TraceEvent("MasterCommittedTLogs", self->dbgid)
.detail("TLogs", self->logSystem->describe())
.detail("RecoveryCount", self->cstate.myDBState.recoveryCount)
.detail("RecoveryTransactionVersion", self->recoveryTransactionVersion);
TraceEvent(recoveryInterval.end(), self->dbgid)
.detail("RecoveryTransactionVersion", self->recoveryTransactionVersion);
self->recoveryState = RecoveryState::ACCEPTING_COMMITS;
double recoveryDuration = now() - recoverStartTime;
TraceEvent((recoveryDuration > 4 && !g_network->isSimulated()) ? SevWarnAlways : SevInfo,
"MasterRecoveryDuration",
self->dbgid)
.detail("RecoveryDuration", recoveryDuration)
.trackLatest(self->masterRecoveryDurationEventHolder->trackingKey);
TraceEvent("MasterRecoveryState", self->dbgid)
.detail("StatusCode", RecoveryStatus::accepting_commits)
.detail("Status", RecoveryStatus::names[RecoveryStatus::accepting_commits])
.detail("StoreType", self->configuration.storageServerStoreType)
.detail("RecoveryDuration", recoveryDuration)
.trackLatest(self->masterRecoveryStateEventHolder->trackingKey);
TraceEvent("MasterRecoveryAvailable", self->dbgid)
.detail("AvailableAtVersion", self->version)
.trackLatest(self->masterRecoveryAvailableEventHolder->trackingKey);
if (self->resolvers.size() > 1)
self->addActor.send(resolutionBalancing(self));
self->addActor.send(changeCoordinators(self));
Database cx = openDBOnServer(self->dbInfo, TaskPriority::DefaultEndpoint, LockAware::True);
self->addActor.send(configurationMonitor(self, cx));
if (self->configuration.backupWorkerEnabled) {
self->addActor.send(recruitBackupWorkers(self, cx));
} else {
self->logSystem->setOldestBackupEpoch(self->cstate.myDBState.recoveryCount);
}
wait(Future<Void>(Never()));
throw internal_error();
}
ACTOR Future<Void> masterServer(MasterInterface mi,
Reference<AsyncVar<ServerDBInfo> const> db,
Reference<AsyncVar<Optional<ClusterControllerFullInterface>> const> ccInterface,
ServerCoordinators coordinators,
LifetimeToken lifetime,
bool forceRecovery) {
state Future<Void> ccTimeout = delay(SERVER_KNOBS->CC_INTERFACE_TIMEOUT);
while (!ccInterface->get().present() || db->get().clusterInterface != ccInterface->get().get()) {
wait(ccInterface->onChange() || db->onChange() || ccTimeout);
if (ccTimeout.isReady()) {
TraceEvent("MasterTerminated", mi.id())
.detail("Reason", "Timeout")
.detail("CCInterface", ccInterface->get().present() ? ccInterface->get().get().id() : UID())
.detail("DBInfoInterface", db->get().clusterInterface.id());
return Void();
}
}
state Future<Void> onDBChange = Void();
state PromiseStream<Future<Void>> addActor;
state Reference<MasterData> self(new MasterData(
db, mi, coordinators, db->get().clusterInterface, LiteralStringRef(""), addActor, forceRecovery));
state Future<Void> collection = actorCollection(self->addActor.getFuture());
self->addActor.send(traceRole(Role::MASTER, mi.id()));
TEST(!lifetime.isStillValid(db->get().masterLifetime, mi.id() == db->get().master.id())); // Master born doomed
TraceEvent("MasterLifetime", self->dbgid).detail("LifetimeToken", lifetime.toString());
try {
state Future<Void> core = masterCore(self);
loop choose {
when(wait(core)) { break; }
when(wait(onDBChange)) {
onDBChange = db->onChange();
if (!lifetime.isStillValid(db->get().masterLifetime, mi.id() == db->get().master.id())) {
TraceEvent("MasterTerminated", mi.id())
.detail("Reason", "LifetimeToken")
.detail("MyToken", lifetime.toString())
.detail("CurrentToken", db->get().masterLifetime.toString());
TEST(true); // Master replaced, dying
if (BUGGIFY)
wait(delay(5));
throw worker_removed();
}
}
when(BackupWorkerDoneRequest req = waitNext(mi.notifyBackupWorkerDone.getFuture())) {
if (self->logSystem.isValid() && self->logSystem->removeBackupWorker(req)) {
self->registrationTrigger.trigger();
}
++self->backupWorkerDoneRequests;
req.reply.send(Void());
}
when(wait(collection)) {
ASSERT(false);
throw internal_error();
}
}
} catch (Error& e) {
state Error err = e;
if (e.code() != error_code_actor_cancelled) {
wait(delay(0.0));
}
while (!self->addActor.isEmpty()) {
self->addActor.getFuture().pop();
}
TEST(err.code() == error_code_master_tlog_failed); // Master: terminated due to tLog failure
TEST(err.code() == error_code_commit_proxy_failed); // Master: terminated due to commit proxy failure
TEST(err.code() == error_code_grv_proxy_failed); // Master: terminated due to GRV proxy failure
TEST(err.code() == error_code_master_resolver_failed); // Master: terminated due to resolver failure
TEST(err.code() == error_code_master_backup_worker_failed); // Master: terminated due to backup worker failure
if (normalMasterErrors().count(err.code())) {
TraceEvent("MasterTerminated", mi.id()).error(err);
return Void();
}
throw err;
}
return Void();
}