foundationdb/fdbserver/workloads/MachineAttrition.actor.cpp

219 lines
8.1 KiB
C++

/*
* MachineAttrition.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "fdbclient/NativeAPI.actor.h"
#include "fdbserver/TesterInterface.actor.h"
#include "fdbserver/WorkerInterface.actor.h"
#include "fdbserver/workloads/workloads.actor.h"
#include "fdbrpc/simulator.h"
#include "fdbclient/ManagementAPI.actor.h"
#include "flow/actorcompiler.h" // This must be the last #include.
static std::set<int> const& normalAttritionErrors() {
static std::set<int> s;
if (s.empty()) {
s.insert( error_code_please_reboot );
s.insert( error_code_please_reboot_delete );
}
return s;
}
struct MachineAttritionWorkload : TestWorkload {
bool enabled;
int machinesToKill, machinesToLeave;
double testDuration;
bool reboot;
bool killDc;
bool killSelf;
bool replacement;
bool waitForVersion;
bool allowFaultInjection;
// This is set in setup from the list of workers when the cluster is started
std::vector<LocalityData> machines;
MachineAttritionWorkload( WorkloadContext const& wcx )
: TestWorkload(wcx)
{
enabled = !clientId && g_network->isSimulated(); // only do this on the "first" client, and only when in simulation
machinesToKill = getOption( options, LiteralStringRef("machinesToKill"), 2 );
machinesToLeave = getOption( options, LiteralStringRef("machinesToLeave"), 1 );
testDuration = getOption( options, LiteralStringRef("testDuration"), 10.0 );
reboot = getOption( options, LiteralStringRef("reboot"), false );
killDc = getOption( options, LiteralStringRef("killDc"), deterministicRandom()->random01() < 0.25 );
killSelf = getOption( options, LiteralStringRef("killSelf"), false );
replacement = getOption( options, LiteralStringRef("replacement"), reboot && deterministicRandom()->random01() < 0.5 );
waitForVersion = getOption( options, LiteralStringRef("waitForVersion"), false );
allowFaultInjection = getOption( options, LiteralStringRef("allowFaultInjection"), true );
}
static vector<ISimulator::ProcessInfo*> getServers() {
vector<ISimulator::ProcessInfo*> machines;
vector<ISimulator::ProcessInfo*> all = g_simulator.getAllProcesses();
for(int i = 0; i < all.size(); i++)
if( !all[i]->failed && all[i]->name == std::string("Server") && all[i]->startingClass != ProcessClass::TesterClass)
machines.push_back( all[i] );
return machines;
}
virtual std::string description() { return "MachineAttritionWorkload"; }
virtual Future<Void> setup( Database const& cx ) {
return Void();
}
virtual Future<Void> start( Database const& cx ) {
if (enabled) {
std::map<Optional<Standalone<StringRef>>,LocalityData> machineIDMap;
auto processes = getServers();
for (auto it = processes.begin(); it != processes.end(); ++it) {
machineIDMap[(*it)->locality.zoneId()] = (*it)->locality;
}
machines.clear();
for (auto it = machineIDMap.begin(); it != machineIDMap.end(); ++it) {
machines.push_back(it->second);
}
deterministicRandom()->randomShuffle( machines );
double meanDelay = testDuration / machinesToKill;
TraceEvent("AttritionStarting")
.detail("KillDataCenters", killDc)
.detail("Reboot", reboot)
.detail("MachinesToLeave", machinesToLeave)
.detail("MachinesToKill", machinesToKill)
.detail("MeanDelay", meanDelay);
return timeout(
reportErrorsExcept( machineKillWorker( this, meanDelay, cx ), "machineKillWorkerError", UID(), &normalAttritionErrors()),
testDuration, Void() );
}
if(killSelf)
throw please_reboot();
return Void();
}
virtual Future<bool> check( Database const& cx ) { return true; }
virtual void getMetrics( vector<PerfMetric>& m ) {
}
struct UIDPredicate {
UIDPredicate(StringRef uid ) : uid( uid ) {}
bool operator() ( WorkerInterface rhs ) { return rhs.locality.zoneId() != uid; }
private:
StringRef uid;
};
ACTOR static Future<Void> machineKillWorker( MachineAttritionWorkload *self, double meanDelay, Database cx ) {
state int killedMachines = 0;
state double delayBeforeKill = deterministicRandom()->random01() * meanDelay;
state std::set<UID> killedUIDs;
ASSERT( g_network->isSimulated() );
if( self->killDc ) {
wait( delay( delayBeforeKill ) );
// decide on a machine to kill
ASSERT( self->machines.size() );
Optional<Standalone<StringRef>> target = self->machines.back().dcId();
ISimulator::KillType kt = ISimulator::Reboot;
if( !self->reboot ) {
int killType = deterministicRandom()->randomInt(0,3);
if( killType == 0 )
kt = ISimulator::KillInstantly;
else if( killType == 1 )
kt = ISimulator::InjectFaults;
else
kt = ISimulator::RebootAndDelete;
}
TraceEvent("Assassination").detail("TargetDatacenter", target).detail("Reboot", self->reboot).detail("KillType", kt);
g_simulator.killDataCenter( target, kt );
} else {
while ( killedMachines < self->machinesToKill && self->machines.size() > self->machinesToLeave) {
TraceEvent("WorkerKillBegin").detail("KilledMachines", killedMachines)
.detail("MachinesToKill", self->machinesToKill).detail("MachinesToLeave", self->machinesToLeave)
.detail("Machines", self->machines.size());
TEST(true); // Killing a machine
wait( delay( delayBeforeKill ) );
TraceEvent("WorkerKillAfterDelay");
if(self->waitForVersion) {
state Transaction tr( cx );
loop {
try {
tr.setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE);
tr.setOption(FDBTransactionOptions::LOCK_AWARE);
wait(success(tr.getReadVersion()));
break;
} catch( Error &e ) {
wait( tr.onError(e) );
}
}
}
// decide on a machine to kill
state LocalityData targetMachine = self->machines.back();
if(BUGGIFY_WITH_PROB(0.01)) {
TEST(true); //Marked a zone for maintenance before killing it
wait( setHealthyZone(cx, targetMachine.zoneId().get(), deterministicRandom()->random01()*20 ) );
}
TraceEvent("Assassination").detail("TargetMachine", targetMachine.toString())
.detail("ZoneId", targetMachine.zoneId())
.detail("Reboot", self->reboot).detail("KilledMachines", killedMachines)
.detail("MachinesToKill", self->machinesToKill).detail("MachinesToLeave", self->machinesToLeave)
.detail("Machines", self->machines.size()).detail("Replace", self->replacement);
if (self->reboot) {
if( deterministicRandom()->random01() > 0.5 ) {
g_simulator.rebootProcess( targetMachine.zoneId(), deterministicRandom()->random01() > 0.5 );
} else {
g_simulator.killZone( targetMachine.zoneId(), ISimulator::Reboot );
}
} else {
auto randomDouble = deterministicRandom()->random01();
TraceEvent("WorkerKill").detail("MachineCount", self->machines.size()).detail("RandomValue", randomDouble);
if (randomDouble < 0.33 ) {
TraceEvent("RebootAndDelete").detail("TargetMachine", targetMachine.toString());
g_simulator.killZone( targetMachine.zoneId(), ISimulator::RebootAndDelete );
} else {
auto kt = (deterministicRandom()->random01() < 0.5 || !self->allowFaultInjection) ? ISimulator::KillInstantly : ISimulator::InjectFaults;
g_simulator.killZone( targetMachine.zoneId(), kt );
}
}
killedMachines++;
if(!self->replacement)
self->machines.pop_back();
wait( delay( meanDelay - delayBeforeKill ) );
delayBeforeKill = deterministicRandom()->random01() * meanDelay;
TraceEvent("WorkerKillAfterMeanDelay").detail("DelayBeforeKill", delayBeforeKill);
}
}
if(self->killSelf)
throw please_reboot();
return Void();
}
};
WorkloadFactory<MachineAttritionWorkload> MachineAttritionWorkloadFactory("Attrition");