foundationdb/fdbserver/workloads/AtomicOps.actor.cpp

445 lines
15 KiB
C++

/*
* AtomicOps.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "fdbrpc/ContinuousSample.h"
#include "fdbclient/NativeAPI.actor.h"
#include "fdbserver/TesterInterface.actor.h"
#include "fdbserver/workloads/BulkSetup.actor.h"
#include "fdbclient/ReadYourWrites.h"
#include "fdbserver/workloads/workloads.actor.h"
#include "flow/actorcompiler.h" // This must be the last #include.
//#define SevAtomicOpDebug SevInfo
#define SevAtomicOpDebug SevVerbose
struct AtomicOpsWorkload : TestWorkload {
int opNum, actorCount, nodeCount;
uint32_t opType;
bool apiVersion500 = false;
double testDuration, transactionsPerSecond;
std::vector<Future<Void>> clients;
uint64_t lbsum, ubsum; // The lower bound and upper bound sum of operations when opType = AddValue
AtomicOpsWorkload(WorkloadContext const& wcx) : TestWorkload(wcx), opNum(0) {
testDuration = getOption(options, LiteralStringRef("testDuration"), 600.0);
transactionsPerSecond = getOption(options, LiteralStringRef("transactionsPerSecond"), 5000.0) / clientCount;
actorCount = getOption(options, LiteralStringRef("actorsPerClient"), transactionsPerSecond / 5);
opType = getOption(options, LiteralStringRef("opType"), -1);
nodeCount = getOption(options, LiteralStringRef("nodeCount"), 1000);
// Atomic OPs Min and And have modified behavior from api version 510. Hence allowing testing for older version
// (500) with a 10% probability Actual change of api Version happens in setup
apiVersion500 = ((sharedRandomNumber % 10) == 0);
TraceEvent("AtomicOpsApiVersion500").detail("ApiVersion500", apiVersion500);
lbsum = 0;
ubsum = 0;
int64_t randNum = sharedRandomNumber / 10;
if (opType == -1)
opType = randNum % 10;
switch (opType) {
case 0:
TEST(true); // Testing atomic AddValue
opType = MutationRef::AddValue;
break;
case 1:
TEST(true); // Testing atomic And
opType = MutationRef::And;
break;
case 2:
TEST(true); // Testing atomic Or
opType = MutationRef::Or;
break;
case 3:
TEST(true); // Testing atomic Xor
opType = MutationRef::Xor;
break;
case 4:
TEST(true); // Testing atomic Max
opType = MutationRef::Max;
break;
case 5:
TEST(true); // Testing atomic Min
opType = MutationRef::Min;
break;
case 6:
TEST(true); // Testing atomic ByteMin
opType = MutationRef::ByteMin;
break;
case 7:
TEST(true); // Testing atomic ByteMax
opType = MutationRef::ByteMax;
break;
case 8:
TEST(true); // Testing atomic MinV2
opType = MutationRef::MinV2;
break;
case 9:
TEST(true); // Testing atomic AndV2
opType = MutationRef::AndV2;
break;
// case 10:
// TEST(true); // Testing atomic CompareAndClear Not supported yet
// opType = MutationRef::CompareAndClear
// break;
default:
ASSERT(false);
}
TraceEvent("AtomicWorkload").detail("OpType", opType);
}
std::string description() const override { return "AtomicOps"; }
Future<Void> setup(Database const& cx) override {
if (apiVersion500)
cx->apiVersion = 500;
if (clientId != 0)
return Void();
return _setup(cx, this);
}
Future<Void> start(Database const& cx) override {
for (int c = 0; c < actorCount; c++) {
clients.push_back(
timeout(atomicOpWorker(cx->clone(), this, actorCount / transactionsPerSecond), testDuration, Void()));
}
return delay(testDuration);
}
Future<bool> check(Database const& cx) override {
if (clientId != 0)
return true;
return _check(cx, this);
}
void getMetrics(std::vector<PerfMetric>& m) override {}
std::pair<Key, Key> logDebugKey(int group) {
Key logKey(format("log%08x%08x%08x", group, clientId, opNum));
Key debugKey(format("debug%08x%08x%08x", group, clientId, opNum));
opNum++;
return std::make_pair(logKey, debugKey);
}
ACTOR Future<Void> _setup(Database cx, AtomicOpsWorkload* self) {
// Sanity check if log keyspace has elements
state ReadYourWritesTransaction tr1(cx);
loop {
try {
Key begin(std::string("log"));
RangeResult log = wait(tr1.getRange(KeyRangeRef(begin, strinc(begin)), CLIENT_KNOBS->TOO_MANY));
if (!log.empty()) {
TraceEvent(SevError, "AtomicOpSetup")
.detail("LogKeySpace", "Not empty")
.detail("Result", log.toString());
for (auto& kv : log) {
TraceEvent(SevWarn, "AtomicOpSetup")
.detail("K", kv.key.toString())
.detail("V", kv.value.toString());
}
}
break;
} catch (Error& e) {
wait(tr1.onError(e));
}
}
state int g = 0;
for (; g < 100; g++) {
state ReadYourWritesTransaction tr(cx);
loop {
try {
for (int i = 0; i < self->nodeCount / 100; i++) {
uint64_t intValue = 0;
tr.set(StringRef(format("ops%08x%08x", g, i)),
StringRef((const uint8_t*)&intValue, sizeof(intValue)));
}
wait(tr.commit());
break;
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
return Void();
}
ACTOR Future<Void> atomicOpWorker(Database cx, AtomicOpsWorkload* self, double delay) {
state double lastTime = now();
loop {
wait(poisson(&lastTime, delay));
state ReadYourWritesTransaction tr(cx);
loop {
int group = deterministicRandom()->randomInt(0, 100);
state uint64_t intValue = deterministicRandom()->randomInt(0, 10000000);
state Key val = StringRef((const uint8_t*)&intValue, sizeof(intValue));
state std::pair<Key, Key> logDebugKey = self->logDebugKey(group);
int nodeIndex = deterministicRandom()->randomInt(0, self->nodeCount / 100);
state Key opsKey(format("ops%08x%08x", group, nodeIndex));
try {
tr.set(logDebugKey.first, val); // set log key
tr.set(logDebugKey.second, opsKey); // set debug key; one opsKey can have multiple logs key
tr.atomicOp(opsKey, val, self->opType);
wait(tr.commit());
TraceEvent(SevAtomicOpDebug, "AtomicOpWorker")
.detail("OpsKey", opsKey)
.detail("LogKey", logDebugKey.first)
.detail("Value", val.toString());
if (self->opType == MutationRef::AddValue) {
self->lbsum += intValue;
self->ubsum += intValue;
}
break;
} catch (Error& e) {
if (e.code() == 1021) {
self->ubsum += intValue;
TraceEvent(SevInfo, "TxnCommitUnknownResult")
.detail("Value", intValue)
.detail("LogKey", logDebugKey.first)
.detail("OpsKey", opsKey);
}
wait(tr.onError(e));
}
}
}
}
ACTOR Future<Void> dumpLogKV(Database cx, int g) {
state ReadYourWritesTransaction tr(cx);
try {
Key begin(format("log%08x", g));
RangeResult log = wait(tr.getRange(KeyRangeRef(begin, strinc(begin)), CLIENT_KNOBS->TOO_MANY));
if (log.more) {
TraceEvent(SevError, "LogHitTxnLimits").detail("Result", log.toString());
}
uint64_t sum = 0;
for (auto& kv : log) {
uint64_t intValue = 0;
memcpy(&intValue, kv.value.begin(), kv.value.size());
sum += intValue;
TraceEvent("AtomicOpLog")
.detail("Key", kv.key)
.detail("Val", kv.value)
.detail("IntValue", intValue)
.detail("CurSum", sum);
}
} catch (Error& e) {
TraceEvent("DumpLogKVError").detail("Error", e.what());
wait(tr.onError(e));
}
return Void();
}
ACTOR Future<Void> dumpDebugKV(Database cx, int g) {
state ReadYourWritesTransaction tr(cx);
try {
Key begin(format("debug%08x", g));
RangeResult debuglog = wait(tr.getRange(KeyRangeRef(begin, strinc(begin)), CLIENT_KNOBS->TOO_MANY));
if (debuglog.more) {
TraceEvent(SevError, "DebugLogHitTxnLimits").detail("Result", debuglog.toString());
}
for (auto& kv : debuglog) {
TraceEvent("AtomicOpDebug").detail("Key", kv.key).detail("Val", kv.value);
}
} catch (Error& e) {
TraceEvent("DumpDebugKVError").detail("Error", e.what());
wait(tr.onError(e));
}
return Void();
}
ACTOR Future<Void> dumpOpsKV(Database cx, int g) {
state ReadYourWritesTransaction tr(cx);
try {
Key begin(format("ops%08x", g));
RangeResult ops = wait(tr.getRange(KeyRangeRef(begin, strinc(begin)), CLIENT_KNOBS->TOO_MANY));
if (ops.more) {
TraceEvent(SevError, "OpsHitTxnLimits").detail("Result", ops.toString());
}
uint64_t sum = 0;
for (auto& kv : ops) {
uint64_t intValue = 0;
memcpy(&intValue, kv.value.begin(), kv.value.size());
sum += intValue;
TraceEvent("AtomicOpOps")
.detail("Key", kv.key)
.detail("Val", kv.value)
.detail("IntVal", intValue)
.detail("CurSum", sum);
}
} catch (Error& e) {
TraceEvent("DumpOpsKVError").detail("Error", e.what());
wait(tr.onError(e));
}
return Void();
}
ACTOR Future<Void> validateOpsKey(Database cx, AtomicOpsWorkload* self, int g) {
// Get mapping between opsKeys and debugKeys
state ReadYourWritesTransaction tr1(cx);
state std::map<Key, Key> records; // <ops, debugKey>
RangeResult debuglog = wait(tr1.getRange(prefixRange(format("debug%08x", g)), CLIENT_KNOBS->TOO_MANY));
if (debuglog.more) {
TraceEvent(SevError, "DebugLogHitTxnLimits").detail("Result", debuglog.toString());
return Void();
}
for (auto& kv : debuglog) {
records[kv.value] = kv.key;
}
// Get log key's value and assign it to the associated debugKey
state ReadYourWritesTransaction tr2(cx);
state std::map<Key, int64_t> logVal; // debugKey, log's value
RangeResult log = wait(tr2.getRange(prefixRange(format("log%08x", g)), CLIENT_KNOBS->TOO_MANY));
if (log.more) {
TraceEvent(SevError, "LogHitTxnLimits").detail("Result", log.toString());
return Void();
}
for (auto& kv : log) {
uint64_t intValue = 0;
memcpy(&intValue, kv.value.begin(), kv.value.size());
logVal[kv.key.removePrefix(LiteralStringRef("log")).withPrefix(LiteralStringRef("debug"))] = intValue;
}
// Get opsKeys and validate if it has correct value
state ReadYourWritesTransaction tr3(cx);
state std::map<Key, int64_t> opsVal; // ops key, ops value
RangeResult ops = wait(tr3.getRange(prefixRange(format("ops%08x", g)), CLIENT_KNOBS->TOO_MANY));
if (ops.more) {
TraceEvent(SevError, "OpsHitTxnLimits").detail("Result", ops.toString());
return Void();
}
// Validate if ops' key value is consistent with logs' key value
for (auto& kv : ops) {
bool inRecord = records.find(kv.key) != records.end();
uint64_t intValue = 0;
memcpy(&intValue, kv.value.begin(), kv.value.size());
opsVal[kv.key] = intValue;
if (!inRecord) {
TraceEvent(SevWarnAlways, "MissingLogKey").detail("OpsKey", kv.key);
}
if (inRecord && (self->actorCount == 1 && intValue != logVal[records[kv.key]])) {
// When multiple actors exist, 1 opsKey can have multiple log keys
TraceEvent(SevError, "InconsistentOpsKeyValue")
.detail("OpsKey", kv.key)
.detail("DebugKey", records[kv.key])
.detail("LogValue", logVal[records[kv.key]])
.detail("OpValue", intValue);
}
}
// Validate if there is any ops key missing
for (auto& kv : records) {
if (opsVal.find(kv.first) == opsVal.end()) {
TraceEvent(SevError, "MissingOpsKey2").detail("OpsKey", kv.first).detail("DebugKey", kv.second);
}
}
return Void();
}
ACTOR Future<bool> _check(Database cx, AtomicOpsWorkload* self) {
state int g = 0;
state bool ret = true;
for (; g < 100; g++) {
state ReadYourWritesTransaction tr(cx);
state RangeResult log;
loop {
try {
{
// Calculate the accumulated value in the log keyspace for the group g
Key begin(format("log%08x", g));
RangeResult log_ = wait(tr.getRange(KeyRangeRef(begin, strinc(begin)), CLIENT_KNOBS->TOO_MANY));
log = log_;
uint64_t zeroValue = 0;
tr.set(LiteralStringRef("xlogResult"),
StringRef((const uint8_t*)&zeroValue, sizeof(zeroValue)));
for (auto& kv : log) {
uint64_t intValue = 0;
memcpy(&intValue, kv.value.begin(), kv.value.size());
tr.atomicOp(LiteralStringRef("xlogResult"), kv.value, self->opType);
}
}
{
// Calculate the accumulated value in the ops keyspace for the group g
Key begin(format("ops%08x", g));
RangeResult ops = wait(tr.getRange(KeyRangeRef(begin, strinc(begin)), CLIENT_KNOBS->TOO_MANY));
uint64_t zeroValue = 0;
tr.set(LiteralStringRef("xopsResult"),
StringRef((const uint8_t*)&zeroValue, sizeof(zeroValue)));
for (auto& kv : ops) {
uint64_t intValue = 0;
memcpy(&intValue, kv.value.begin(), kv.value.size());
tr.atomicOp(LiteralStringRef("xopsResult"), kv.value, self->opType);
}
if (tr.get(LiteralStringRef("xlogResult")).get() !=
tr.get(LiteralStringRef("xopsResult")).get()) {
Optional<Standalone<StringRef>> logResult = tr.get(LiteralStringRef("xlogResult")).get();
Optional<Standalone<StringRef>> opsResult = tr.get(LiteralStringRef("xopsResult")).get();
ASSERT(logResult.present());
ASSERT(opsResult.present());
TraceEvent(SevError, "LogMismatch")
.detail("Index", format("log%08x", g))
.detail("LogResult", printable(logResult))
.detail("OpsResult", printable(opsResult));
}
if (self->opType == MutationRef::AddValue) {
uint64_t opsResult = 0;
Key opsResultStr = tr.get(LiteralStringRef("xopsResult")).get().get();
memcpy(&opsResult, opsResultStr.begin(), opsResultStr.size());
uint64_t logResult = 0;
for (auto& kv : log) {
uint64_t intValue = 0;
memcpy(&intValue, kv.value.begin(), kv.value.size());
logResult += intValue;
}
if (logResult != opsResult) {
TraceEvent(SevError, "LogAddMismatch")
.detail("LogResult", logResult)
.detail("OpResult", opsResult)
.detail("OpsResultStr", printable(opsResultStr))
.detail("Size", opsResultStr.size())
.detail("LowerBoundSum", self->lbsum)
.detail("UpperBoundSum", self->ubsum);
wait(self->dumpLogKV(cx, g));
wait(self->dumpDebugKV(cx, g));
wait(self->dumpOpsKV(cx, g));
wait(self->validateOpsKey(cx, self, g));
}
}
break;
}
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
return ret;
}
};
WorkloadFactory<AtomicOpsWorkload> AtomicOpsWorkloadFactory("AtomicOps");