foundationdb/fdbserver/workloads/MemoryLifetime.actor.cpp

162 lines
6.9 KiB
C++

/*
* MemoryLifetime.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "fdbrpc/ContinuousSample.h"
#include "fdbclient/NativeAPI.actor.h"
#include "fdbserver/TesterInterface.actor.h"
#include "flow/DeterministicRandom.h"
#include "fdbserver/workloads/workloads.actor.h"
#include "fdbserver/workloads/BulkSetup.actor.h"
#include "fdbclient/ReadYourWrites.h"
#include "flow/actorcompiler.h" // This must be the last #include.
struct MemoryLifetime : KVWorkload {
double testDuration;
vector<Future<Void>> clients;
std::string valueString;
MemoryLifetime(WorkloadContext const& wcx)
: KVWorkload(wcx)
{
testDuration = getOption( options, LiteralStringRef("testDuration"), 60.0 );
valueString = std::string( maxValueBytes, '.' );
}
std::string description() const override { return "MemoryLifetime"; }
Value randomValue() const {
return StringRef((uint8_t*)valueString.c_str(),
deterministicRandom()->randomInt(minValueBytes, maxValueBytes + 1));
}
KeySelector getRandomKeySelector() const {
return KeySelectorRef( getRandomKey(), deterministicRandom()->random01() < 0.5, deterministicRandom()->randomInt(-nodeCount, nodeCount) );
}
Standalone<KeyValueRef> operator()( uint64_t n ) {
return KeyValueRef( keyForIndex( n, false ), randomValue() );
}
Future<Void> setup(Database const& cx) override { return _setup(cx, this); }
Future<Void> start(Database const& cx) override { return _start(cx, this); }
Future<bool> check(Database const& cx) override { return true; }
void getMetrics(vector<PerfMetric>& m) override {}
ACTOR Future<Void> _setup( Database cx, MemoryLifetime* self) {
state Promise<double> loadTime;
wait( bulkSetup( cx, self, self->nodeCount, loadTime ) );
return Void();
}
ACTOR Future<Void> _start( Database cx, MemoryLifetime* self) {
state double startTime = now();
state ReadYourWritesTransaction tr(cx);
loop {
try {
int op = deterministicRandom()->randomInt(0,4);
if(op==0) {
state bool getRange_isReverse = deterministicRandom()->random01() < 0.5;
state Key getRange_startKey = self->getRandomKey();
state KeyRange getRange_queryRange = getRange_isReverse ? KeyRangeRef(normalKeys.begin, keyAfter(getRange_startKey)) : KeyRangeRef(getRange_startKey, normalKeys.end);
state bool getRange_randomStart = deterministicRandom()->random01();
state Value getRange_newValue = self->randomValue();
state bool getRange_isSnapshot = deterministicRandom()->random01() < 0.5;
//TraceEvent("MemoryLifetimeCheck").detail("IsReverse", getRange_isReverse).detail("StartKey", printable(getRange_startKey)).detail("RandomStart", getRange_randomStart).detail("NewValue", getRange_newValue.size()).detail("IsSnapshot", getRange_isSnapshot);
if(getRange_randomStart)
tr.set(getRange_startKey, getRange_newValue);
state Standalone<RangeResultRef> getRange_res1 = wait( tr.getRange(getRange_queryRange, GetRangeLimits(4000), getRange_isSnapshot, getRange_isReverse) );
tr = ReadYourWritesTransaction(cx);
wait( delay(0.01) );
if(getRange_randomStart)
tr.set(getRange_startKey, getRange_newValue);
Standalone<RangeResultRef> getRange_res2 = wait( tr.getRange(getRange_queryRange, GetRangeLimits(4000), getRange_isSnapshot, getRange_isReverse) );
ASSERT(getRange_res1.size() == getRange_res2.size());
for(int i = 0; i < getRange_res1.size(); i++) {
if(getRange_res1[i].key != getRange_res2[i].key) {
TraceEvent(SevError, "MemoryLifetimeCheckKeyError")
.detail("Key1", printable(getRange_res1[i].key)).detail("Key2", printable(getRange_res2[i].key))
.detail("Value1", getRange_res1[i].value.size()).detail("Value2", getRange_res2[i].value.size())
.detail("I", i).detail("Size", getRange_res2.size());
ASSERT(false);
}
if(getRange_res1[i].value != getRange_res2[i].value) {
TraceEvent(SevError, "MemoryLifetimeCheckValueError")
.detail("Key1", printable(getRange_res1[i].key)).detail("Key2", printable(getRange_res2[i].key))
.detail("Value1", getRange_res1[i].value.size()).detail("Value2", getRange_res2[i].value.size())
.detail("I", i).detail("Size", getRange_res2.size());
ASSERT(false);
}
}
} else if(op==1) {
state Key get_startKey = self->getRandomKey();
state bool get_randomStart = deterministicRandom()->random01();
state Value get_newValue = self->randomValue();
state bool get_isSnapshot = deterministicRandom()->random01() < 0.5;
if(get_randomStart)
tr.set(get_startKey, get_newValue);
state Optional<Value> get_res1 = wait( tr.get(get_startKey, get_isSnapshot) );
tr = ReadYourWritesTransaction(cx);
wait( delay(0.01) );
if(get_randomStart)
tr.set(get_startKey, get_newValue);
Optional<Value> get_res2 = wait( tr.get(get_startKey, get_isSnapshot) );
ASSERT(get_res1 == get_res2);
} else if(op==2) {
state KeySelector getKey_selector = self->getRandomKeySelector();
state bool getKey_randomStart = deterministicRandom()->random01();
state Value getKey_newValue = self->randomValue();
state bool getKey_isSnapshot = deterministicRandom()->random01() < 0.5;
if(getKey_randomStart)
tr.set(getKey_selector.getKey(), getKey_newValue);
state Key getKey_res1 = wait( tr.getKey(getKey_selector, getKey_isSnapshot) );
tr = ReadYourWritesTransaction(cx);
wait( delay(0.01) );
if(getKey_randomStart)
tr.set(getKey_selector.getKey(), getKey_newValue);
Key getKey_res2 = wait( tr.getKey(getKey_selector, getKey_isSnapshot) );
ASSERT(getKey_res1 == getKey_res2);
} else if(op==3) {
state Key getAddress_startKey = self->getRandomKey();
state Standalone<VectorRef<const char*>> getAddress_res1 = wait( tr.getAddressesForKey(getAddress_startKey) );
tr = ReadYourWritesTransaction(cx);
wait( delay(0.01) );
//we cannot check the contents like other operations so just touch all the values to make sure we dont crash
for (int i = 0; i < getAddress_res1.size(); i++) {
ASSERT(NetworkAddress::parseOptional(getAddress_res1[i]).present());
}
}
if(now() - startTime > self->testDuration)
return Void();
} catch(Error &e) {
wait( tr.onError(e) );
}
}
}
};
WorkloadFactory<MemoryLifetime> MemoryLifetimeWorkloadFactory("MemoryLifetime");