foundationdb/fdbserver/IPager.h

791 lines
31 KiB
C++

/*
* IPager.h
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef FDBSERVER_IPAGER_H
#define FDBSERVER_IPAGER_H
#include "flow/Error.h"
#include "flow/FastAlloc.h"
#include "flow/ProtocolVersion.h"
#include <cstddef>
#include <stdint.h>
#pragma once
#include "fdbserver/IKeyValueStore.h"
#include "flow/flow.h"
#include "fdbclient/FDBTypes.h"
#define XXH_INLINE_ALL
#include "flow/xxhash.h"
typedef uint32_t LogicalPageID;
typedef uint32_t PhysicalPageID;
#define invalidLogicalPageID std::numeric_limits<LogicalPageID>::max()
#define invalidPhysicalPageID std::numeric_limits<PhysicalPageID>::max()
typedef uint32_t QueueID;
#define invalidQueueID std::numeric_limits<QueueID>::max()
// Pager Events
enum class PagerEvents { CacheLookup = 0, CacheHit, CacheMiss, PageWrite, MAXEVENTS };
static const char* const PagerEventsStrings[] = { "Lookup", "Hit", "Miss", "Write", "Unknown" };
// Reasons for page level events.
enum class PagerEventReasons { PointRead = 0, RangeRead, RangePrefetch, Commit, LazyClear, MetaData, MAXEVENTREASONS };
static const char* const PagerEventReasonsStrings[] = {
"Get", "GetR", "GetRPF", "Commit", "LazyClr", "Meta", "Unknown"
};
static const unsigned int nonBtreeLevel = 0;
static const std::vector<std::pair<PagerEvents, PagerEventReasons>> possibleEventReasonPairs = {
{ PagerEvents::CacheLookup, PagerEventReasons::Commit },
{ PagerEvents::CacheLookup, PagerEventReasons::LazyClear },
{ PagerEvents::CacheLookup, PagerEventReasons::PointRead },
{ PagerEvents::CacheLookup, PagerEventReasons::RangeRead },
{ PagerEvents::CacheHit, PagerEventReasons::Commit },
{ PagerEvents::CacheHit, PagerEventReasons::LazyClear },
{ PagerEvents::CacheHit, PagerEventReasons::PointRead },
{ PagerEvents::CacheHit, PagerEventReasons::RangeRead },
{ PagerEvents::CacheMiss, PagerEventReasons::Commit },
{ PagerEvents::CacheMiss, PagerEventReasons::LazyClear },
{ PagerEvents::CacheMiss, PagerEventReasons::PointRead },
{ PagerEvents::CacheMiss, PagerEventReasons::RangeRead },
{ PagerEvents::PageWrite, PagerEventReasons::Commit },
{ PagerEvents::PageWrite, PagerEventReasons::LazyClear },
};
static const std::vector<std::pair<PagerEvents, PagerEventReasons>> L0PossibleEventReasonPairs = {
{ PagerEvents::CacheLookup, PagerEventReasons::RangePrefetch },
{ PagerEvents::CacheLookup, PagerEventReasons::MetaData },
{ PagerEvents::CacheHit, PagerEventReasons::RangePrefetch },
{ PagerEvents::CacheHit, PagerEventReasons::MetaData },
{ PagerEvents::CacheMiss, PagerEventReasons::RangePrefetch },
{ PagerEvents::CacheMiss, PagerEventReasons::MetaData },
{ PagerEvents::PageWrite, PagerEventReasons::MetaData },
};
enum EncodingType : uint8_t {
XXHash64 = 0,
// For testing purposes
XOREncryption = 1
};
enum PageType : uint8_t {
HeaderPage = 0,
BackupHeaderPage = 1,
BTreeNode = 2,
BTreeSuperNode = 3,
QueuePageStandalone = 4,
QueuePageInExtent = 5
};
// Encryption key ID
typedef uint64_t KeyID;
// EncryptionKeyRef is somewhat multi-variant, it will contain members representing the union
// of all fields relevant to any implemented encryption scheme. They are generally of
// the form
// Page Fields - fields which come from or are stored in the Page
// Secret Fields - fields which are only known by the Key Provider
// but it is up to each encoding and provider which fields are which and which ones are used
struct EncryptionKeyRef {
EncryptionKeyRef(){};
EncryptionKeyRef(Arena& arena, const EncryptionKeyRef& toCopy) : secret(arena, toCopy.secret), id(toCopy.id) {}
int expectedSize() const { return secret.size(); }
StringRef secret;
Optional<KeyID> id;
};
typedef Standalone<EncryptionKeyRef> EncryptionKey;
// Interface used by pager to get encryption keys by ID when reading pages from disk
// and by the BTree to get encryption keys to use for new pages
class IEncryptionKeyProvider {
public:
virtual ~IEncryptionKeyProvider() {}
// Get an EncryptionKey with Secret Fields populated based on the given Page Fields.
// It is up to the implementation which fields those are.
// The output Page Fields must match the input Page Fields.
virtual Future<EncryptionKey> getSecrets(const EncryptionKeyRef& key) = 0;
// Get encryption key that should be used for a given user Key-Value range
virtual Future<EncryptionKey> getByRange(const KeyRef& begin, const KeyRef& end) = 0;
};
// This is a hacky way to attach an additional object of an arbitrary type at runtime to another object.
// It stores an arbitrary void pointer and a void pointer function to call when the ArbitraryObject
// is destroyed.
// It has helper operator= methods for storing heap-allocated T's or Reference<T>'s in into it via
// x = thing;
// Examples:
// ArbitraryObject x;
// x.set(new Widget()); // x owns the new object
// x.set(Reference<SomeClass>(new SomeClass()); // x holds a reference now too
// x.setReference(new SomeReferenceCountedType()); //
struct ArbitraryObject {
ArbitraryObject() : ptr(nullptr), onDestruct(nullptr) {}
ArbitraryObject(const ArbitraryObject&) = delete;
~ArbitraryObject() { destructOnly(); }
bool valid() const { return ptr != nullptr; }
template <typename T>
void operator=(T* p) {
destructOnly();
ptr = p;
onDestruct = [](void* ptr) { delete (T*)ptr; };
}
template <typename T>
void operator=(Reference<T>& r) {
destructOnly();
ptr = r.getPtr();
r.getPtr()->addref();
onDestruct = [](void* ptr) { ((T*)ptr)->delref(); };
}
template <typename T>
void operator=(Reference<T>&& r) {
destructOnly();
ptr = r.extractPtr();
onDestruct = [](void* ptr) { ((T*)ptr)->delref(); };
}
template <typename T>
T* getPtr() {
return (T*)ptr;
}
template <typename T>
Reference<T> getReference() {
return Reference<T>::addRef((T*)ptr);
}
void reset() {
destructOnly();
ptr = nullptr;
onDestruct = nullptr;
}
// ptr can be set to any arbitrary thing. If it is not null at destruct time then
// onDestruct(ptr) will be called if onDestruct is not null.
void* ptr = nullptr;
void (*onDestruct)(void*) = nullptr;
private:
// Call onDestruct(ptr) if needed but don't reset any state
void destructOnly() {
if (ptr != nullptr && onDestruct != nullptr) {
onDestruct(ptr);
}
}
};
// ArenaPage represents a data page meant to be stored on disk, located in a block of
// 4k-aligned memory held by an Arena
//
// Page Format:
// PageHeader - describes main header version, encoding type, and offsets of subheaders and payload.
// MainHeader - structure based on header version. It is responsible for protecting all bytes
// of PageHeader, MainHeader, and EncodingHeader with some sort of checksum.
// EncodingHeader - structure based on encoding type. It is responsible for protecting and
// possibly encrypting all payload bytes.
// Payload - User accessible bytes, protected and possibly encrypted based on the encoding
//
// preWrite() must be called before writing a page to disk to update checksums and encrypt as needed
// After reading a page from disk,
// postReadHeader() must be called to verify the verison, main, and encoding headers
// postReadPayload() must be called, after potentially setting encryption secret, to verify and possibly
// decrypt the payload
class ArenaPage : public ReferenceCounted<ArenaPage>, public FastAllocated<ArenaPage> {
public:
// This is the header version that new page init() calls will use.
// It is not necessarily the latest header version, as read/modify support for
// a new header version may be added prior to using that version as the default
// for new pages as part of downgrade support.
static constexpr uint8_t HEADER_WRITE_VERSION = 1;
ArenaPage(int logicalSize, int bufferSize) : logicalSize(logicalSize), bufferSize(bufferSize), pPayload(nullptr) {
if (bufferSize > 0) {
buffer = (uint8_t*)arena.allocate4kAlignedBuffer(bufferSize);
// Zero unused region
memset(buffer + logicalSize, 0, bufferSize - logicalSize);
} else {
buffer = nullptr;
}
};
~ArenaPage() {}
// Before using these, either init() or postReadHeader and postReadPayload() must be called
const uint8_t* data() const { return pPayload; }
uint8_t* mutateData() const { return (uint8_t*)pPayload; }
int dataSize() const { return payloadSize; }
StringRef dataAsStringRef() const { return StringRef((uint8_t*)pPayload, payloadSize); }
const uint8_t* rawData() const { return buffer; }
uint8_t* rawData() { return buffer; }
int rawSize() const { return bufferSize; }
#pragma pack(push, 1)
// The next few structs describe the byte-packed physical structure. The fields of Page
// cannot change, but new header versions and encoding types can be added and existing
// header versions and encoding type headers could change size as offset information
// is stored to enable efficient jumping to the encoding header or payload.
// Page members are only initialized in init()
struct PageHeader {
uint8_t headerVersion;
EncodingType encodingType;
// Encoding header comes after main header
uint8_t encodingHeaderOffset;
// Payload comes after encoding header
uint8_t payloadOffset;
// Get main header pointer, casting to its type
template <typename T>
T* getMainHeader() const {
return (T*)(this + 1);
}
// Get encoding header pointer, casting to its type
template <typename T>
T* getEncodingHeader() const {
return (T*)((uint8_t*)this + encodingHeaderOffset);
}
// Get payload pointer
uint8_t* getPayload() const { return (uint8_t*)this + payloadOffset; }
};
// Redwood header version 1
// Protects all headers with a 64-bit XXHash checksum
// Most other fields are forensic in nature and are not required to be set for correct
// behavior but they can faciliate forensic investigation of data on disk. Some of them
// could be used for sanity checks at runtime.
struct RedwoodHeaderV1 {
PageType pageType;
// The meaning of pageSubType is based on pageType
// For Queue pages, pageSubType is the QueueID
// For BTree nodes, pageSubType is Height (also stored in BTreeNode)
uint8_t pageSubType;
// Format identifier, normally specific to the page Type and SubType
uint8_t pageFormat;
XXH64_hash_t checksum;
// Physical page ID of first block on disk of the ArenaPage
PhysicalPageID firstPhysicalPageID;
// The first logical page ID the ArenaPage was referenced by when last written
LogicalPageID lastKnownLogicalPageID;
// The first logical page ID of the parent of this ArenaPage when last written
LogicalPageID lastKnownParentLogicalPageID;
// Time and write version as of the last update to this page.
// Note that for relocated pages, writeVersion should not be updated.
double writeTime;
Version writeVersion;
// Update checksum
void updateChecksum(uint8_t* headerBytes, int len) {
// Checksum is within the checksum input so clear it first
checksum = 0;
checksum = XXH3_64bits(headerBytes, len);
}
// Verify checksum
void verifyChecksum(uint8_t* headerBytes, int len) {
// Checksum is within the checksum input so save it and restore it afterwards
XXH64_hash_t saved = checksum;
checksum = 0;
XXH64_hash_t calculated = XXH3_64bits(headerBytes, len);
checksum = saved;
if (saved != calculated) {
throw page_header_checksum_failed();
}
}
};
// An encoding that validates the payload with an XXHash checksum
struct XXHashEncodingHeader {
XXH64_hash_t checksum;
void encode(uint8_t* payload, int len, PhysicalPageID seed) {
checksum = XXH3_64bits_withSeed(payload, len, seed);
}
void decode(uint8_t* payload, int len, PhysicalPageID seed) {
if (checksum != XXH3_64bits_withSeed(payload, len, seed)) {
throw page_decoding_failed();
}
}
};
// A dummy "encrypting" encoding which uses XOR with a 1 byte secret key on
// the payload to obfuscate it and protects the payload with an XXHash checksum.
struct XOREncryptionEncodingHeader {
// Checksum is on unencrypted payload
XXH64_hash_t checksum;
uint8_t keyID;
void encode(uint8_t secret, uint8_t* payload, int len, PhysicalPageID seed) {
checksum = XXH3_64bits_withSeed(payload, len, seed);
for (int i = 0; i < len; ++i) {
payload[i] ^= secret;
}
}
void decode(uint8_t secret, uint8_t* payload, int len, PhysicalPageID seed) {
for (int i = 0; i < len; ++i) {
payload[i] ^= secret;
}
if (checksum != XXH3_64bits_withSeed(payload, len, seed)) {
throw page_decoding_failed();
}
}
};
#pragma pack(pop)
// Get the size of the encoding header based on type
// Note that this is only to be used in operations involving new pages to calculate the payload offset. For
// existing pages, the payload offset is stored in the page.
static int encodingHeaderSize(EncodingType t) {
if (t == EncodingType::XXHash64) {
return sizeof(XXHashEncodingHeader);
} else if (t == EncodingType::XOREncryption) {
return sizeof(XOREncryptionEncodingHeader);
} else {
throw page_encoding_not_supported();
}
}
// Get the usable size for a new page of pageSize using HEADER_WRITE_VERSION with encoding type t
static int getUsableSize(int pageSize, EncodingType t) {
return pageSize - sizeof(PageHeader) - sizeof(RedwoodHeaderV1) - encodingHeaderSize(t);
}
// Initialize the header for a new page so that the payload can be written to
// Pre: Buffer is allocated and logical size is set
// Post: Page header is initialized and space is reserved for subheaders for
// HEADER_WRITE_VERSION main header and the given encoding type.
// Payload can be written to with mutateData() and dataSize()
void init(EncodingType t, PageType pageType, uint8_t pageSubType, uint8_t pageFormat = 0) {
// Carefully cast away constness to modify page header
PageHeader* p = const_cast<PageHeader*>(page);
p->headerVersion = HEADER_WRITE_VERSION;
p->encodingHeaderOffset = sizeof(PageHeader) + sizeof(RedwoodHeaderV1);
p->encodingType = t;
p->payloadOffset = page->encodingHeaderOffset + encodingHeaderSize(t);
pPayload = page->getPayload();
payloadSize = logicalSize - (pPayload - buffer);
RedwoodHeaderV1* h = page->getMainHeader<RedwoodHeaderV1>();
h->pageType = pageType;
h->pageSubType = pageSubType;
h->pageFormat = pageFormat;
// Write dummy values for these in new pages. They should be updated when possible before calling preWrite()
// when modifying existing pages
h->lastKnownLogicalPageID = invalidLogicalPageID;
h->lastKnownParentLogicalPageID = invalidLogicalPageID;
h->writeVersion = invalidVersion;
}
// Get the logical page buffer as a StringRef
Standalone<StringRef> asStringRef() const { return Standalone<StringRef>(StringRef(buffer, logicalSize)); }
// Get a new ArenaPage that contains a copy of this page's data.
// extra is not copied to the returned page
Reference<ArenaPage> clone() const {
ArenaPage* p = new ArenaPage(logicalSize, bufferSize);
memcpy(p->buffer, buffer, logicalSize);
// Non-verifying header parse just to initialize members
p->postReadHeader(invalidPhysicalPageID, false);
p->encryptionKey = encryptionKey;
return Reference<ArenaPage>(p);
}
// Get an ArenaPage which depends on this page's Arena and references some of its memory
Reference<ArenaPage> getSubPage(int offset, int len) const {
ASSERT(offset + len <= logicalSize);
ArenaPage* p = new ArenaPage(len, 0);
p->buffer = buffer + offset;
p->arena.dependsOn(arena);
// Non-verifying header parse just to initialize component pointers
p->postReadHeader(invalidPhysicalPageID, false);
p->encryptionKey = encryptionKey;
return Reference<ArenaPage>(p);
}
// The next two functions set mostly forensic info that may help in an investigation to identify data on disk. The
// exception is pageID which must be set to the physical page ID on disk where the page is written or post-read
// verification will fail.
void setWriteInfo(PhysicalPageID pageID, Version writeVersion) {
if (page->headerVersion == 1) {
RedwoodHeaderV1* h = page->getMainHeader<RedwoodHeaderV1>();
h->firstPhysicalPageID = pageID;
h->writeVersion = writeVersion;
h->writeTime = now();
}
}
// These should be updated before writing a BTree page. Note that the logical ID that refers to a page can change
// after the page is written, if its parent is updated to point directly to its physical page ID. Therefore, the
// last known logical page ID should always be updated before writing an updated version of a BTree page.
void setLogicalPageInfo(LogicalPageID lastKnownLogicalPageID, LogicalPageID lastKnownParentLogicalPageID) {
if (page->headerVersion == 1) {
RedwoodHeaderV1* h = page->getMainHeader<RedwoodHeaderV1>();
h->lastKnownLogicalPageID = lastKnownLogicalPageID;
h->lastKnownParentLogicalPageID = lastKnownParentLogicalPageID;
}
}
// Must be called before writing to disk to update headers and encrypt page
// Pre: Encoding-specific header fields are set if needed
// Secret is set if needed
// Post: Main and Encoding subheaders are updated
// Payload is possibly encrypted
void preWrite(PhysicalPageID pageID) const {
// Explicitly check payload definedness to make the source of valgrind errors more clear.
// Without this check, calculating a checksum on a payload with undefined bytes does not
// cause a valgrind error but the resulting checksum is undefined which causes errors later.
ASSERT(VALGRIND_CHECK_MEM_IS_DEFINED(pPayload, payloadSize) == 0);
if (page->encodingType == EncodingType::XXHash64) {
page->getEncodingHeader<XXHashEncodingHeader>()->encode(pPayload, payloadSize, pageID);
} else if (page->encodingType == EncodingType::XOREncryption) {
ASSERT(encryptionKey.secret.size() == 1);
XOREncryptionEncodingHeader* xh = page->getEncodingHeader<XOREncryptionEncodingHeader>();
xh->keyID = encryptionKey.id.orDefault(0);
xh->encode(encryptionKey.secret[0], pPayload, payloadSize, pageID);
} else {
throw page_encoding_not_supported();
}
if (page->headerVersion == 1) {
page->getMainHeader<RedwoodHeaderV1>()->updateChecksum(buffer, pPayload - buffer);
} else {
throw page_header_version_not_supported();
}
}
// Must be called after reading from disk to verify all non-payload bytes
// Pre: Bytes from storage medium copied into raw buffer space
// Post: Page headers outside of payload are verified (unless verify is false)
// encryptionKey is updated with information from encoding header if needed
// Payload is accessible via data(), dataSize(), etc.
//
// Exceptions are thrown for unknown header types or pages which fail verification
void postReadHeader(PhysicalPageID pageID, bool verify = true) {
pPayload = page->getPayload();
payloadSize = logicalSize - (pPayload - buffer);
// Populate encryption key with relevant fields from page
if (page->encodingType == EncodingType::XOREncryption) {
encryptionKey.id = page->getEncodingHeader<XOREncryptionEncodingHeader>()->keyID;
}
if (page->headerVersion == 1) {
if (verify) {
RedwoodHeaderV1* h = page->getMainHeader<RedwoodHeaderV1>();
h->verifyChecksum(buffer, pPayload - buffer);
if (pageID != h->firstPhysicalPageID) {
throw page_header_wrong_page_id();
}
}
} else {
throw page_header_version_not_supported();
}
}
// Pre: postReadHeader has been called, encoding-specific parameters (such as the encryption secret) have been set
// Post: Payload has been verified and decrypted if necessary
void postReadPayload(PhysicalPageID pageID) {
if (page->encodingType == EncodingType::XXHash64) {
page->getEncodingHeader<XXHashEncodingHeader>()->decode(pPayload, payloadSize, pageID);
} else if (page->encodingType == EncodingType::XOREncryption) {
ASSERT(encryptionKey.secret.size() == 1);
page->getEncodingHeader<XOREncryptionEncodingHeader>()->decode(
encryptionKey.secret[0], pPayload, payloadSize, pageID);
} else {
throw page_encoding_not_supported();
}
}
const Arena& getArena() const { return arena; }
static bool isEncodingTypeEncrypted(EncodingType t) { return t == EncodingType::XOREncryption; }
// Returns true if the page's encoding type employs encryption
bool isEncrypted() const { return isEncodingTypeEncrypted(getEncodingType()); }
private:
Arena arena;
// The logical size of the page, which can be smaller than bufferSize, which is only of
// practical purpose in simulation to use arbitrarily small page sizes to test edge cases
// with shorter execution time
int logicalSize;
// The 4k-aligned physical size of allocated memory for the page which also represents the
// block size to be written to disk
int bufferSize;
// buffer is a pointer to the page's memory
// For convenience, it is unioned with a Page pointer which defines the page structure
union {
uint8_t* buffer;
const PageHeader* page;
};
// Pointer and length of page space available to the user
// These are accessed very often so they are stored directly
uint8_t* pPayload;
int payloadSize;
public:
EncodingType getEncodingType() const { return page->encodingType; }
PhysicalPageID getPhysicalPageID() const {
if (page->headerVersion == 1) {
return page->getMainHeader<RedwoodHeaderV1>()->firstPhysicalPageID;
} else {
throw page_header_version_not_supported();
}
}
// Used by encodings that do encryption
EncryptionKey encryptionKey;
mutable ArbitraryObject extra;
};
class IPagerSnapshot {
public:
virtual Future<Reference<const ArenaPage>> getPhysicalPage(PagerEventReasons reason,
unsigned int level,
LogicalPageID pageID,
int priority,
bool cacheable,
bool nohit) = 0;
virtual Future<Reference<const ArenaPage>> getMultiPhysicalPage(PagerEventReasons reason,
unsigned int level,
VectorRef<LogicalPageID> pageIDs,
int priority,
bool cacheable,
bool nohit) = 0;
virtual Version getVersion() const = 0;
virtual Key getMetaKey() const = 0;
virtual ~IPagerSnapshot() {}
virtual void addref() = 0;
virtual void delref() = 0;
ArbitraryObject extra;
};
// This API is probably too customized to the behavior of DWALPager and probably needs some changes to be more generic.
class IPager2 : public IClosable {
public:
virtual std::string getName() const = 0;
// Returns an ArenaPage that can be passed to writePage. The data in the returned ArenaPage might not be zeroed.
virtual Reference<ArenaPage> newPageBuffer(size_t blocks = 1) = 0;
// Returns the usable size of pages returned by the pager (i.e. the size of the page that isn't pager overhead).
// For a given pager instance, separate calls to this function must return the same value.
// Only valid to call after recovery is complete.
virtual int getPhysicalPageSize() const = 0;
virtual int getLogicalPageSize() const = 0;
virtual int getPagesPerExtent() const = 0;
// Write detail fields with pager stats to a trace event
virtual void toTraceEvent(TraceEvent& e) const = 0;
// Allocate a new page ID for a subsequent write. The page will be considered in-use after the next commit
// regardless of whether or not it was written to.
virtual Future<LogicalPageID> newPageID() = 0;
virtual Future<LogicalPageID> newExtentPageID(QueueID queueID) = 0;
virtual QueueID newLastQueueID() = 0;
// Replace the contents of a page with new data across *all* versions.
// Existing holders of a page reference for pageID, read from any version,
// may see the effects of this write.
virtual void updatePage(PagerEventReasons reason,
unsigned int level,
Standalone<VectorRef<LogicalPageID>> pageIDs,
Reference<ArenaPage> data) = 0;
// Try to atomically update the contents of a page as of version v in the next commit.
// If the pager is unable to do this at this time, it may choose to write the data to a new page ID
// instead and return the new page ID to the caller. Otherwise the original pageID argument will be returned.
// If a new page ID is returned, the old page ID will be freed as of version v
virtual Future<LogicalPageID> atomicUpdatePage(PagerEventReasons reason,
unsigned int level,
LogicalPageID pageID,
Reference<ArenaPage> data,
Version v) = 0;
// Free pageID to be used again after the commit that moves oldestVersion past v
virtual void freePage(LogicalPageID pageID, Version v) = 0;
virtual void freeExtent(LogicalPageID pageID) = 0;
// If id is remapped, delete the original as of version v and return the page it was remapped to. The caller
// is then responsible for referencing and deleting the returned page ID.
virtual LogicalPageID detachRemappedPage(LogicalPageID id, Version v) = 0;
// Returns the latest data (regardless of version) for a page by LogicalPageID
// The data returned will be the later of
// - the most recent committed atomic
// - the most recent non-atomic write
// Cacheable indicates that the page should be added to the page cache (if applicable?) as a result of this read.
// NoHit indicates that the read should not be considered a cache hit, such as when preloading pages that are
// considered likely to be needed soon.
virtual Future<Reference<ArenaPage>> readPage(PagerEventReasons reason,
unsigned int level,
PhysicalPageID pageIDs,
int priority,
bool cacheable,
bool noHit) = 0;
virtual Future<Reference<ArenaPage>> readMultiPage(PagerEventReasons reason,
unsigned int level,
VectorRef<PhysicalPageID> pageIDs,
int priority,
bool cacheable,
bool noHit) = 0;
virtual Future<Reference<ArenaPage>> readExtent(LogicalPageID pageID) = 0;
virtual void releaseExtentReadLock() = 0;
// Temporary methods for testing
virtual Future<Standalone<VectorRef<LogicalPageID>>> getUsedExtents(QueueID queueID) = 0;
virtual void pushExtentUsedList(QueueID queueID, LogicalPageID extID) = 0;
virtual void extentCacheClear() = 0;
virtual int64_t getPageCacheCount() = 0;
virtual int64_t getExtentCacheCount() = 0;
// Get a snapshot of the metakey and all pages as of the version v which must be >= getOldestVersion()
// Note that snapshots at any version may still see the results of updatePage() calls.
// The snapshot shall be usable until setOldVersion() is called with a version > v.
virtual Reference<IPagerSnapshot> getReadSnapshot(Version v) = 0;
// Atomically make durable all pending page writes, page frees, and update the user commit
// record at version v
// v must be higher than the highest committed version
virtual Future<Void> commit(Version v, Value commitRecord) = 0;
// Get the latest committed user commit record
virtual Value getCommitRecord() const = 0;
virtual StorageBytes getStorageBytes() const = 0;
virtual int64_t getPageCount() = 0;
// Count of pages in use by the pager client (including retained old page versions)
virtual Future<int64_t> getUserPageCount() = 0;
// Future returned is ready when pager has been initialized from disk and is ready for reads and writes.
// It is invalid to call most other functions until init() is ready.
// TODO: Document further.
virtual Future<Void> init() = 0;
// Returns latest committed version
virtual Version getLastCommittedVersion() const = 0;
// Returns the oldest readable version as of the most recent committed version
virtual Version getOldestReadableVersion() const = 0;
// Sets the oldest readable version to be put into affect at the next commit.
// The pager can reuse pages that were freed at a version less than v.
// If any snapshots are in use at a version less than v, the pager can either forcefully
// invalidate them or keep their versions around until the snapshots are no longer in use.
virtual void setOldestReadableVersion(Version v) = 0;
// Advance the commit version and the oldest readble version and commit until the remap queue is empty.
virtual Future<Void> clearRemapQueue() = 0;
// Get a pointer to an integer representing a byte count penalty the pager should apply against usable page cache
// memory. This is used to track significant memory usage external to the pager. Such usages should
// increment/decrement the value at this pointer based on their memory footprint.
virtual int64_t* getPageCachePenaltySource() = 0;
protected:
~IPager2() {} // Destruction should be done using close()/dispose() from the IClosable interface
};
// The null key provider is useful to simplify page decoding.
// It throws an error for any key info requested.
class NullKeyProvider : public IEncryptionKeyProvider {
public:
virtual ~NullKeyProvider() {}
Future<EncryptionKey> getSecrets(const EncryptionKeyRef& key) override { throw encryption_key_not_found(); }
Future<EncryptionKey> getByRange(const KeyRef& begin, const KeyRef& end) override {
throw encryption_key_not_found();
}
};
// Key provider for dummy XOR encryption scheme
class XOREncryptionKeyProvider : public IEncryptionKeyProvider {
public:
XOREncryptionKeyProvider(std::string filename) {
ASSERT(g_network->isSimulated());
// Choose a deterministic random filename (without path) byte for secret generation
// Remove any leading directory names
size_t lastSlash = filename.find_last_of("\\/");
if (lastSlash != filename.npos) {
filename.erase(0, lastSlash);
}
xorWith = filename.empty() ? 0x5e
: (uint8_t)filename[XXH3_64bits(filename.data(), filename.size()) % filename.size()];
}
virtual ~XOREncryptionKeyProvider() {}
virtual Future<EncryptionKey> getSecrets(const EncryptionKeyRef& key) override {
if (!key.id.present()) {
throw encryption_key_not_found();
}
EncryptionKey s = key;
uint8_t secret = ~(uint8_t)key.id.get() ^ xorWith;
s.secret = StringRef(s.arena(), &secret, 1);
return s;
}
virtual Future<EncryptionKey> getByRange(const KeyRef& begin, const KeyRef& end) override {
EncryptionKeyRef k;
k.id = end.empty() ? 0 : *(end.end() - 1);
return getSecrets(k);
}
uint8_t xorWith;
};
#endif