foundationdb/fdbserver/RESTKmsConnector.actor.cpp

1777 lines
64 KiB
C++

/*
* RESTKmsConnector.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "fdbserver/RESTKmsConnector.h"
#include "fdbclient/FDBTypes.h"
#include "fdbclient/RESTClient.h"
#include "fdbrpc/HTTP.h"
#include "fdbserver/KmsConnectorInterface.h"
#include "fdbserver/Knobs.h"
#include "flow/Arena.h"
#include "flow/ActorCollection.h"
#include "flow/BooleanParam.h"
#include "flow/EncryptUtils.h"
#include "flow/Error.h"
#include "flow/FastRef.h"
#include "flow/IAsyncFile.h"
#include "flow/IRandom.h"
#include "flow/Platform.h"
#include "flow/Trace.h"
#include "flow/UnitTest.h"
#include <limits>
#include <rapidjson/document.h>
#include <rapidjson/rapidjson.h>
#include <rapidjson/stringbuffer.h>
#include <rapidjson/writer.h>
#include <boost/algorithm/string.hpp>
#include <cstring>
#include <memory>
#include <queue>
#include <sstream>
#include <unordered_map>
#include <utility>
#include "flow/actorcompiler.h" // This must be the last #include
namespace {
const char* BASE_CIPHER_ID_TAG = "base_cipher_id";
const char* BASE_CIPHER_TAG = "baseCipher";
const char* CIPHER_KEY_DETAILS_TAG = "cipher_key_details";
const char* ENCRYPT_DOMAIN_ID_TAG = "encrypt_domain_id";
const char* ENCRYPT_DOMAIN_NAME_TAG = "encrypt_domain_name";
const char* REFRESH_AFTER_SEC = "refresh_after_sec";
const char* EXPIRE_AFTER_SEC = "expire_after_sec";
const char* ERROR_TAG = "error";
const char* ERROR_MSG_TAG = "errMsg";
const char* ERROR_CODE_TAG = "errCode";
const char* KMS_URLS_TAG = "kms_urls";
const char* QUERY_MODE_TAG = "query_mode";
const char* REFRESH_KMS_URLS_TAG = "refresh_kms_urls";
const char* VALIDATION_TOKENS_TAG = "validation_tokens";
const char* VALIDATION_TOKEN_NAME_TAG = "token_name";
const char* VALIDATION_TOKEN_VALUE_TAG = "token_value";
const char* DEBUG_UID_TAG = "debug_uid";
const char* TOKEN_NAME_FILE_SEP = "#";
const char* TOKEN_TUPLE_SEP = ",";
const char DISCOVER_URL_FILE_URL_SEP = '\n';
const char* QUERY_MODE_LOOKUP_BY_DOMAIN_ID = "lookupByDomainId";
const char* QUERY_MODE_LOOKUP_BY_KEY_ID = "lookupByKeyId";
const char* BLOB_METADATA_DETAILS_TAG = "blob_metadata_details";
const char* BLOB_METADATA_DOMAIN_ID_TAG = "domain_id";
const char* BLOB_METADATA_DOMAIN_NAME_TAG = "domain_name";
const char* BLOB_METADATA_BASE_LOCATION_TAG = "base_location";
const char* BLOB_METADATA_PARTITIONS_TAG = "partitions";
bool canReplyWith(Error e) {
switch (e.code()) {
case error_code_encrypt_invalid_kms_config:
case error_code_encrypt_keys_fetch_failed:
case error_code_file_not_found:
case error_code_file_too_large:
case error_code_http_request_failed:
case error_code_io_error:
case error_code_operation_failed:
case error_code_value_too_large:
case error_code_timed_out:
case error_code_connection_failed:
return true;
default:
return false;
}
}
bool isKmsNotReachable(const int errCode) {
return errCode == error_code_timed_out || errCode == error_code_connection_failed;
}
} // namespace
struct KmsUrlCtx {
std::string url;
uint64_t nRequests;
uint64_t nFailedResponses;
uint64_t nResponseParseFailures;
KmsUrlCtx() : url(""), nRequests(0), nFailedResponses(0), nResponseParseFailures(0) {}
explicit KmsUrlCtx(const std::string& u) : url(u), nRequests(0), nFailedResponses(0), nResponseParseFailures(0) {}
bool operator<(const KmsUrlCtx& toCompare) const {
if (nFailedResponses != toCompare.nFailedResponses) {
return nFailedResponses > toCompare.nFailedResponses;
}
return nResponseParseFailures > toCompare.nResponseParseFailures;
}
};
enum class ValidationTokenSource {
VALIDATION_TOKEN_SOURCE_FILE = 1,
VALIDATION_TOKEN_SOURCE_LAST // Always the last element
};
struct ValidationTokenCtx {
std::string name;
std::string value;
ValidationTokenSource source;
Optional<std::string> filePath;
explicit ValidationTokenCtx(const std::string& n, ValidationTokenSource s)
: name(n), value(""), source(s), filePath(Optional<std::string>()), readTS(now()) {}
double getReadTS() const { return readTS; }
private:
double readTS; // Approach assists refreshing token based on time of creation
};
using KmsUrlMinHeap = std::priority_queue<std::shared_ptr<KmsUrlCtx>,
std::vector<std::shared_ptr<KmsUrlCtx>>,
std::less<std::vector<std::shared_ptr<KmsUrlCtx>>::value_type>>;
FDB_BOOLEAN_PARAM(RefreshPersistedUrls);
struct RESTKmsConnectorCtx : public ReferenceCounted<RESTKmsConnectorCtx> {
UID uid;
KmsUrlMinHeap kmsUrlHeap;
double lastKmsUrlsRefreshTs;
RESTClient restClient;
std::unordered_map<std::string, ValidationTokenCtx> validationTokens;
PromiseStream<Future<Void>> addActor;
RESTKmsConnectorCtx() : uid(deterministicRandom()->randomUniqueID()), lastKmsUrlsRefreshTs(0) {}
explicit RESTKmsConnectorCtx(const UID& id) : uid(id), lastKmsUrlsRefreshTs(0) {}
};
std::string getFullRequestUrl(Reference<RESTKmsConnectorCtx> ctx, const std::string& url, const std::string& suffix) {
if (suffix.empty()) {
TraceEvent("GetFullUrlEmptyEndpoint", ctx->uid).log();
throw encrypt_invalid_kms_config();
}
std::string fullUrl(url);
return fullUrl.append("/").append(suffix);
}
void dropCachedKmsUrls(Reference<RESTKmsConnectorCtx> ctx) {
while (!ctx->kmsUrlHeap.empty()) {
std::shared_ptr<KmsUrlCtx> curUrl = ctx->kmsUrlHeap.top();
TraceEvent("DropCachedKmsUrls", ctx->uid)
.detail("Url", curUrl->url)
.detail("NumRequests", curUrl->nRequests)
.detail("NumFailedResponses", curUrl->nFailedResponses)
.detail("NumRespParseFailures", curUrl->nResponseParseFailures);
ctx->kmsUrlHeap.pop();
}
}
bool shouldRefreshKmsUrls(Reference<RESTKmsConnectorCtx> ctx) {
if (!SERVER_KNOBS->REST_KMS_CONNECTOR_REFRESH_KMS_URLS) {
return false;
}
return (now() - ctx->lastKmsUrlsRefreshTs) > SERVER_KNOBS->REST_KMS_CONNECTOR_REFRESH_KMS_URLS_INTERVAL_SEC;
}
void extractKmsUrls(Reference<RESTKmsConnectorCtx> ctx,
const rapidjson::Document& doc,
Reference<HTTP::Response> httpResp) {
// Refresh KmsUrls cache
dropCachedKmsUrls(ctx);
ASSERT(ctx->kmsUrlHeap.empty());
for (const auto& url : doc[KMS_URLS_TAG].GetArray()) {
if (!url.IsString()) {
// TODO: We need to log only the kms section of the document
TraceEvent("DiscoverKmsUrlsMalformedResp", ctx->uid).detail("UrlType", url.GetType());
throw operation_failed();
}
std::string urlStr;
urlStr.resize(url.GetStringLength());
memcpy(urlStr.data(), url.GetString(), url.GetStringLength());
TraceEvent("DiscoverKmsUrlsAddUrl", ctx->uid).detail("Url", urlStr);
ctx->kmsUrlHeap.emplace(std::make_shared<KmsUrlCtx>(urlStr));
}
// Update Kms URLs refresh timestamp
ctx->lastKmsUrlsRefreshTs = now();
}
ACTOR Future<Void> parseDiscoverKmsUrlFile(Reference<RESTKmsConnectorCtx> ctx, std::string filename) {
if (filename.empty() || !fileExists(filename)) {
TraceEvent("DiscoverKmsUrlsFileNotFound", ctx->uid).log();
throw encrypt_invalid_kms_config();
}
state Reference<IAsyncFile> dFile = wait(IAsyncFileSystem::filesystem()->open(
filename, IAsyncFile::OPEN_NO_AIO | IAsyncFile::OPEN_READONLY | IAsyncFile::OPEN_UNCACHED, 0644));
state int64_t fSize = wait(dFile->size());
state Standalone<StringRef> buff = makeString(fSize);
int bytesRead = wait(dFile->read(mutateString(buff), fSize, 0));
if (bytesRead != fSize) {
TraceEvent("DiscoveryKmsUrlFileReadShort", ctx->uid)
.detail("Filename", filename)
.detail("Expected", fSize)
.detail("Actual", bytesRead);
throw io_error();
}
// Acceptable file format (new line character separated URLs):
// <url1>\n
// <url2>\n
std::stringstream ss(buff.toString());
std::string url;
while (std::getline(ss, url, DISCOVER_URL_FILE_URL_SEP)) {
std::string trimedUrl = boost::trim_copy(url);
if (trimedUrl.empty()) {
// Empty URL, ignore and continue
continue;
}
TraceEvent(SevDebug, "DiscoverKmsUrlsAddUrl", ctx->uid).detail("Url", url);
ctx->kmsUrlHeap.emplace(std::make_shared<KmsUrlCtx>(url));
}
return Void();
}
ACTOR Future<Void> discoverKmsUrls(Reference<RESTKmsConnectorCtx> ctx, RefreshPersistedUrls refreshPersistedUrls) {
// KMS discovery needs to be done in two scenarios:
// 1) Initial cluster bootstrap - first boot.
// 2) Requests to all cached KMS URLs is failing for some reason.
//
// Following steps are followed as part of KMS discovery:
// 1) Based on the configured KMS URL discovery mode, the KMS URLs are extracted and persited in a DynamicKnob
// enabled configuration knob. Approach allows relying on the parsing configuration supplied discovery URL mode only
// during afte the initial boot, from then on, the URLs can periodically refreshed along with encryption key fetch
// requests (SERVER_KNOBS->REST_KMS_CONNECTOR_REFRESH_KMS_URLS needs to be enabled).
// 2) Cluster will continue using cached KMS URLs (and refreshing them if needed); however, if for some reason, all
// cached URLs aren't working, then code re-discovers the URL following step#1 and refresh persisted state as well.
if (!refreshPersistedUrls) {
// TODO: request must be satisfied accessing KMS URLs persited using DynamicKnobs. Will be implemented once
// feature is available
}
std::string_view mode{ SERVER_KNOBS->REST_KMS_CONNECTOR_VALIDATION_TOKEN_MODE };
if (mode.compare("file") == 0) {
wait(parseDiscoverKmsUrlFile(ctx, SERVER_KNOBS->REST_KMS_CONNECTOR_DISCOVER_KMS_URL_FILE));
} else {
throw not_implemented();
}
return Void();
}
void checkResponseForError(Reference<RESTKmsConnectorCtx> ctx, const rapidjson::Document& doc) {
// Check if response has error
if (doc.HasMember(ERROR_TAG)) {
Standalone<StringRef> errMsgRef;
Standalone<StringRef> errCodeRef;
if (doc[ERROR_TAG].HasMember(ERROR_MSG_TAG) && doc[ERROR_TAG][ERROR_MSG_TAG].IsString()) {
errMsgRef = makeString(doc[ERROR_TAG][ERROR_MSG_TAG].GetStringLength());
memcpy(mutateString(errMsgRef),
doc[ERROR_TAG][ERROR_MSG_TAG].GetString(),
doc[ERROR_TAG][ERROR_MSG_TAG].GetStringLength());
}
if (doc[ERROR_TAG].HasMember(ERROR_CODE_TAG) && doc[ERROR_TAG][ERROR_CODE_TAG].IsString()) {
errMsgRef = makeString(doc[ERROR_TAG][ERROR_CODE_TAG].GetStringLength());
memcpy(mutateString(errMsgRef),
doc[ERROR_TAG][ERROR_CODE_TAG].GetString(),
doc[ERROR_TAG][ERROR_CODE_TAG].GetStringLength());
}
if (!errCodeRef.empty() || !errMsgRef.empty()) {
TraceEvent("KMSErrorResponse", ctx->uid)
.detail("ErrorMsg", errMsgRef.empty() ? "" : errMsgRef.toString())
.detail("ErrorCode", errCodeRef.empty() ? "" : errCodeRef.toString());
} else {
TraceEvent("KMSErrorResponseEmptyDetails", ctx->uid).log();
}
throw encrypt_keys_fetch_failed();
}
}
void checkDocForNewKmsUrls(Reference<RESTKmsConnectorCtx> ctx,
Reference<HTTP::Response> resp,
const rapidjson::Document& doc) {
if (doc.HasMember(KMS_URLS_TAG)) {
try {
extractKmsUrls(ctx, doc, resp);
} catch (Error& e) {
TraceEvent("RefreshKmsUrlsFailed", ctx->uid).error(e);
// Given cipherKeyDetails extraction was done successfully, ignore KmsUrls parsing error
}
}
}
Standalone<VectorRef<EncryptCipherKeyDetailsRef>> parseEncryptCipherResponse(Reference<RESTKmsConnectorCtx> ctx,
Reference<HTTP::Response> resp) {
// Acceptable response payload json format:
//
// response_json_payload {
// "cipher_key_details" : [
// {
// "base_cipher_id" : <cipherKeyId>,
// "encrypt_domain_id" : <domainId>,
// "base_cipher" : <baseCipher>,
// "refresh_after_sec" : <refreshTimeInterval>, (Optional)
// "expire_after_sec" : <expireTimeInterval> (Optional)
// },
// {
// ....
// }
// ],
// "kms_urls" : [
// "url1", "url2", ...
// ],
// "error" : { // Optional, populated by the KMS, if present, rest of payload is ignored.
// "errMsg" : <message>,
// "errCode": <code>
// }
// }
if (resp->code != HTTP::HTTP_STATUS_CODE_OK) {
// STATUS_OK is gating factor for REST request success
throw http_request_failed();
}
rapidjson::Document doc;
doc.Parse(resp->content.c_str());
checkResponseForError(ctx, doc);
Standalone<VectorRef<EncryptCipherKeyDetailsRef>> result;
// Extract CipherKeyDetails
if (!doc.HasMember(CIPHER_KEY_DETAILS_TAG) || !doc[CIPHER_KEY_DETAILS_TAG].IsArray()) {
TraceEvent(SevWarn, "ParseEncryptCipherResponseFailureMissingCipherKeyDetails", ctx->uid).log();
throw operation_failed();
}
for (const auto& cipherDetail : doc[CIPHER_KEY_DETAILS_TAG].GetArray()) {
if (!cipherDetail.IsObject()) {
TraceEvent(SevWarn, "ParseEncryptCipherResponseFailureEncryptKeyDetailsNotObject", ctx->uid)
.detail("Type", cipherDetail.GetType());
throw operation_failed();
}
const bool isBaseCipherIdPresent = cipherDetail.HasMember(BASE_CIPHER_ID_TAG);
const bool isBaseCipherPresent = cipherDetail.HasMember(BASE_CIPHER_TAG);
const bool isEncryptDomainIdPresent = cipherDetail.HasMember(ENCRYPT_DOMAIN_ID_TAG);
if (!isBaseCipherIdPresent || !isBaseCipherPresent || !isEncryptDomainIdPresent) {
TraceEvent(SevWarn, "ParseEncryptCipherResponseMalformedKeyDetail", ctx->uid)
.detail("BaseCipherIdPresent", isBaseCipherIdPresent)
.detail("BaseCipherPresent", isBaseCipherPresent)
.detail("EncryptDomainIdPresent", isEncryptDomainIdPresent);
throw operation_failed();
}
const int cipherKeyLen = cipherDetail[BASE_CIPHER_TAG].GetStringLength();
std::unique_ptr<uint8_t[]> cipherKey = std::make_unique<uint8_t[]>(cipherKeyLen);
memcpy(cipherKey.get(), cipherDetail[BASE_CIPHER_TAG].GetString(), cipherKeyLen);
// Extract cipher refresh and/or expiry interval if supplied
Optional<int64_t> refreshAfterSec =
cipherDetail.HasMember(REFRESH_AFTER_SEC) && cipherDetail[REFRESH_AFTER_SEC].GetInt64() > 0
? cipherDetail[REFRESH_AFTER_SEC].GetInt64()
: Optional<int64_t>();
Optional<int64_t> expireAfterSec =
cipherDetail.HasMember(EXPIRE_AFTER_SEC) ? cipherDetail[EXPIRE_AFTER_SEC].GetInt64() : Optional<int64_t>();
result.emplace_back_deep(result.arena(),
cipherDetail[ENCRYPT_DOMAIN_ID_TAG].GetInt64(),
cipherDetail[BASE_CIPHER_ID_TAG].GetUint64(),
StringRef(cipherKey.get(), cipherKeyLen),
refreshAfterSec,
expireAfterSec);
}
checkDocForNewKmsUrls(ctx, resp, doc);
return result;
}
Standalone<VectorRef<BlobMetadataDetailsRef>> parseBlobMetadataResponse(Reference<RESTKmsConnectorCtx> ctx,
Reference<HTTP::Response> resp) {
// Acceptable response payload json format:
// (baseLocation and partitions follow the same properties as described in BlobMetadataUtils.h)
//
// response_json_payload {
// "blob_metadata_details" : [
// {
// "domain_id" : <domainId>,
// "domain_name" : <baseCipher>,
// "baseLocation" : <baseLocation>, (Optional if partitions is present)
// "partitions" : [
// "partition1", "partition2", ...
// ], (Optional if baseLocation is present)
// "refresh_after_sec" : <refreshTimeInterval>, (Optional)
// "expire_after_sec" : <expireTimeInterval> (Optional)
// },
// {
// ....
// }
// ],
// "kms_urls" : [
// "url1", "url2", ...
// ],
// "error" : { // Optional, populated by the KMS, if present, rest of payload is ignored.
// "errMsg" : <message>,
// "errCode": <code>
// }
// }
if (resp->code != HTTP::HTTP_STATUS_CODE_OK) {
// STATUS_OK is gating factor for REST request success
throw http_request_failed();
}
rapidjson::Document doc;
doc.Parse(resp->content.c_str());
checkResponseForError(ctx, doc);
Standalone<VectorRef<BlobMetadataDetailsRef>> result;
// Extract CipherKeyDetails
if (!doc.HasMember(BLOB_METADATA_DETAILS_TAG) || !doc[BLOB_METADATA_DETAILS_TAG].IsArray()) {
TraceEvent(SevWarn, "ParseBlobMetadataResponseFailureMissingDetails", ctx->uid).log();
throw operation_failed();
}
for (const auto& detail : doc[BLOB_METADATA_DETAILS_TAG].GetArray()) {
if (!detail.IsObject()) {
TraceEvent(SevWarn, "ParseBlobMetadataResponseFailureDetailsNotObject", ctx->uid)
.detail("Type", detail.GetType());
throw operation_failed();
}
const bool isDomainIdPresent = detail.HasMember(BLOB_METADATA_DOMAIN_ID_TAG);
const bool isDomainNamePresent = detail.HasMember(BLOB_METADATA_DOMAIN_NAME_TAG);
const bool isBasePresent = detail.HasMember(BLOB_METADATA_BASE_LOCATION_TAG);
const bool isPartitionsPresent = detail.HasMember(BLOB_METADATA_PARTITIONS_TAG);
if (!isDomainIdPresent || !isDomainNamePresent || (!isBasePresent && !isPartitionsPresent)) {
TraceEvent(SevWarn, "ParseBlobMetadataResponseMalformedDetail", ctx->uid)
.detail("DomainIdPresent", isDomainIdPresent)
.detail("DomainNamePresent", isDomainNamePresent)
.detail("BaseLocationPresent", isBasePresent)
.detail("PartitionsPresent", isPartitionsPresent);
throw operation_failed();
}
const int domainNameLen = detail[BLOB_METADATA_DOMAIN_NAME_TAG].GetStringLength();
std::unique_ptr<uint8_t[]> domainName = std::make_unique<uint8_t[]>(domainNameLen);
memcpy(domainName.get(), detail[BLOB_METADATA_DOMAIN_NAME_TAG].GetString(), domainNameLen);
std::unique_ptr<uint8_t[]> baseStr;
Optional<StringRef> base;
if (isBasePresent) {
const int baseLen = detail[BLOB_METADATA_BASE_LOCATION_TAG].GetStringLength();
baseStr = std::make_unique<uint8_t[]>(baseLen);
memcpy(baseStr.get(), detail[BLOB_METADATA_BASE_LOCATION_TAG].GetString(), baseLen);
base = StringRef(baseStr.get(), baseLen);
}
// just do extra memory copy for simplicity here
Standalone<VectorRef<StringRef>> partitions;
if (isPartitionsPresent) {
for (const auto& partition : doc[BLOB_METADATA_PARTITIONS_TAG].GetArray()) {
if (!partition.IsString()) {
TraceEvent("ParseBlobMetadataResponseFailurePartitionNotString", ctx->uid)
.detail("Type", partition.GetType());
throw operation_failed();
}
const int partitionLen = partition.GetStringLength();
std::unique_ptr<uint8_t[]> partitionStr = std::make_unique<uint8_t[]>(partitionLen);
memcpy(partitionStr.get(), partition.GetString(), partitionLen);
partitions.push_back_deep(partitions.arena(), StringRef(partitionStr.get(), partitionLen));
}
}
// Extract refresh and/or expiry interval if supplied
double refreshAt = detail.HasMember(REFRESH_AFTER_SEC) && detail[REFRESH_AFTER_SEC].GetInt64() > 0
? now() + detail[REFRESH_AFTER_SEC].GetInt64()
: std::numeric_limits<double>::max();
double expireAt = detail.HasMember(EXPIRE_AFTER_SEC) ? now() + detail[EXPIRE_AFTER_SEC].GetInt64()
: std::numeric_limits<double>::max();
result.emplace_back_deep(result.arena(),
detail[BLOB_METADATA_DOMAIN_ID_TAG].GetInt64(),
StringRef(domainName.get(), domainNameLen),
base,
partitions,
refreshAt,
expireAt);
}
checkDocForNewKmsUrls(ctx, resp, doc);
return result;
}
void addQueryModeSection(Reference<RESTKmsConnectorCtx> ctx, rapidjson::Document& doc, const char* mode) {
rapidjson::Value key(QUERY_MODE_TAG, doc.GetAllocator());
rapidjson::Value queryMode;
queryMode.SetString(mode, doc.GetAllocator());
// Append 'query_mode' object to the parent document
doc.AddMember(key, queryMode, doc.GetAllocator());
}
void addLatestDomainDetailsToDoc(rapidjson::Document& doc,
const char* rootTagName,
const char* idTagName,
const char* nameTagName,
const VectorRef<KmsConnLookupDomainIdsReqInfoRef>& details) {
rapidjson::Value keyIdDetails(rapidjson::kArrayType);
for (const auto& detail : details) {
rapidjson::Value keyIdDetail(rapidjson::kObjectType);
rapidjson::Value key(idTagName, doc.GetAllocator());
rapidjson::Value domainId;
domainId.SetInt64(detail.domainId);
keyIdDetail.AddMember(key, domainId, doc.GetAllocator());
key.SetString(nameTagName, doc.GetAllocator());
rapidjson::Value domainName;
domainName.SetString(detail.domainName.toString().c_str(), detail.domainName.size(), doc.GetAllocator());
keyIdDetail.AddMember(key, domainName, doc.GetAllocator());
keyIdDetails.PushBack(keyIdDetail, doc.GetAllocator());
}
rapidjson::Value memberKey(rootTagName, doc.GetAllocator());
doc.AddMember(memberKey, keyIdDetails, doc.GetAllocator());
}
void addValidationTokensSectionToJsonDoc(Reference<RESTKmsConnectorCtx> ctx, rapidjson::Document& doc) {
// Append "validationTokens" as json array
rapidjson::Value validationTokens(rapidjson::kArrayType);
for (const auto& token : ctx->validationTokens) {
rapidjson::Value validationToken(rapidjson::kObjectType);
// Add "name" - token name
rapidjson::Value key(VALIDATION_TOKEN_NAME_TAG, doc.GetAllocator());
rapidjson::Value tokenName(token.second.name.c_str(), doc.GetAllocator());
validationToken.AddMember(key, tokenName, doc.GetAllocator());
// Add "value" - token value
key.SetString(VALIDATION_TOKEN_VALUE_TAG, doc.GetAllocator());
rapidjson::Value tokenValue;
tokenValue.SetString(token.second.value.c_str(), token.second.value.size(), doc.GetAllocator());
validationToken.AddMember(key, tokenValue, doc.GetAllocator());
validationTokens.PushBack(validationToken, doc.GetAllocator());
}
// Append 'validation_token[]' to the parent document
rapidjson::Value memberKey(VALIDATION_TOKENS_TAG, doc.GetAllocator());
doc.AddMember(memberKey, validationTokens, doc.GetAllocator());
}
void addRefreshKmsUrlsSectionToJsonDoc(Reference<RESTKmsConnectorCtx> ctx,
rapidjson::Document& doc,
const bool refreshKmsUrls) {
rapidjson::Value key(REFRESH_KMS_URLS_TAG, doc.GetAllocator());
rapidjson::Value refreshUrls;
refreshUrls.SetBool(refreshKmsUrls);
// Append 'refresh_kms_urls' object to the parent document
doc.AddMember(key, refreshUrls, doc.GetAllocator());
}
void addDebugUidSectionToJsonDoc(Reference<RESTKmsConnectorCtx> ctx, rapidjson::Document& doc, Optional<UID> dbgId) {
if (!dbgId.present()) {
// Debug id not present; do nothing
return;
}
rapidjson::Value key(DEBUG_UID_TAG, doc.GetAllocator());
rapidjson::Value debugIdVal;
const std::string dbgIdStr = dbgId.get().toString();
debugIdVal.SetString(dbgIdStr.c_str(), dbgIdStr.size(), doc.GetAllocator());
// Append 'debug_uid' object to the parent document
doc.AddMember(key, debugIdVal, doc.GetAllocator());
}
StringRef getEncryptKeysByKeyIdsRequestBody(Reference<RESTKmsConnectorCtx> ctx,
const KmsConnLookupEKsByKeyIdsReq& req,
const bool refreshKmsUrls,
Arena& arena) {
// Acceptable request payload json format:
//
// request_json_payload {
// "query_mode": "lookupByKeyId" / "lookupByDomainId"
// "cipher_key_details" = [
// {
// "base_cipher_id" : <cipherKeyId>
// "encrypt_domain_id" : <domainId>
// "encrypt_domain_name" : <domainName>
// },
// {
// ....
// }
// ],
// "validation_tokens" = [
// {
// "token_name" : <name>,
// "token_value": <value>
// },
// {
// ....
// }
// ]
// "refresh_kms_urls" = 1/0
// "debug_uid" = <uid-string> // Optional debug info to trace requests across FDB <--> KMS
// }
rapidjson::Document doc;
doc.SetObject();
// Append 'query_mode' object
addQueryModeSection(ctx, doc, QUERY_MODE_LOOKUP_BY_KEY_ID);
// Append 'cipher_key_details' as json array
rapidjson::Value keyIdDetails(rapidjson::kArrayType);
for (const auto& detail : req.encryptKeyInfos) {
rapidjson::Value keyIdDetail(rapidjson::kObjectType);
// Add 'base_cipher_id'
rapidjson::Value key(BASE_CIPHER_ID_TAG, doc.GetAllocator());
rapidjson::Value baseKeyId;
baseKeyId.SetUint64(detail.baseCipherId);
keyIdDetail.AddMember(key, baseKeyId, doc.GetAllocator());
// Add 'encrypt_domain_id'
key.SetString(ENCRYPT_DOMAIN_ID_TAG, doc.GetAllocator());
rapidjson::Value domainId;
domainId.SetInt64(detail.domainId);
keyIdDetail.AddMember(key, domainId, doc.GetAllocator());
// Add 'encrypt_domain_name'
key.SetString(ENCRYPT_DOMAIN_NAME_TAG, doc.GetAllocator());
rapidjson::Value domainName;
domainName.SetString(detail.domainName.toString().c_str(), detail.domainName.size(), doc.GetAllocator());
keyIdDetail.AddMember(key, domainName, doc.GetAllocator());
// push above object to the array
keyIdDetails.PushBack(keyIdDetail, doc.GetAllocator());
}
rapidjson::Value memberKey(CIPHER_KEY_DETAILS_TAG, doc.GetAllocator());
doc.AddMember(memberKey, keyIdDetails, doc.GetAllocator());
// Append 'validation_tokens' as json array
addValidationTokensSectionToJsonDoc(ctx, doc);
// Append 'refresh_kms_urls'
addRefreshKmsUrlsSectionToJsonDoc(ctx, doc, refreshKmsUrls);
// Append 'debug_uid' section if needed
addDebugUidSectionToJsonDoc(ctx, doc, req.debugId);
// Serialize json to string
rapidjson::StringBuffer sb;
rapidjson::Writer<rapidjson::StringBuffer> writer(sb);
doc.Accept(writer);
StringRef ref = makeString(sb.GetSize(), arena);
memcpy(mutateString(ref), sb.GetString(), sb.GetSize());
return ref;
}
ACTOR template <class T>
Future<T> kmsRequestImpl(Reference<RESTKmsConnectorCtx> ctx,
std::string urlSuffix,
StringRef requestBodyRef,
std::function<T(Reference<RESTKmsConnectorCtx>, Reference<HTTP::Response>)> parseFunc) {
state UID requestID = deterministicRandom()->randomUniqueID();
// Follow 2-phase scheme:
// Phase-1: Attempt to do request reaching out to cached KmsUrls in the order of
// past success requests success counts.
// Phase-2: For some reason if none of the cached KmsUrls worked, re-discover the KmsUrls and
// repeat phase-1.
state int pass = 1;
for (; pass <= 2; pass++) {
state std::stack<std::shared_ptr<KmsUrlCtx>> tempStack;
// Iterate over Kms URLs
while (!ctx->kmsUrlHeap.empty()) {
state std::shared_ptr<KmsUrlCtx> curUrl = ctx->kmsUrlHeap.top();
ctx->kmsUrlHeap.pop();
tempStack.push(curUrl);
try {
std::string kmsEncryptionFullUrl = getFullRequestUrl(ctx, curUrl->url, urlSuffix);
TraceEvent(SevDebug, "KmsRequestStart", ctx->uid)
.detail("RequestID", requestID)
.detail("FullUrl", kmsEncryptionFullUrl);
Reference<HTTP::Response> resp =
wait(ctx->restClient.doPost(kmsEncryptionFullUrl, requestBodyRef.toString()));
curUrl->nRequests++;
try {
T parsedResp = parseFunc(ctx, resp);
// Push urlCtx back on the ctx->urlHeap
while (!tempStack.empty()) {
ctx->kmsUrlHeap.emplace(tempStack.top());
tempStack.pop();
}
TraceEvent(SevDebug, "KmsRequestSuccess", ctx->uid).detail("RequestID", requestID);
return parsedResp;
} catch (Error& e) {
TraceEvent(SevWarn, "KmsRequestRespParseFailure").error(e).detail("RequestID", requestID);
curUrl->nResponseParseFailures++;
// attempt to do request from next KmsUrl
}
} catch (Error& e) {
curUrl->nFailedResponses++;
if (pass > 1 && isKmsNotReachable(e.code())) {
TraceEvent(SevDebug, "KmsRequestFailedUnreachable", ctx->uid)
.error(e)
.detail("RequestID", requestID);
throw e;
} else {
TraceEvent(SevDebug, "KmsRequestError", ctx->uid).error(e).detail("RequestID", requestID);
// attempt to do request from next KmsUrl
}
}
}
if (pass == 1) {
// Re-discover KMS urls and re-attempt request using newer KMS URLs
wait(discoverKmsUrls(ctx, RefreshPersistedUrls::True));
}
}
TraceEvent(SevDebug, "KmsRequestFailed", ctx->uid).detail("RequestID", requestID);
// Failed to do request from the remote KMS
// TODO: generic KMS error types
throw encrypt_keys_fetch_failed();
}
ACTOR Future<Void> fetchEncryptionKeysByKeyIds(Reference<RESTKmsConnectorCtx> ctx, KmsConnLookupEKsByKeyIdsReq req) {
state KmsConnLookupEKsByKeyIdsRep reply;
try {
bool refreshKmsUrls = shouldRefreshKmsUrls(ctx);
StringRef requestBodyRef = getEncryptKeysByKeyIdsRequestBody(ctx, req, refreshKmsUrls, req.arena);
std::function<Standalone<VectorRef<EncryptCipherKeyDetailsRef>>(Reference<RESTKmsConnectorCtx>,
Reference<HTTP::Response>)>
f = &parseEncryptCipherResponse;
Standalone<VectorRef<EncryptCipherKeyDetailsRef>> result = wait(kmsRequestImpl(
ctx, SERVER_KNOBS->REST_KMS_CONNECTOR_GET_ENCRYPTION_KEYS_ENDPOINT, requestBodyRef, std::move(f)));
reply.cipherKeyDetails = result;
reply.arena.dependsOn(result.arena());
req.reply.send(reply);
} catch (Error& e) {
TraceEvent("LookupEKsByKeyIdsFailed", ctx->uid).error(e);
if (!canReplyWith(e)) {
throw e;
}
req.reply.sendError(e);
}
return Void();
}
StringRef getEncryptKeysByDomainIdsRequestBody(Reference<RESTKmsConnectorCtx> ctx,
const KmsConnLookupEKsByDomainIdsReq& req,
const bool refreshKmsUrls,
Arena& arena) {
// Acceptable request payload json format:
//
// request_json_payload {
// "query_mode": "lookupByKeyId" / "lookupByDomainId"
// "cipher_key_details" = [
// {
// "encrypt_domain_id" : <domainId>
// "encrypt_domain_name" : <domainName>
// },
// {
// ....
// }
// ],
// "validation_tokens" = [
// {
// "token_name" : <name>,
// "token_value": <value>
// },
// {
// ....
// }
// ]
// "refresh_kms_urls" = 1/0
// "debug_uid" = <uid-string> // Optional debug info to trace requests across FDB <--> KMS
// }
rapidjson::Document doc;
doc.SetObject();
// Append 'query_mode' object
addQueryModeSection(ctx, doc, QUERY_MODE_LOOKUP_BY_DOMAIN_ID);
// Append 'cipher_key_details' as json array
addLatestDomainDetailsToDoc(
doc, CIPHER_KEY_DETAILS_TAG, ENCRYPT_DOMAIN_ID_TAG, ENCRYPT_DOMAIN_NAME_TAG, req.encryptDomainInfos);
// Append 'validation_tokens' as json array
addValidationTokensSectionToJsonDoc(ctx, doc);
// Append 'refresh_kms_urls'
addRefreshKmsUrlsSectionToJsonDoc(ctx, doc, refreshKmsUrls);
// Append 'debug_uid' section if needed
addDebugUidSectionToJsonDoc(ctx, doc, req.debugId);
// Serialize json to string
rapidjson::StringBuffer sb;
rapidjson::Writer<rapidjson::StringBuffer> writer(sb);
doc.Accept(writer);
StringRef ref = makeString(sb.GetSize(), arena);
memcpy(mutateString(ref), sb.GetString(), sb.GetSize());
return ref;
}
ACTOR Future<Void> fetchEncryptionKeysByDomainIds(Reference<RESTKmsConnectorCtx> ctx,
KmsConnLookupEKsByDomainIdsReq req) {
state KmsConnLookupEKsByDomainIdsRep reply;
try {
bool refreshKmsUrls = shouldRefreshKmsUrls(ctx);
StringRef requestBodyRef = getEncryptKeysByDomainIdsRequestBody(ctx, req, refreshKmsUrls, req.arena);
std::function<Standalone<VectorRef<EncryptCipherKeyDetailsRef>>(Reference<RESTKmsConnectorCtx>,
Reference<HTTP::Response>)>
f = &parseEncryptCipherResponse;
Standalone<VectorRef<EncryptCipherKeyDetailsRef>> result = wait(kmsRequestImpl(
ctx, SERVER_KNOBS->REST_KMS_CONNECTOR_GET_ENCRYPTION_KEYS_ENDPOINT, requestBodyRef, std::move(f)));
reply.cipherKeyDetails = result;
reply.arena.dependsOn(result.arena());
req.reply.send(reply);
} catch (Error& e) {
TraceEvent("LookupEKsByDomainIdsFailed", ctx->uid).error(e);
if (!canReplyWith(e)) {
throw e;
}
req.reply.sendError(e);
}
return Void();
}
StringRef getBlobMetadataRequestBody(Reference<RESTKmsConnectorCtx> ctx,
KmsConnBlobMetadataReq& req,
const bool refreshKmsUrls) {
// Acceptable request payload json format:
//
// request_json_payload {
// "blob_metadata_details" = [
// {
// "domain_id" : <domainId>
// "domain_name" : <domainName>
// },
// {
// ....
// }
// ],
// "validation_tokens" = [
// {
// "token_name" : <name>,
// "token_value": <value>
// },
// {
// ....
// }
// ]
// "refresh_kms_urls" = 1/0
// "debug_uid" = <uid-string> // Optional debug info to trace requests across FDB <--> KMS
// }
rapidjson::Document doc;
doc.SetObject();
// Append 'blob_metadata_details' as json array
addLatestDomainDetailsToDoc(
doc, BLOB_METADATA_DETAILS_TAG, BLOB_METADATA_DOMAIN_ID_TAG, BLOB_METADATA_DOMAIN_NAME_TAG, req.domainInfos);
// Append 'validation_tokens' as json array
addValidationTokensSectionToJsonDoc(ctx, doc);
// Append 'refresh_kms_urls'
addRefreshKmsUrlsSectionToJsonDoc(ctx, doc, refreshKmsUrls);
// Append 'debug_uid' section if needed
addDebugUidSectionToJsonDoc(ctx, doc, req.debugId);
// Serialize json to string
rapidjson::StringBuffer sb;
rapidjson::Writer<rapidjson::StringBuffer> writer(sb);
doc.Accept(writer);
StringRef ref = makeString(sb.GetSize(), req.domainInfos.arena());
memcpy(mutateString(ref), sb.GetString(), sb.GetSize());
return ref;
}
// FIXME: add lookup error stats and suppress error trace events on interval
ACTOR Future<Void> fetchBlobMetadata(Reference<RESTKmsConnectorCtx> ctx, KmsConnBlobMetadataReq req) {
state KmsConnBlobMetadataRep reply;
try {
bool refreshKmsUrls = shouldRefreshKmsUrls(ctx);
StringRef requestBodyRef = getBlobMetadataRequestBody(ctx, req, refreshKmsUrls);
// for some reason the compiler can't handle just passing &parseBlobMetadata, so you have to explicitly
// declare its templated return type as part of an std::function first
std::function<Standalone<VectorRef<BlobMetadataDetailsRef>>(Reference<RESTKmsConnectorCtx>,
Reference<HTTP::Response>)>
f = &parseBlobMetadataResponse;
wait(
store(reply.metadataDetails,
kmsRequestImpl(
ctx, SERVER_KNOBS->REST_KMS_CONNECTOR_GET_BLOB_METADATA_ENDPOINT, requestBodyRef, std::move(f))));
req.reply.send(reply);
} catch (Error& e) {
TraceEvent("LookupBlobMetadataFailed", ctx->uid).error(e);
if (!canReplyWith(e)) {
throw e;
}
req.reply.sendError(e);
}
return Void();
}
ACTOR Future<Void> procureValidationTokensFromFiles(Reference<RESTKmsConnectorCtx> ctx, std::string details) {
Standalone<StringRef> detailsRef(details);
if (details.empty()) {
TraceEvent("ValidationTokenEmptyFileDetails", ctx->uid).log();
throw encrypt_invalid_kms_config();
}
TraceEvent("ValidationToken", ctx->uid).detail("DetailsStr", details);
state std::unordered_map<std::string, std::string> tokenFilePathMap;
while (!details.empty()) {
StringRef name = detailsRef.eat(TOKEN_NAME_FILE_SEP);
if (name.empty()) {
break;
}
StringRef path = detailsRef.eat(TOKEN_TUPLE_SEP);
if (path.empty()) {
TraceEvent("ValidationTokenFileDetailsMalformed", ctx->uid).detail("FileDetails", details);
throw operation_failed();
}
std::string tokenName = boost::trim_copy(name.toString());
std::string tokenFile = boost::trim_copy(path.toString());
if (!fileExists(tokenFile)) {
TraceEvent("ValidationTokenFileNotFound", ctx->uid)
.detail("TokenName", tokenName)
.detail("Filename", tokenFile);
throw encrypt_invalid_kms_config();
}
tokenFilePathMap.emplace(tokenName, tokenFile);
TraceEvent("ValidationToken", ctx->uid).detail("FName", tokenName).detail("Filename", tokenFile);
}
// Clear existing cached validation tokens
ctx->validationTokens.clear();
// Enumerate all token files and extract details
state uint64_t tokensPayloadSize = 0;
for (const auto& item : tokenFilePathMap) {
state std::string tokenName = item.first;
state std::string tokenFile = item.second;
state Reference<IAsyncFile> tFile = wait(IAsyncFileSystem::filesystem()->open(
tokenFile, IAsyncFile::OPEN_NO_AIO | IAsyncFile::OPEN_READONLY | IAsyncFile::OPEN_UNCACHED, 0644));
state int64_t fSize = wait(tFile->size());
if (fSize > SERVER_KNOBS->REST_KMS_CONNECTOR_VALIDATION_TOKEN_MAX_SIZE) {
TraceEvent("ValidationTokenFileTooLarge", ctx->uid)
.detail("FileName", tokenFile)
.detail("Size", fSize)
.detail("MaxAllowedSize", SERVER_KNOBS->REST_KMS_CONNECTOR_VALIDATION_TOKEN_MAX_SIZE);
throw file_too_large();
}
tokensPayloadSize += fSize;
if (tokensPayloadSize > SERVER_KNOBS->REST_KMS_CONNECTOR_VALIDATION_TOKENS_MAX_PAYLOAD_SIZE) {
TraceEvent("ValidationTokenPayloadTooLarge", ctx->uid)
.detail("MaxAllowedSize", SERVER_KNOBS->REST_KMS_CONNECTOR_VALIDATION_TOKENS_MAX_PAYLOAD_SIZE);
throw value_too_large();
}
state Standalone<StringRef> buff = makeString(fSize);
int bytesRead = wait(tFile->read(mutateString(buff), fSize, 0));
if (bytesRead != fSize) {
TraceEvent("DiscoveryKmsUrlFileReadShort", ctx->uid)
.detail("Filename", tokenFile)
.detail("Expected", fSize)
.detail("Actual", bytesRead);
throw io_error();
}
// Populate validation token details
ValidationTokenCtx tokenCtx =
ValidationTokenCtx(tokenName, ValidationTokenSource::VALIDATION_TOKEN_SOURCE_FILE);
tokenCtx.value.resize(fSize);
memcpy(tokenCtx.value.data(), buff.begin(), fSize);
tokenCtx.filePath = tokenFile;
// NOTE: avoid logging token-value to prevent token leaks in log files..
TraceEvent("ValidationTokenReadFile", ctx->uid)
.detail("TokenName", tokenCtx.name)
.detail("TokenSize", tokenCtx.value.size())
.detail("TokenFilePath", tokenCtx.filePath.get())
.detail("TotalPayloadSize", tokensPayloadSize);
ctx->validationTokens.emplace(tokenName, std::move(tokenCtx));
}
return Void();
}
ACTOR Future<Void> procureValidationTokens(Reference<RESTKmsConnectorCtx> ctx) {
std::string_view mode{ SERVER_KNOBS->REST_KMS_CONNECTOR_VALIDATION_TOKEN_MODE };
if (mode.compare("file") == 0) {
wait(procureValidationTokensFromFiles(ctx, SERVER_KNOBS->REST_KMS_CONNECTOR_VALIDATION_TOKEN_DETAILS));
} else {
throw not_implemented();
}
return Void();
}
ACTOR Future<Void> restConnectorCoreImpl(KmsConnectorInterface interf) {
state Reference<RESTKmsConnectorCtx> self = makeReference<RESTKmsConnectorCtx>(interf.id());
state Future<Void> collection = actorCollection(self->addActor.getFuture());
TraceEvent("RESTKmsConnectorInit", self->uid).log();
wait(discoverKmsUrls(self, RefreshPersistedUrls::False));
wait(procureValidationTokens(self));
loop {
choose {
when(KmsConnLookupEKsByKeyIdsReq req = waitNext(interf.ekLookupByIds.getFuture())) {
self->addActor.send(fetchEncryptionKeysByKeyIds(self, req));
}
when(KmsConnLookupEKsByDomainIdsReq req = waitNext(interf.ekLookupByDomainIds.getFuture())) {
self->addActor.send(fetchEncryptionKeysByDomainIds(self, req));
}
when(KmsConnBlobMetadataReq req = waitNext(interf.blobMetadataReq.getFuture())) {
self->addActor.send(fetchBlobMetadata(self, req));
}
when(wait(collection)) {
// this should throw an error, not complete
ASSERT(false);
}
}
}
}
Future<Void> RESTKmsConnector::connectorCore(KmsConnectorInterface interf) {
return restConnectorCoreImpl(interf);
}
// Only used to link unit tests
void forceLinkRESTKmsConnectorTest() {}
namespace {
std::string_view KMS_URL_NAME_TEST = "http://foo/bar";
std::string_view BLOB_METADATA_BASE_LOCATION_TEST = "file://local";
std::string_view BLOB_METADATA_PARTITION_TEST = "part";
uint8_t BASE_CIPHER_KEY_TEST[32];
std::shared_ptr<platform::TmpFile> prepareTokenFile(const uint8_t* buff, const int len) {
std::shared_ptr<platform::TmpFile> tmpFile = std::make_shared<platform::TmpFile>("/tmp");
ASSERT(fileExists(tmpFile->getFileName()));
tmpFile->write(buff, len);
return tmpFile;
}
std::shared_ptr<platform::TmpFile> prepareTokenFile(const int tokenLen) {
Standalone<StringRef> buff = makeString(tokenLen);
deterministicRandom()->randomBytes(mutateString(buff), tokenLen);
return prepareTokenFile(buff.begin(), tokenLen);
}
ACTOR Future<Void> testEmptyValidationFileDetails(Reference<RESTKmsConnectorCtx> ctx) {
try {
wait(procureValidationTokensFromFiles(ctx, ""));
ASSERT(false);
} catch (Error& e) {
ASSERT_EQ(e.code(), error_code_encrypt_invalid_kms_config);
}
return Void();
}
ACTOR Future<Void> testMalformedFileValidationTokenDetails(Reference<RESTKmsConnectorCtx> ctx) {
try {
wait(procureValidationTokensFromFiles(ctx, "abdc/tmp/foo"));
ASSERT(false);
} catch (Error& e) {
ASSERT_EQ(e.code(), error_code_operation_failed);
}
return Void();
}
ACTOR Future<Void> testValidationTokenFileNotFound(Reference<RESTKmsConnectorCtx> ctx) {
try {
wait(procureValidationTokensFromFiles(ctx, "foo#/imaginary-dir/dream/phantom-file"));
ASSERT(false);
} catch (Error& e) {
ASSERT_EQ(e.code(), error_code_encrypt_invalid_kms_config);
}
return Void();
}
ACTOR Future<Void> testTooLargeValidationTokenFile(Reference<RESTKmsConnectorCtx> ctx) {
std::string name("foo");
const int tokenLen = SERVER_KNOBS->REST_KMS_CONNECTOR_VALIDATION_TOKEN_MAX_SIZE + 1;
state std::shared_ptr<platform::TmpFile> tmpFile = prepareTokenFile(tokenLen);
std::string details;
details.append(name).append(TOKEN_NAME_FILE_SEP).append(tmpFile->getFileName());
try {
wait(procureValidationTokensFromFiles(ctx, details));
ASSERT(false);
} catch (Error& e) {
ASSERT_EQ(e.code(), error_code_file_too_large);
}
return Void();
}
ACTOR Future<Void> testValidationFileTokenPayloadTooLarge(Reference<RESTKmsConnectorCtx> ctx) {
const int tokenLen = SERVER_KNOBS->REST_KMS_CONNECTOR_VALIDATION_TOKEN_MAX_SIZE;
const int nTokens = SERVER_KNOBS->REST_KMS_CONNECTOR_VALIDATION_TOKENS_MAX_PAYLOAD_SIZE /
SERVER_KNOBS->REST_KMS_CONNECTOR_VALIDATION_TOKEN_MAX_SIZE +
2;
Standalone<StringRef> buff = makeString(tokenLen);
deterministicRandom()->randomBytes(mutateString(buff), tokenLen);
std::string details;
state std::vector<std::shared_ptr<platform::TmpFile>> tokenfiles;
for (int i = 0; i < nTokens; i++) {
std::shared_ptr<platform::TmpFile> tokenfile = prepareTokenFile(buff.begin(), tokenLen);
details.append(std::to_string(i)).append(TOKEN_NAME_FILE_SEP).append(tokenfile->getFileName());
if (i < nTokens)
details.append(TOKEN_TUPLE_SEP);
tokenfiles.emplace_back(tokenfile);
}
try {
wait(procureValidationTokensFromFiles(ctx, details));
ASSERT(false);
} catch (Error& e) {
ASSERT_EQ(e.code(), error_code_value_too_large);
}
return Void();
}
ACTOR Future<Void> testMultiValidationFileTokenFiles(Reference<RESTKmsConnectorCtx> ctx) {
state int numFiles = deterministicRandom()->randomInt(2, 5);
state int tokenLen = deterministicRandom()->randomInt(26, 75);
state Standalone<StringRef> buff = makeString(tokenLen);
state std::unordered_map<std::string, std::shared_ptr<platform::TmpFile>> tokenFiles;
state std::unordered_map<std::string, std::string> tokenNameValueMap;
state std::string tokenDetailsStr;
deterministicRandom()->randomBytes(mutateString(buff), tokenLen);
for (int i = 1; i <= numFiles; i++) {
std::string tokenName = std::to_string(i);
std::shared_ptr<platform::TmpFile> tokenfile = prepareTokenFile(buff.begin(), tokenLen);
std::string token((char*)buff.begin(), tokenLen);
tokenFiles.emplace(tokenName, tokenfile);
tokenNameValueMap.emplace(std::to_string(i), token);
tokenDetailsStr.append(tokenName).append(TOKEN_NAME_FILE_SEP).append(tokenfile->getFileName());
if (i < numFiles)
tokenDetailsStr.append(TOKEN_TUPLE_SEP);
}
wait(procureValidationTokensFromFiles(ctx, tokenDetailsStr));
ASSERT_EQ(ctx->validationTokens.size(), tokenNameValueMap.size());
for (const auto& token : ctx->validationTokens) {
const auto& itr = tokenNameValueMap.find(token.first);
const ValidationTokenCtx& tokenCtx = token.second;
ASSERT(itr != tokenNameValueMap.end());
ASSERT_EQ(token.first.compare(itr->first), 0);
ASSERT_EQ(tokenCtx.value.compare(itr->second), 0);
ASSERT_EQ(tokenCtx.source, ValidationTokenSource::VALIDATION_TOKEN_SOURCE_FILE);
ASSERT(tokenCtx.filePath.present());
ASSERT_EQ(tokenCtx.filePath.compare(tokenFiles[tokenCtx.name]->getFileName()), 0);
ASSERT_NE(tokenCtx.getReadTS(), 0);
}
return Void();
}
EncryptCipherDomainId getRandomDomainId() {
const int lottery = deterministicRandom()->randomInt(0, 100);
if (lottery < 10) {
return SYSTEM_KEYSPACE_ENCRYPT_DOMAIN_ID;
} else if (lottery >= 10 && lottery < 25) {
return ENCRYPT_HEADER_DOMAIN_ID;
} else {
return lottery;
}
}
void addFakeRefreshExpire(rapidjson::Document& resDoc, rapidjson::Value& detail, rapidjson::Value& key) {
if (deterministicRandom()->coinflip()) {
key.SetString(REFRESH_AFTER_SEC, resDoc.GetAllocator());
rapidjson::Value refreshInterval;
refreshInterval.SetInt64(10);
detail.AddMember(key, refreshInterval, resDoc.GetAllocator());
}
if (deterministicRandom()->coinflip()) {
key.SetString(EXPIRE_AFTER_SEC, resDoc.GetAllocator());
rapidjson::Value expireInterval;
deterministicRandom()->coinflip() ? expireInterval.SetInt64(10) : expireInterval.SetInt64(-1);
detail.AddMember(key, expireInterval, resDoc.GetAllocator());
}
}
void addFakeKmsUrls(const rapidjson::Document& reqDoc, rapidjson::Document& resDoc) {
ASSERT(reqDoc.HasMember(REFRESH_KMS_URLS_TAG));
if (reqDoc[REFRESH_KMS_URLS_TAG].GetBool()) {
rapidjson::Value kmsUrls(rapidjson::kArrayType);
for (int i = 0; i < 3; i++) {
rapidjson::Value url;
url.SetString(KMS_URL_NAME_TEST.data(), resDoc.GetAllocator());
kmsUrls.PushBack(url, resDoc.GetAllocator());
}
rapidjson::Value memberKey(KMS_URLS_TAG, resDoc.GetAllocator());
resDoc.AddMember(memberKey, kmsUrls, resDoc.GetAllocator());
}
}
void getFakeEncryptCipherResponse(StringRef jsonReqRef,
const bool baseCipherIdPresent,
Reference<HTTP::Response> httpResponse) {
rapidjson::Document reqDoc;
reqDoc.Parse(jsonReqRef.toString().c_str());
rapidjson::Document resDoc;
resDoc.SetObject();
ASSERT(reqDoc.HasMember(CIPHER_KEY_DETAILS_TAG) && reqDoc[CIPHER_KEY_DETAILS_TAG].IsArray());
rapidjson::Value cipherKeyDetails(rapidjson::kArrayType);
for (const auto& detail : reqDoc[CIPHER_KEY_DETAILS_TAG].GetArray()) {
rapidjson::Value keyDetail(rapidjson::kObjectType);
ASSERT(detail.HasMember(ENCRYPT_DOMAIN_ID_TAG));
rapidjson::Value key(ENCRYPT_DOMAIN_ID_TAG, resDoc.GetAllocator());
rapidjson::Value domainId;
domainId.SetInt64(detail[ENCRYPT_DOMAIN_ID_TAG].GetInt64());
keyDetail.AddMember(key, domainId, resDoc.GetAllocator());
key.SetString(BASE_CIPHER_ID_TAG, resDoc.GetAllocator());
rapidjson::Value baseCipherId;
if (detail.HasMember(BASE_CIPHER_ID_TAG)) {
domainId.SetUint64(detail[BASE_CIPHER_ID_TAG].GetUint64());
} else {
ASSERT(!baseCipherIdPresent);
domainId.SetUint(1234);
}
keyDetail.AddMember(key, domainId, resDoc.GetAllocator());
key.SetString(BASE_CIPHER_TAG, resDoc.GetAllocator());
rapidjson::Value baseCipher;
baseCipher.SetString((char*)&BASE_CIPHER_KEY_TEST[0], sizeof(BASE_CIPHER_KEY_TEST), resDoc.GetAllocator());
keyDetail.AddMember(key, baseCipher, resDoc.GetAllocator());
addFakeRefreshExpire(resDoc, keyDetail, key);
cipherKeyDetails.PushBack(keyDetail, resDoc.GetAllocator());
}
rapidjson::Value memberKey(CIPHER_KEY_DETAILS_TAG, resDoc.GetAllocator());
resDoc.AddMember(memberKey, cipherKeyDetails, resDoc.GetAllocator());
addFakeKmsUrls(reqDoc, resDoc);
// Serialize json to string
rapidjson::StringBuffer sb;
rapidjson::Writer<rapidjson::StringBuffer> writer(sb);
resDoc.Accept(writer);
httpResponse->content.resize(sb.GetSize(), '\0');
memcpy(httpResponse->content.data(), sb.GetString(), sb.GetSize());
}
void getFakeBlobMetadataResponse(StringRef jsonReqRef,
const bool baseCipherIdPresent,
Reference<HTTP::Response> httpResponse) {
rapidjson::Document reqDoc;
reqDoc.Parse(jsonReqRef.toString().c_str());
rapidjson::Document resDoc;
resDoc.SetObject();
ASSERT(reqDoc.HasMember(BLOB_METADATA_DETAILS_TAG) && reqDoc[BLOB_METADATA_DETAILS_TAG].IsArray());
rapidjson::Value blobMetadataDetails(rapidjson::kArrayType);
for (const auto& detail : reqDoc[BLOB_METADATA_DETAILS_TAG].GetArray()) {
rapidjson::Value keyDetail(rapidjson::kObjectType);
ASSERT(detail.HasMember(BLOB_METADATA_DOMAIN_ID_TAG));
rapidjson::Value key(BLOB_METADATA_DOMAIN_ID_TAG, resDoc.GetAllocator());
rapidjson::Value domainId;
domainId.SetInt64(detail[BLOB_METADATA_DOMAIN_ID_TAG].GetInt64());
keyDetail.AddMember(key, domainId, resDoc.GetAllocator());
key.SetString(BLOB_METADATA_DOMAIN_NAME_TAG, resDoc.GetAllocator());
rapidjson::Value domainName;
domainName.SetString(detail[BLOB_METADATA_DOMAIN_NAME_TAG].GetString(), resDoc.GetAllocator());
keyDetail.AddMember(key, domainName, resDoc.GetAllocator());
int type = deterministicRandom()->randomInt(0, 3);
if (type == 0 || type == 1) {
key.SetString(BLOB_METADATA_BASE_LOCATION_TAG, resDoc.GetAllocator());
rapidjson::Value baseLocation;
baseLocation.SetString(BLOB_METADATA_BASE_LOCATION_TEST.data(), resDoc.GetAllocator());
keyDetail.AddMember(key, baseLocation, resDoc.GetAllocator());
}
if (type == 1 || type == 2) {
int partitionCount = deterministicRandom()->randomInt(2, 6);
rapidjson::Value partitions(rapidjson::kArrayType);
for (int i = 0; i < partitionCount; i++) {
rapidjson::Value p;
p.SetString(((type == 1) ? BLOB_METADATA_PARTITION_TEST : BLOB_METADATA_BASE_LOCATION_TEST).data(),
resDoc.GetAllocator());
partitions.PushBack(p, resDoc.GetAllocator());
}
key.SetString(BLOB_METADATA_PARTITIONS_TAG, resDoc.GetAllocator());
keyDetail.AddMember(key, partitions, resDoc.GetAllocator());
}
addFakeRefreshExpire(resDoc, keyDetail, key);
blobMetadataDetails.PushBack(keyDetail, resDoc.GetAllocator());
}
rapidjson::Value memberKey(BLOB_METADATA_DETAILS_TAG, resDoc.GetAllocator());
resDoc.AddMember(memberKey, blobMetadataDetails, resDoc.GetAllocator());
addFakeKmsUrls(reqDoc, resDoc);
// Serialize json to string
rapidjson::StringBuffer sb;
rapidjson::Writer<rapidjson::StringBuffer> writer(sb);
resDoc.Accept(writer);
httpResponse->content.resize(sb.GetSize(), '\0');
memcpy(httpResponse->content.data(), sb.GetString(), sb.GetSize());
}
void validateKmsUrls(Reference<RESTKmsConnectorCtx> ctx) {
ASSERT_EQ(ctx->kmsUrlHeap.size(), 3);
std::shared_ptr<KmsUrlCtx> urlCtx = ctx->kmsUrlHeap.top();
ASSERT_EQ(urlCtx->url.compare(KMS_URL_NAME_TEST), 0);
}
void testGetEncryptKeysByKeyIdsRequestBody(Reference<RESTKmsConnectorCtx> ctx, Arena& arena) {
KmsConnLookupEKsByKeyIdsReq req;
std::unordered_map<EncryptCipherBaseKeyId, EncryptCipherDomainId> keyMap;
const int nKeys = deterministicRandom()->randomInt(7, 8);
for (int i = 1; i < nKeys; i++) {
EncryptCipherDomainId domainId = getRandomDomainId();
EncryptCipherDomainNameRef domainName = domainId < 0 ? StringRef(arena, FDB_DEFAULT_ENCRYPT_DOMAIN_NAME)
: StringRef(arena, std::to_string(domainId));
req.encryptKeyInfos.emplace_back_deep(req.arena, domainId, i, domainName);
keyMap[i] = domainId;
}
bool refreshKmsUrls = deterministicRandom()->coinflip();
if (deterministicRandom()->coinflip()) {
req.debugId = deterministicRandom()->randomUniqueID();
}
StringRef requestBodyRef = getEncryptKeysByKeyIdsRequestBody(ctx, req, refreshKmsUrls, arena);
TraceEvent("FetchKeysByKeyIds", ctx->uid).setMaxFieldLength(100000).detail("JsonReqStr", requestBodyRef.toString());
Reference<HTTP::Response> httpResp = makeReference<HTTP::Response>();
httpResp->code = HTTP::HTTP_STATUS_CODE_OK;
getFakeEncryptCipherResponse(requestBodyRef, true, httpResp);
TraceEvent("FetchKeysByKeyIds", ctx->uid).setMaxFieldLength(100000).detail("HttpRespStr", httpResp->content);
Standalone<VectorRef<EncryptCipherKeyDetailsRef>> cipherDetails = parseEncryptCipherResponse(ctx, httpResp);
ASSERT_EQ(cipherDetails.size(), keyMap.size());
for (const auto& detail : cipherDetails) {
ASSERT(keyMap.find(detail.encryptKeyId) != keyMap.end());
ASSERT_EQ(keyMap[detail.encryptKeyId], detail.encryptDomainId);
ASSERT_EQ(detail.encryptKey.size(), sizeof(BASE_CIPHER_KEY_TEST));
ASSERT_EQ(memcmp(detail.encryptKey.begin(), &BASE_CIPHER_KEY_TEST[0], sizeof(BASE_CIPHER_KEY_TEST)), 0);
}
if (refreshKmsUrls) {
validateKmsUrls(ctx);
}
}
void testGetEncryptKeysByDomainIdsRequestBody(Reference<RESTKmsConnectorCtx> ctx, Arena& arena) {
KmsConnLookupEKsByDomainIdsReq req;
std::unordered_map<EncryptCipherDomainId, KmsConnLookupDomainIdsReqInfoRef> domainInfoMap;
const int nKeys = deterministicRandom()->randomInt(7, 25);
for (int i = 1; i < nKeys; i++) {
EncryptCipherDomainId domainId = getRandomDomainId();
EncryptCipherDomainNameRef domainName = domainId < 0 ? StringRef(arena, FDB_DEFAULT_ENCRYPT_DOMAIN_NAME)
: StringRef(arena, std::to_string(domainId));
KmsConnLookupDomainIdsReqInfoRef reqInfo(req.arena, domainId, domainName);
if (domainInfoMap.insert({ domainId, reqInfo }).second) {
req.encryptDomainInfos.push_back(req.arena, reqInfo);
}
}
bool refreshKmsUrls = deterministicRandom()->coinflip();
StringRef jsonReqRef = getEncryptKeysByDomainIdsRequestBody(ctx, req, refreshKmsUrls, arena);
TraceEvent("FetchKeysByDomainIds", ctx->uid).detail("JsonReqStr", jsonReqRef.toString());
Reference<HTTP::Response> httpResp = makeReference<HTTP::Response>();
httpResp->code = HTTP::HTTP_STATUS_CODE_OK;
getFakeEncryptCipherResponse(jsonReqRef, false, httpResp);
TraceEvent("FetchKeysByDomainIds", ctx->uid).detail("HttpRespStr", httpResp->content);
Standalone<VectorRef<EncryptCipherKeyDetailsRef>> cipherDetails = parseEncryptCipherResponse(ctx, httpResp);
ASSERT_EQ(domainInfoMap.size(), cipherDetails.size());
for (const auto& detail : cipherDetails) {
ASSERT(domainInfoMap.find(detail.encryptDomainId) != domainInfoMap.end());
ASSERT_EQ(detail.encryptKey.size(), sizeof(BASE_CIPHER_KEY_TEST));
ASSERT_EQ(memcmp(detail.encryptKey.begin(), &BASE_CIPHER_KEY_TEST[0], sizeof(BASE_CIPHER_KEY_TEST)), 0);
}
if (refreshKmsUrls) {
validateKmsUrls(ctx);
}
}
void testGetBlobMetadataRequestBody(Reference<RESTKmsConnectorCtx> ctx) {
KmsConnBlobMetadataReq req;
std::unordered_map<BlobMetadataDomainId, KmsConnLookupDomainIdsReqInfoRef> domainInfoMap;
const int nKeys = deterministicRandom()->randomInt(7, 25);
for (int i = 1; i < nKeys; i++) {
EncryptCipherDomainId domainId = deterministicRandom()->randomInt(0, 1000);
EncryptCipherDomainNameRef domainName(req.domainInfos.arena(), std::to_string(domainId));
KmsConnLookupDomainIdsReqInfoRef reqInfo(req.domainInfos.arena(), domainId, domainName);
if (domainInfoMap.insert({ domainId, reqInfo }).second) {
req.domainInfos.push_back_deep(req.domainInfos.arena(), reqInfo);
}
}
bool refreshKmsUrls = deterministicRandom()->coinflip();
TraceEvent("FetchBlobMetadataStart", ctx->uid);
StringRef jsonReqRef = getBlobMetadataRequestBody(ctx, req, refreshKmsUrls);
TraceEvent("FetchBlobMetadataReq", ctx->uid).detail("JsonReqStr", jsonReqRef.toString());
Reference<HTTP::Response> httpResp = makeReference<HTTP::Response>();
httpResp->code = HTTP::HTTP_STATUS_CODE_OK;
getFakeBlobMetadataResponse(jsonReqRef, false, httpResp);
TraceEvent("FetchBlobMetadataResp", ctx->uid).detail("HttpRespStr", httpResp->content);
Standalone<VectorRef<BlobMetadataDetailsRef>> details = parseBlobMetadataResponse(ctx, httpResp);
ASSERT_EQ(domainInfoMap.size(), details.size());
for (const auto& detail : details) {
auto it = domainInfoMap.find(detail.domainId);
ASSERT(it != domainInfoMap.end());
ASSERT(it->second.domainName == std::to_string(it->first));
}
if (refreshKmsUrls) {
validateKmsUrls(ctx);
}
}
void testMissingDetailsTag(Reference<RESTKmsConnectorCtx> ctx, bool isCipher) {
rapidjson::Document doc;
doc.SetObject();
rapidjson::Value key(KMS_URLS_TAG, doc.GetAllocator());
rapidjson::Value refreshUrl;
refreshUrl.SetBool(true);
doc.AddMember(key, refreshUrl, doc.GetAllocator());
Reference<HTTP::Response> httpResp = makeReference<HTTP::Response>();
httpResp->code = HTTP::HTTP_STATUS_CODE_OK;
rapidjson::StringBuffer sb;
rapidjson::Writer<rapidjson::StringBuffer> writer(sb);
doc.Accept(writer);
httpResp->content.resize(sb.GetSize(), '\0');
memcpy(httpResp->content.data(), sb.GetString(), sb.GetSize());
try {
if (isCipher) {
parseEncryptCipherResponse(ctx, httpResp);
} else {
parseBlobMetadataResponse(ctx, httpResp);
}
} catch (Error& e) {
ASSERT_EQ(e.code(), error_code_operation_failed);
}
}
void testMalformedDetails(Reference<RESTKmsConnectorCtx> ctx, bool isCipher) {
rapidjson::Document doc;
doc.SetObject();
rapidjson::Value key(isCipher ? CIPHER_KEY_DETAILS_TAG : BLOB_METADATA_DETAILS_TAG, doc.GetAllocator());
rapidjson::Value details;
details.SetBool(true);
doc.AddMember(key, details, doc.GetAllocator());
Reference<HTTP::Response> httpResp = makeReference<HTTP::Response>();
httpResp->code = HTTP::HTTP_STATUS_CODE_OK;
rapidjson::StringBuffer sb;
rapidjson::Writer<rapidjson::StringBuffer> writer(sb);
doc.Accept(writer);
httpResp->content.resize(sb.GetSize(), '\0');
memcpy(httpResp->content.data(), sb.GetString(), sb.GetSize());
try {
if (isCipher) {
parseEncryptCipherResponse(ctx, httpResp);
} else {
parseBlobMetadataResponse(ctx, httpResp);
}
} catch (Error& e) {
ASSERT_EQ(e.code(), error_code_operation_failed);
}
}
void testMalformedDetailObj(Reference<RESTKmsConnectorCtx> ctx, bool isCipher) {
rapidjson::Document doc;
doc.SetObject();
rapidjson::Value cDetails(rapidjson::kArrayType);
rapidjson::Value detail(rapidjson::kObjectType);
rapidjson::Value key(isCipher ? BASE_CIPHER_ID_TAG : BLOB_METADATA_DOMAIN_ID_TAG, doc.GetAllocator());
rapidjson::Value id;
id.SetUint(12345);
detail.AddMember(key, id, doc.GetAllocator());
cDetails.PushBack(detail, doc.GetAllocator());
key.SetString(isCipher ? CIPHER_KEY_DETAILS_TAG : BLOB_METADATA_DETAILS_TAG, doc.GetAllocator());
doc.AddMember(key, cDetails, doc.GetAllocator());
Reference<HTTP::Response> httpResp = makeReference<HTTP::Response>();
httpResp->code = HTTP::HTTP_STATUS_CODE_OK;
rapidjson::StringBuffer sb;
rapidjson::Writer<rapidjson::StringBuffer> writer(sb);
doc.Accept(writer);
httpResp->content.resize(sb.GetSize(), '\0');
memcpy(httpResp->content.data(), sb.GetString(), sb.GetSize());
try {
if (isCipher) {
parseEncryptCipherResponse(ctx, httpResp);
} else {
parseBlobMetadataResponse(ctx, httpResp);
}
} catch (Error& e) {
ASSERT_EQ(e.code(), error_code_operation_failed);
}
}
void testKMSErrorResponse(Reference<RESTKmsConnectorCtx> ctx, bool isCipher) {
rapidjson::Document doc;
doc.SetObject();
// Construct fake response, it should get ignored anyways
rapidjson::Value cDetails(rapidjson::kArrayType);
rapidjson::Value detail(rapidjson::kObjectType);
rapidjson::Value key(BASE_CIPHER_ID_TAG, doc.GetAllocator());
rapidjson::Value id;
id.SetUint(12345);
detail.AddMember(key, id, doc.GetAllocator());
cDetails.PushBack(detail, doc.GetAllocator());
key.SetString(isCipher ? CIPHER_KEY_DETAILS_TAG : BLOB_METADATA_DETAILS_TAG, doc.GetAllocator());
doc.AddMember(key, cDetails, doc.GetAllocator());
// Add error tag
rapidjson::Value errorTag(rapidjson::kObjectType);
// Add 'error_detail'
rapidjson::Value eKey(ERROR_MSG_TAG, doc.GetAllocator());
rapidjson::Value detailInfo;
detailInfo.SetString("Foo is always bad", doc.GetAllocator());
errorTag.AddMember(eKey, detailInfo, doc.GetAllocator());
key.SetString(ERROR_TAG, doc.GetAllocator());
doc.AddMember(key, errorTag, doc.GetAllocator());
Reference<HTTP::Response> httpResp = makeReference<HTTP::Response>();
httpResp->code = HTTP::HTTP_STATUS_CODE_OK;
rapidjson::StringBuffer sb;
rapidjson::Writer<rapidjson::StringBuffer> writer(sb);
doc.Accept(writer);
httpResp->content.resize(sb.GetSize(), '\0');
memcpy(httpResp->content.data(), sb.GetString(), sb.GetSize());
try {
if (isCipher) {
parseEncryptCipherResponse(ctx, httpResp);
} else {
parseBlobMetadataResponse(ctx, httpResp);
}
} catch (Error& e) {
ASSERT_EQ(e.code(), error_code_encrypt_keys_fetch_failed);
}
}
ACTOR Future<Void> testParseDiscoverKmsUrlFileNotFound(Reference<RESTKmsConnectorCtx> ctx) {
try {
wait(parseDiscoverKmsUrlFile(ctx, "/imaginary-dir/dream/phantom-file"));
} catch (Error& e) {
ASSERT_EQ(e.code(), error_code_encrypt_invalid_kms_config);
}
return Void();
}
ACTOR Future<Void> testParseDiscoverKmsUrlFile(Reference<RESTKmsConnectorCtx> ctx) {
state std::shared_ptr<platform::TmpFile> tmpFile = std::make_shared<platform::TmpFile>("/tmp");
ASSERT(fileExists(tmpFile->getFileName()));
state std::unordered_set<std::string> urls;
urls.emplace("https://127.0.0.1/foo");
urls.emplace("https://127.0.0.1/foo1");
urls.emplace("https://127.0.0.1/foo2");
std::string content;
for (auto& url : urls) {
content.append(url);
content.push_back(DISCOVER_URL_FILE_URL_SEP);
}
tmpFile->write((const uint8_t*)content.c_str(), content.size());
wait(parseDiscoverKmsUrlFile(ctx, tmpFile->getFileName()));
ASSERT_EQ(ctx->kmsUrlHeap.size(), urls.size());
while (!ctx->kmsUrlHeap.empty()) {
std::shared_ptr<KmsUrlCtx> urlCtx = ctx->kmsUrlHeap.top();
ctx->kmsUrlHeap.pop();
ASSERT(urls.find(urlCtx->url) != urls.end());
ASSERT_EQ(urlCtx->nFailedResponses, 0);
ASSERT_EQ(urlCtx->nRequests, 0);
ASSERT_EQ(urlCtx->nResponseParseFailures, 0);
}
return Void();
}
} // namespace
TEST_CASE("/KmsConnector/REST/ParseKmsDiscoveryUrls") {
state Reference<RESTKmsConnectorCtx> ctx = makeReference<RESTKmsConnectorCtx>();
state Arena arena;
// initialize cipher key used for testing
deterministicRandom()->randomBytes(&BASE_CIPHER_KEY_TEST[0], 32);
wait(testParseDiscoverKmsUrlFileNotFound(ctx));
wait(testParseDiscoverKmsUrlFile(ctx));
return Void();
}
TEST_CASE("/KmsConnector/REST/ParseValidationTokenFile") {
state Reference<RESTKmsConnectorCtx> ctx = makeReference<RESTKmsConnectorCtx>();
state Arena arena;
// initialize cipher key used for testing
deterministicRandom()->randomBytes(&BASE_CIPHER_KEY_TEST[0], 32);
wait(testEmptyValidationFileDetails(ctx));
wait(testMalformedFileValidationTokenDetails(ctx));
wait(testValidationTokenFileNotFound(ctx));
wait(testTooLargeValidationTokenFile(ctx));
wait(testValidationFileTokenPayloadTooLarge(ctx));
wait(testMultiValidationFileTokenFiles(ctx));
return Void();
}
TEST_CASE("/KmsConnector/REST/ParseEncryptCipherResponse") {
state Reference<RESTKmsConnectorCtx> ctx = makeReference<RESTKmsConnectorCtx>();
state Arena arena;
// initialize cipher key used for testing
deterministicRandom()->randomBytes(&BASE_CIPHER_KEY_TEST[0], 32);
testMissingDetailsTag(ctx, true);
testMalformedDetails(ctx, true);
testMalformedDetailObj(ctx, true);
testKMSErrorResponse(ctx, true);
return Void();
}
TEST_CASE("/KmsConnector/REST/ParseBlobMetadataResponse") {
state Reference<RESTKmsConnectorCtx> ctx = makeReference<RESTKmsConnectorCtx>();
state Arena arena;
testMissingDetailsTag(ctx, false);
testMalformedDetails(ctx, false);
testMalformedDetailObj(ctx, true);
testKMSErrorResponse(ctx, false);
return Void();
}
TEST_CASE("/KmsConnector/REST/GetEncryptionKeyOps") {
state Reference<RESTKmsConnectorCtx> ctx = makeReference<RESTKmsConnectorCtx>();
state Arena arena;
// initialize cipher key used for testing
deterministicRandom()->randomBytes(&BASE_CIPHER_KEY_TEST[0], 32);
// Prepare KmsConnector context details
wait(testParseDiscoverKmsUrlFile(ctx));
wait(testMultiValidationFileTokenFiles(ctx));
const int numIterations = deterministicRandom()->randomInt(512, 786);
for (int i = 0; i < numIterations; i++) {
testGetEncryptKeysByKeyIdsRequestBody(ctx, arena);
testGetEncryptKeysByDomainIdsRequestBody(ctx, arena);
testGetBlobMetadataRequestBody(ctx);
}
return Void();
}