foundationdb/fdbclient/TaskBucket.actor.cpp

1220 lines
44 KiB
C++

/*
* TaskBucket.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "fdbclient/TaskBucket.h"
#include "fdbclient/ReadYourWrites.h"
#include "flow/actorcompiler.h" // has to be last include
Reference<TaskFuture> Task::getDoneFuture(Reference<FutureBucket> fb) {
return fb->unpack(params[reservedTaskParamKeyDone]);
}
struct UnblockFutureTaskFunc : TaskFuncBase {
static StringRef name;
StringRef getName() const { return name; };
Future<Void> execute(Database cx, Reference<TaskBucket> tb, Reference<FutureBucket> fb, Reference<Task> task) { return Void(); };
Future<Void> finish(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> tb, Reference<FutureBucket> fb, Reference<Task> task) { return _finish(tr, tb, fb, task); };
ACTOR static Future<Void> _finish(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> taskBucket, Reference<FutureBucket> futureBucket, Reference<Task> task) {
state Reference<TaskFuture> future = futureBucket->unpack(task->params[Task::reservedTaskParamKeyFuture]);
futureBucket->setOptions(tr);
tr->clear(future->blocks.pack(task->params[Task::reservedTaskParamKeyBlockID]));
bool is_set = wait(future->isSet(tr));
if (is_set) {
wait(future->performAllActions(tr, taskBucket));
}
return Void();
}
};
StringRef UnblockFutureTaskFunc::name = LiteralStringRef("UnblockFuture");
REGISTER_TASKFUNC(UnblockFutureTaskFunc);
struct AddTaskFunc : TaskFuncBase {
static StringRef name;
StringRef getName() const { return name; };
Future<Void> execute(Database cx, Reference<TaskBucket> tb, Reference<FutureBucket> fb, Reference<Task> task) { return Void(); };
Future<Void> finish(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> tb, Reference<FutureBucket> fb, Reference<Task> task) {
task->params[Task::reservedTaskParamKeyType] = task->params[Task::reservedTaskParamKeyAddTask];
tb->addTask(tr, task);
return Void();
};
};
StringRef AddTaskFunc::name = LiteralStringRef("AddTask");
REGISTER_TASKFUNC(AddTaskFunc);
struct IdleTaskFunc : TaskFuncBase {
static StringRef name;
static const uint32_t version = 1;
StringRef getName() const { return name; };
Future<Void> execute(Database cx, Reference<TaskBucket> tb, Reference<FutureBucket> fb, Reference<Task> task) { return Void(); };
Future<Void> finish(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> tb, Reference<FutureBucket> fb, Reference<Task> task) { return tb->finish(tr, task); };
};
StringRef IdleTaskFunc::name = LiteralStringRef("idle");
REGISTER_TASKFUNC(IdleTaskFunc);
Key Task::reservedTaskParamKeyType = LiteralStringRef("type");
Key Task::reservedTaskParamKeyAddTask = LiteralStringRef("_add_task");
Key Task::reservedTaskParamKeyDone = LiteralStringRef("done");
Key Task::reservedTaskParamKeyPriority = LiteralStringRef("priority");
Key Task::reservedTaskParamKeyFuture = LiteralStringRef("future");
Key Task::reservedTaskParamKeyBlockID = LiteralStringRef("blockid");
Key Task::reservedTaskParamKeyVersion = LiteralStringRef("version");
Key Task::reservedTaskParamValidKey = LiteralStringRef("_validkey");
Key Task::reservedTaskParamValidValue = LiteralStringRef("_validvalue");
// IMPORTANT: Task() must result in an EMPTY parameter set, so params should only
// be set for non-default constructor arguments. To change this behavior look at all
// Task() default constructions to see if they require params to be empty and call clear.
Task::Task(Value type, uint32_t version, Value done, unsigned int priority) : extendMutex(1) {
if (type.size())
params[Task::reservedTaskParamKeyType] = type;
if (version > 0)
params[Task::reservedTaskParamKeyVersion] = BinaryWriter::toValue(version, Unversioned());
if (done.size())
params[Task::reservedTaskParamKeyDone] = done;
priority = std::min<int64_t>(priority, CLIENT_KNOBS->TASKBUCKET_MAX_PRIORITY);
if (priority != 0)
params[Task::reservedTaskParamKeyPriority] = BinaryWriter::toValue<int64_t>(priority, Unversioned());
}
uint32_t Task::getVersion() const {
uint32_t version(0);
auto itor = params.find(Task::reservedTaskParamKeyVersion);
if (itor != params.end()) {
version = BinaryReader::fromStringRef<uint32_t>(itor->value, Unversioned());
}
else {
TraceEvent(SevWarn, "InvalidTaskVersion").detail("TaskHasNoVersion", version);
}
return version;
}
unsigned int Task::getPriority() const {
unsigned int priority = 0;
auto i = params.find(Task::reservedTaskParamKeyPriority);
if(i != params.end())
priority = std::min<int64_t>(BinaryReader::fromStringRef<int64_t>(i->value, Unversioned()), CLIENT_KNOBS->TASKBUCKET_MAX_PRIORITY);
return priority;
}
class TaskBucketImpl {
public:
ACTOR static Future<Optional<Key>> getTaskKey(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> taskBucket, int priority = 0) {
Standalone<StringRef> uid = StringRef(deterministicRandom()->randomUniqueID().toString());
// Get keyspace for the specified priority level
state Subspace space = taskBucket->getAvailableSpace(priority);
{
// Get a task key that is <= a random UID task key, if successful then return it
Key k = wait(tr->getKey(lastLessOrEqual(space.pack(uid)), true));
if(space.contains(k))
return Optional<Key>(k);
}
{
// Get a task key that is <= the maximum possible UID, if successful return it.
Key k = wait(tr->getKey(lastLessOrEqual(space.pack(maxUIDKey)), true));
if(space.contains(k))
return Optional<Key>(k);
}
return Optional<Key>();
}
ACTOR static Future<Reference<Task>> getOne(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> taskBucket) {
if (taskBucket->priority_batch)
tr->setOption( FDBTransactionOptions::PRIORITY_BATCH );
taskBucket->setOptions(tr);
// give it some chances for the timed out tasks to get into the task loop in the case of
// many other new tasks get added so that the timed out tasks never get chances to re-run
if (deterministicRandom()->random01() < CLIENT_KNOBS->TASKBUCKET_CHECK_TIMEOUT_CHANCE) {
bool anyTimeouts = wait(requeueTimedOutTasks(tr, taskBucket));
TEST(anyTimeouts); // Found a task that timed out
}
state std::vector<Future<Optional<Key>>> taskKeyFutures(CLIENT_KNOBS->TASKBUCKET_MAX_PRIORITY + 1);
// Start looking for a task at each priority, highest first
state int pri;
for(pri = CLIENT_KNOBS->TASKBUCKET_MAX_PRIORITY; pri >= 0; --pri)
taskKeyFutures[pri] = getTaskKey(tr, taskBucket, pri);
// Task key and subspace it is located in.
state Optional<Key> taskKey;
state Subspace availableSpace;
// In priority order from highest to lowest, wait for fetch to finish and if it found a task then cancel the rest.
for(pri = CLIENT_KNOBS->TASKBUCKET_MAX_PRIORITY; pri >= 0; --pri) {
// If we already have a task key then cancel this fetch
if(taskKey.present())
taskKeyFutures[pri].cancel();
else {
Optional<Key> key = wait(taskKeyFutures[pri]);
if(key.present()) {
taskKey = key;
availableSpace = taskBucket->getAvailableSpace(pri);
}
}
}
// If we don't have a task key, requeue timed out tasks and try again by calling self.
if(!taskKey.present()) {
bool anyTimeouts = wait(requeueTimedOutTasks(tr, taskBucket));
// If there were timeouts, try to get a task since there should now be one in one of the available spaces.
if(anyTimeouts) {
TEST(true); // Try to get one task from timeouts subspace
Reference<Task> task = wait(getOne(tr, taskBucket));
return task;
}
return Reference<Task>();
}
// Now we know the task key is present and we have the available space for the task's priority
state Tuple t = availableSpace.unpack(taskKey.get());
state Key taskUID = t.getString(0);
state Subspace taskAvailableSpace = availableSpace.get(taskUID);
state Reference<Task> task(new Task());
task->key = taskUID;
state Standalone<RangeResultRef> values = wait(tr->getRange(taskAvailableSpace.range(), CLIENT_KNOBS->TOO_MANY));
Version version = wait(tr->getReadVersion());
task->timeoutVersion = version + (uint64_t)(taskBucket->timeout * (CLIENT_KNOBS->TASKBUCKET_TIMEOUT_JITTER_OFFSET + CLIENT_KNOBS->TASKBUCKET_TIMEOUT_JITTER_RANGE * deterministicRandom()->random01()));
Subspace timeoutSpace = taskBucket->timeouts.get(task->timeoutVersion).get(taskUID);
for (auto & s : values) {
Key param = taskAvailableSpace.unpack(s.key).getString(0);
task->params[param] = s.value;
tr->set(timeoutSpace.pack(param), s.value);
}
// Clear task definition in the available keyspace
tr->clear(taskAvailableSpace.range());
tr->set(taskBucket->active.key(), deterministicRandom()->randomUniqueID().toString());
return task;
}
// Verify that the user configured task verification key still has the user specificied value
ACTOR static Future<bool> taskVerify(Reference<TaskBucket> tb, Reference<ReadYourWritesTransaction> tr, Reference<Task> task) {
if (task->params.find(Task::reservedTaskParamValidKey) == task->params.end()) {
TraceEvent("TB_TaskVerifyInvalidTask")
.detail("Task", task->params[Task::reservedTaskParamKeyType])
.detail("ReservedTaskParamValidKey", "missing");
return false;
}
if (task->params.find(Task::reservedTaskParamValidValue) == task->params.end()) {
TraceEvent("TB_TaskVerifyInvalidTask")
.detail("Task", task->params[Task::reservedTaskParamKeyType])
.detail("ReservedTaskParamValidKey", task->params[Task::reservedTaskParamValidKey])
.detail("ReservedTaskParamValidValue", "missing");
return false;
}
tb->setOptions(tr);
Optional<Value> keyValue = wait(tr->get(task->params[Task::reservedTaskParamValidKey]));
if (!keyValue.present()) {
TraceEvent("TB_TaskVerifyInvalidTask")
.detail("Task", task->params[Task::reservedTaskParamKeyType])
.detail("ReservedTaskParamValidKey", task->params[Task::reservedTaskParamValidKey])
.detail("ReservedTaskParamValidValue", task->params[Task::reservedTaskParamValidValue])
.detail("KeyValue", "missing");
return false;
}
if (keyValue.get().compare(StringRef(task->params[Task::reservedTaskParamValidValue]))) {
TraceEvent("TB_TaskVerifyAbortedTask")
.detail("Task", task->params[Task::reservedTaskParamKeyType])
.detail("ReservedTaskParamValidKey", task->params[Task::reservedTaskParamValidKey])
.detail("ReservedTaskParamValidValue", task->params[Task::reservedTaskParamValidValue])
.detail("KeyValue", keyValue.get());
return false;
}
return true;
}
ACTOR static Future<bool> taskVerify(Reference<TaskBucket> tb, Database cx, Reference<Task> task) {
loop {
state Reference<ReadYourWritesTransaction> tr(new ReadYourWritesTransaction(cx));
try {
bool verified = wait(taskVerify(tb, tr, task));
return verified;
}
catch (Error &e) {
wait(tr->onError(e));
}
}
}
ACTOR static Future<Void> finishTaskRun(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> taskBucket, Reference<FutureBucket> futureBucket, Reference<Task> task, Reference<TaskFuncBase> taskFunc, bool verifyTask) {
bool isFinished = wait(taskBucket->isFinished(tr, task));
if (isFinished) {
return Void();
}
state bool validTask = true;
if( verifyTask ) {
bool _validTask = wait(taskVerify(taskBucket, tr, task));
validTask = _validTask;
}
if (!validTask) {
wait(taskBucket->finish(tr, task));
}
else {
wait(taskFunc->finish(tr, taskBucket, futureBucket, task));
}
return Void();
}
ACTOR static Future<bool> doOne(Database cx, Reference<TaskBucket> taskBucket, Reference<FutureBucket> futureBucket) {
state Reference<Task> task = wait(taskBucket->getOne(cx));
bool result = wait(taskBucket->doTask(cx, futureBucket, task));
return result;
}
ACTOR static Future<Void> extendTimeoutRepeatedly(Database cx, Reference<TaskBucket> taskBucket, Reference<Task> task) {
state Reference<ReadYourWritesTransaction> tr(new ReadYourWritesTransaction(cx));
state Version versionNow = wait(runRYWTransaction(cx, [=](Reference<ReadYourWritesTransaction> tr) {
taskBucket->setOptions(tr);
return map(tr->getReadVersion(), [=](Version v) {
return v;
});
}));
loop {
state FlowLock::Releaser releaser;
// Wait until we are half way to the timeout version of this task
wait(delay(0.8 * (BUGGIFY ? (2 * deterministicRandom()->random01()) : 1.0) * (double)(task->timeoutVersion - (uint64_t)versionNow) / CLIENT_KNOBS->CORE_VERSIONSPERSECOND));
// Take the extendMutex lock until we either succeed or stop trying to extend due to failure
wait(task->extendMutex.take());
releaser = FlowLock::Releaser(task->extendMutex, 1);
loop {
try {
tr->reset();
taskBucket->setOptions(tr);
// Attempt to extend the task's timeout
state Version newTimeout = wait(taskBucket->extendTimeout(tr, task, false));
wait(tr->commit());
task->timeoutVersion = newTimeout;
versionNow = tr->getCommittedVersion();
break;
} catch(Error &e) {
wait(tr->onError(e));
}
}
}
}
ACTOR static Future<bool> doTask(Database cx, Reference<TaskBucket> taskBucket, Reference<FutureBucket> futureBucket, Reference<Task> task) {
if (!task || !TaskFuncBase::isValidTask(task))
return false;
state Reference<TaskFuncBase> taskFunc;
try {
taskFunc = TaskFuncBase::create(task->params[Task::reservedTaskParamKeyType]);
if (taskFunc) {
state bool verifyTask = (task->params.find(Task::reservedTaskParamValidKey) != task->params.end());
if (verifyTask) {
loop {
state Reference<ReadYourWritesTransaction> tr(new ReadYourWritesTransaction(cx));
taskBucket->setOptions(tr);
try {
bool validTask = wait(taskVerify(taskBucket, tr, task));
if (!validTask) {
bool isFinished = wait(taskBucket->isFinished(tr, task));
if (!isFinished) {
wait(taskBucket->finish(tr, task));
}
wait(tr->commit());
return true;
}
break;
}
catch (Error &e) {
wait(tr->onError(e));
}
}
}
wait(taskFunc->execute(cx, taskBucket, futureBucket, task) || extendTimeoutRepeatedly(cx, taskBucket, task));
if (BUGGIFY) wait(delay(10.0));
wait(runRYWTransaction(cx, [=](Reference<ReadYourWritesTransaction> tr) {
return finishTaskRun(tr, taskBucket, futureBucket, task, taskFunc, verifyTask);
}));
}
} catch(Error &e) {
TraceEvent(SevWarn, "TB_ExecuteFailure")
.error(e)
.detail("TaskUID", task->key)
.detail("TaskType", task->params[Task::reservedTaskParamKeyType].printable())
.detail("Priority", task->getPriority());
try {
wait(taskFunc->handleError(cx, task, e));
} catch(Error &e) {
TraceEvent(SevWarn, "TB_ExecuteFailureLogErrorFailed")
.error(e) // output handleError() error instead of original task error
.detail("TaskUID", task->key.printable())
.detail("TaskType", task->params[Task::reservedTaskParamKeyType].printable())
.detail("Priority", task->getPriority());
}
}
// Return true to indicate that we did work.
return true;
}
ACTOR static Future<Void> dispatch(Database cx, Reference<TaskBucket> taskBucket, Reference<FutureBucket> futureBucket, double *pollDelay, int maxConcurrentTasks) {
state std::vector<Future<bool>> tasks(maxConcurrentTasks);
for(auto &f : tasks)
f = Never();
// Since the futures have to be kept in a vector to be compatible with waitForAny(), we'll keep a queue
// of available slots in it. Initially, they're all available.
state std::vector<int> availableSlots;
for(int i = 0; i < tasks.size(); ++i)
availableSlots.push_back(i);
state std::vector<Future<Reference<Task>>> getTasks;
state unsigned int getBatchSize = 1;
loop {
// Start running tasks while slots are available and we keep finding work to do
while(!availableSlots.empty()) {
getTasks.clear();
for(int i = 0, imax = std::min<unsigned int>(getBatchSize, availableSlots.size()); i < imax; ++i)
getTasks.push_back(taskBucket->getOne(cx));
wait(waitForAllReady(getTasks));
bool done = false;
for(int i = 0; i < getTasks.size(); ++i) {
if(getTasks[i].isError()) {
done = true;
continue;
}
Reference<Task> task = getTasks[i].get();
if(task) {
// Start the task
int slot = availableSlots.back();
availableSlots.pop_back();
tasks[slot] = taskBucket->doTask(cx, futureBucket, task);
}
else
done = true;
}
if(done) {
getBatchSize = 1;
break;
}
else
getBatchSize = std::min<unsigned int>(getBatchSize * 2, maxConcurrentTasks);
}
// Wait for a task to be done. Also, if we have any slots available then stop waiting after pollDelay at the latest.
Future<Void> w = ready(waitForAny(tasks));
if(!availableSlots.empty())
w = w || delay(*pollDelay * (0.9 + deterministicRandom()->random01() / 5)); // Jittered by 20 %, so +/- 10%
wait(w);
// Check all of the task slots, any that are finished should be replaced with Never() and their slots added back to availableSlots
for(int i = 0; i < tasks.size(); ++i) {
if(tasks[i].isReady()) {
availableSlots.push_back(i);
tasks[i] = Never();
}
}
}
}
ACTOR static Future<Void> watchPaused(Database cx, Reference<TaskBucket> taskBucket, Reference<AsyncVar<bool>> paused) {
loop {
state Reference<ReadYourWritesTransaction> tr(new ReadYourWritesTransaction(cx));
try {
taskBucket->setOptions(tr);
Optional<Value> pausedVal = wait(tr->get(taskBucket->pauseKey));
paused->set(pausedVal.present());
state Future<Void> watchPausedFuture = tr->watch(taskBucket->pauseKey);
wait(tr->commit());
wait(watchPausedFuture);
}
catch (Error &e) {
wait(tr->onError(e));
}
}
}
ACTOR static Future<Void> run(Database cx, Reference<TaskBucket> taskBucket, Reference<FutureBucket> futureBucket, double *pollDelay, int maxConcurrentTasks) {
state Reference<AsyncVar<bool>> paused = Reference<AsyncVar<bool>>( new AsyncVar<bool>(true) );
state Future<Void> watchPausedFuture = watchPaused(cx, taskBucket, paused);
loop {
while(paused->get()) {
wait(paused->onChange() || watchPausedFuture);
}
wait(dispatch(cx, taskBucket, futureBucket, pollDelay, maxConcurrentTasks) || paused->onChange() || watchPausedFuture);
}
}
static Future<Standalone<StringRef>> addIdle(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> taskBucket) {
taskBucket->setOptions(tr);
Reference<Task> newTask(new Task(IdleTaskFunc::name, IdleTaskFunc::version));
return taskBucket->addTask(tr, newTask);
}
static Future<Standalone<StringRef>> addIdle(Database cx, Reference<TaskBucket> taskBucket) {
return runRYWTransaction(cx, [=](Reference<ReadYourWritesTransaction> tr){return addIdle(tr, taskBucket);});
}
ACTOR static Future<bool> isEmpty(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> taskBucket) {
taskBucket->setOptions(tr);
// Check all available priorities for keys
state std::vector<Future<Standalone<RangeResultRef>>> resultFutures;
for(int pri = 0; pri <= CLIENT_KNOBS->TASKBUCKET_MAX_PRIORITY; ++pri)
resultFutures.push_back(tr->getRange(taskBucket->getAvailableSpace(pri).range(), 1));
// If any priority levels have any keys then the taskbucket is not empty so return false
state int i;
for(i = 0; i < resultFutures.size(); ++i) {
Standalone<RangeResultRef> results = wait(resultFutures[i]);
if(results.size() > 0)
return false;
}
Standalone<RangeResultRef> values = wait(tr->getRange(taskBucket->timeouts.range(), 1));
if (values.size() > 0)
return false;
return true;
}
ACTOR static Future<bool> isBusy(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> taskBucket) {
taskBucket->setOptions(tr);
// Check all available priorities for emptiness
state std::vector<Future<Standalone<RangeResultRef>>> resultFutures;
for(int pri = 0; pri <= CLIENT_KNOBS->TASKBUCKET_MAX_PRIORITY; ++pri)
resultFutures.push_back(tr->getRange(taskBucket->getAvailableSpace(pri).range(), 1));
// If any priority levels have any keys then return true as the level is 'busy'
state int i;
for(i = 0; i < resultFutures.size(); ++i) {
Standalone<RangeResultRef> results = wait(resultFutures[i]);
if(results.size() > 0)
return true;
}
return false;
}
// Verify that the task's keys are still in the timeout space at the expected timeout prefix
ACTOR static Future<bool> isFinished(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> taskBucket, Reference<Task> task) {
taskBucket->setOptions(tr);
Tuple t;
t.append(task->timeoutVersion);
t.append(task->key);
Standalone<RangeResultRef> values = wait(tr->getRange(taskBucket->timeouts.range(t), 1));
if (values.size() > 0)
return false;
return true;
}
ACTOR static Future<bool> getActiveKey(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> taskBucket, Optional<Value> startingValue) {
taskBucket->setOptions(tr);
Optional<Value> new_value = wait(tr->get(taskBucket->active.key()));
if (new_value != startingValue) {
return true;
}
return false;
}
ACTOR static Future<bool> checkActive(Database cx, Reference<TaskBucket> taskBucket) {
state Reference<ReadYourWritesTransaction> tr(new ReadYourWritesTransaction(cx));
state Optional<Value> startingValue;
loop{
try {
taskBucket->setOptions(tr);
bool is_busy = wait(isBusy(tr, taskBucket));
if (!is_busy) {
wait(success(addIdle(tr, taskBucket)));
}
Optional<Value> val = wait(tr->get(taskBucket->active.key()));
startingValue = val;
wait(tr->commit());
break;
}
catch (Error &e) {
wait(tr->onError(e));
}
}
state int idx = 0;
for (; idx < CLIENT_KNOBS->TASKBUCKET_CHECK_ACTIVE_AMOUNT; ++idx) {
tr = Reference<ReadYourWritesTransaction>(new ReadYourWritesTransaction(cx));
loop {
try {
taskBucket->setOptions(tr);
wait(delay(CLIENT_KNOBS->TASKBUCKET_CHECK_ACTIVE_DELAY));
bool isActiveKey = wait(getActiveKey(tr, taskBucket, startingValue));
if (isActiveKey) {
TEST(true); // checkActive return true
return true;
}
break;
} catch( Error &e ) {
wait( tr->onError(e) );
}
}
}
TEST(true); // checkActive return false
return false;
}
ACTOR static Future<int64_t> getTaskCount(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> taskBucket) {
taskBucket->setOptions(tr);
Optional<Value> val = wait( tr->get( taskBucket->prefix.pack(LiteralStringRef("task_count")) ) );
if(!val.present())
return 0;
ASSERT(val.get().size() == sizeof(int64_t));
int64_t intValue = 0;
memcpy(&intValue, val.get().begin(), val.get().size());
return intValue;
}
// Looks for tasks that have timed out and returns them to be available tasks.
// Returns True if any tasks were affected.
ACTOR static Future<bool> requeueTimedOutTasks(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> taskBucket) {
TEST(true); // Looks for tasks that have timed out and returns them to be available tasks.
Version end = wait(tr->getReadVersion());
state KeyRange range(KeyRangeRef(taskBucket->timeouts.get(0).range().begin, taskBucket->timeouts.get(end).range().end));
Standalone<RangeResultRef> values = wait(tr->getRange(range,CLIENT_KNOBS->TASKBUCKET_MAX_TASK_KEYS));
// Keys will be tuples of (taskUID, param) -> paramValue
// Unfortunately we need to know the priority parameter for a taskUID before we can know which available-tasks subspace
// to move its keys to. The cleanest way to do this is to load a new Task() with parameters and once a new task
// id is encountered flush the old one using taskBucket->getAvailableSpace(task->getPriority())
Task task;
Key lastKey;
for(auto &iter : values) {
Tuple t = taskBucket->timeouts.unpack(iter.key);
Key uid = t.getString(1);
Key param = t.getString(2);
// If a new UID is seen, finish moving task to new available space. Safe if task == Task()
if(uid != task.key) {
// Get the space for this specific task within its available keyspace for its priority
Subspace space = taskBucket->getAvailableSpace(task.getPriority()).get(task.key);
for(auto &p : task.params) {
tr->set(space.pack(p.key), p.value);
}
task.params.clear();
task.key = uid;
lastKey = iter.key;
}
task.params[param] = iter.value;
}
// Move the final task, if complete, to its new available keyspace. Safe if task == Task()
if(!values.more) {
Subspace space = taskBucket->getAvailableSpace(task.getPriority()).get(task.key);
for(auto &p : task.params)
tr->set(space.pack(p.key), p.value);
if(values.size() > 0) {
tr->clear(range);
return true;
}
return false;
}
ASSERT(lastKey != Key());
tr->clear(KeyRangeRef(range.begin, lastKey));
return true;
}
ACTOR static Future<Void> debugPrintRange(Reference<ReadYourWritesTransaction> tr, Subspace subspace, Key msg) {
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr->setOption(FDBTransactionOptions::LOCK_AWARE);
Standalone<RangeResultRef> values = wait(tr->getRange(subspace.range(), CLIENT_KNOBS->TOO_MANY));
TraceEvent("TaskBucket").detail("DebugPrintRange", "Print DB Range").detail("Key", subspace.key()).detail("Count", values.size()).detail("Msg", msg);
/*printf("debugPrintRange key: (%d) %s\n", values.size(), printable(subspace.key()).c_str());
for (auto & s : values) {
printf(" key: %-40s value: %s\n", printable(s.key).c_str(), s.value.c_str());
TraceEvent("TaskBucket").detail("DebugPrintRange", msg)
.detail("Key", s.key)
.detail("Value", s.value);
}*/
return Void();
}
ACTOR static Future<Version> extendTimeout(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> taskBucket, Reference<Task> task, bool updateParams, Version newTimeoutVersion) {
taskBucket->setOptions(tr);
// First make sure it's safe to keep running
wait(taskBucket->keepRunning(tr, task));
// This is where the task definition currently exists
state Subspace oldTimeoutSpace = taskBucket->timeouts.get(task->timeoutVersion).get(task->key);
// Update the task's timeout
Version version = wait(tr->getReadVersion());
if(newTimeoutVersion == invalidVersion)
newTimeoutVersion = version + taskBucket->timeout;
else if(newTimeoutVersion <= version) // Ensure that the time extension is to the future
newTimeoutVersion = version + 1;
// This can happen if extendTimeout is called shortly after task start and the task's timeout was jittered to be longer
if(newTimeoutVersion <= task->timeoutVersion) {
newTimeoutVersion = task->timeoutVersion + 1;
}
// This is where the task definition is being moved to
state Subspace newTimeoutSpace = taskBucket->timeouts.get(newTimeoutVersion).get(task->key);
tr->addReadConflictRange(oldTimeoutSpace.range());
tr->addWriteConflictRange(newTimeoutSpace.range());
// If we're updating the task params the clear the old space and write params to the new space
if(updateParams) {
TEST(true); // Extended a task while updating parameters
for(auto &p : task->params) {
tr->set(newTimeoutSpace.pack(p.key), p.value);
}
} else {
TEST(true); // Extended a task without updating parameters
// Otherwise, read and transplant the params from the old to new timeout spaces
Standalone<RangeResultRef> params = wait(tr->getRange(oldTimeoutSpace.range(), CLIENT_KNOBS->TOO_MANY));
for(auto &kv : params) {
Tuple paramKey = oldTimeoutSpace.unpack(kv.key);
tr->set(newTimeoutSpace.pack(paramKey), kv.value);
}
}
tr->clear(oldTimeoutSpace.range());
return newTimeoutVersion;
}
};
TaskBucket::TaskBucket(const Subspace& subspace, bool sysAccess, bool priorityBatch, bool lockAware)
: prefix(subspace)
, active(prefix.get(LiteralStringRef("ac")))
, available(prefix.get(LiteralStringRef("av")))
, available_prioritized(prefix.get(LiteralStringRef("avp")))
, timeouts(prefix.get(LiteralStringRef("to")))
, pauseKey(prefix.pack(LiteralStringRef("pause")))
, timeout(CLIENT_KNOBS->TASKBUCKET_TIMEOUT_VERSIONS)
, system_access(sysAccess)
, priority_batch(priorityBatch)
, lock_aware(lockAware)
{
}
TaskBucket::~TaskBucket() {
}
Future<Void> TaskBucket::clear(Reference<ReadYourWritesTransaction> tr){
setOptions(tr);
tr->clear(prefix.range());
return Void();
}
Future<Void> TaskBucket::changePause(Reference<ReadYourWritesTransaction> tr, bool pause){
setOptions(tr);
if(pause) {
tr->set(pauseKey, StringRef());
} else {
tr->clear(pauseKey);
}
return Void();
}
Key TaskBucket::addTask(Reference<ReadYourWritesTransaction> tr, Reference<Task> task) {
setOptions(tr);
Key key(deterministicRandom()->randomUniqueID().toString());
Subspace taskSpace;
// If scheduledVersion is valid then place the task directly into the timeout
// space for its scheduled time, otherwise place it in the available space by priority.
Version scheduledVersion = ReservedTaskParams::scheduledVersion().getOrDefault(task, invalidVersion);
if(scheduledVersion != invalidVersion) {
taskSpace = timeouts.get(scheduledVersion).get(key);
}
else {
taskSpace = getAvailableSpace(task->getPriority()).get(key);
}
for (auto & param : task->params)
tr->set(taskSpace.pack(param.key), param.value);
tr->atomicOp(prefix.pack(LiteralStringRef("task_count")), LiteralStringRef("\x01\x00\x00\x00\x00\x00\x00\x00"), MutationRef::AddValue);
return key;
}
void TaskBucket::setValidationCondition(Reference<Task> task, KeyRef vKey, KeyRef vValue) {
task->params[Task::reservedTaskParamValidKey] = vKey;
task->params[Task::reservedTaskParamValidValue] = vValue;
}
ACTOR static Future<Key> actorAddTask(TaskBucket* tb, Reference<ReadYourWritesTransaction> tr, Reference<Task> task, KeyRef validationKey) {
tb->setOptions(tr);
Optional<Value> validationValue = wait(tr->get(validationKey));
if (!validationValue.present()) {
TraceEvent(SevError, "TB_AddTaskInvalidKey")
.detail("Task", task->params[Task::reservedTaskParamKeyType])
.detail("ValidationKey", validationKey);
throw invalid_option_value();
}
TaskBucket::setValidationCondition(task, validationKey, validationValue.get());
return tb->addTask(tr, task);
}
Future<Key> TaskBucket::addTask(Reference<ReadYourWritesTransaction> tr, Reference<Task> task, KeyRef validationKey)
{
return actorAddTask(this, tr, task, validationKey);
}
Key TaskBucket::addTask(Reference<ReadYourWritesTransaction> tr, Reference<Task> task, KeyRef validationKey, KeyRef validationValue)
{
setValidationCondition(task, validationKey, validationValue);
return addTask(tr, task);
}
Future<Reference<Task>> TaskBucket::getOne(Reference<ReadYourWritesTransaction> tr) {
return TaskBucketImpl::getOne(tr, Reference<TaskBucket>::addRef(this));
}
Future<bool> TaskBucket::doOne(Database cx, Reference<FutureBucket> futureBucket) {
return TaskBucketImpl::doOne(cx, Reference<TaskBucket>::addRef(this), futureBucket);
}
Future<bool> TaskBucket::doTask(Database cx, Reference<FutureBucket> futureBucket, Reference<Task> task) {
return TaskBucketImpl::doTask(cx, Reference<TaskBucket>::addRef(this), futureBucket, task);
}
Future<Void> TaskBucket::run(Database cx, Reference<FutureBucket> futureBucket, double *pollDelay, int maxConcurrentTasks) {
return TaskBucketImpl::run(cx, Reference<TaskBucket>::addRef(this), futureBucket, pollDelay, maxConcurrentTasks);
}
Future<Void> TaskBucket::watchPaused(Database cx, Reference<AsyncVar<bool>> paused) {
return TaskBucketImpl::watchPaused(cx, Reference<TaskBucket>::addRef(this), paused);
}
Future<bool> TaskBucket::isEmpty(Reference<ReadYourWritesTransaction> tr){
return TaskBucketImpl::isEmpty(tr, Reference<TaskBucket>::addRef(this));
}
Future<Void> TaskBucket::finish(Reference<ReadYourWritesTransaction> tr, Reference<Task> task){
setOptions(tr);
Tuple t;
t.append(task->timeoutVersion);
t.append(task->key);
tr->atomicOp(prefix.pack(LiteralStringRef("task_count")), LiteralStringRef("\xff\xff\xff\xff\xff\xff\xff\xff"), MutationRef::AddValue);
tr->clear(timeouts.range(t));
return Void();
}
Future<Version> TaskBucket::extendTimeout(Reference<ReadYourWritesTransaction> tr, Reference<Task> task, bool updateParams, Version newTimeoutVersion) {
return TaskBucketImpl::extendTimeout(tr, Reference<TaskBucket>::addRef(this), task, updateParams, newTimeoutVersion);
}
Future<bool> TaskBucket::isFinished(Reference<ReadYourWritesTransaction> tr, Reference<Task> task){
return TaskBucketImpl::isFinished(tr, Reference<TaskBucket>::addRef(this), task);
}
Future<bool> TaskBucket::isVerified(Reference<ReadYourWritesTransaction> tr, Reference<Task> task){
return TaskBucketImpl::taskVerify(Reference<TaskBucket>::addRef(this), tr, task);
}
Future<bool> TaskBucket::checkActive(Database cx){
return TaskBucketImpl::checkActive(cx, Reference<TaskBucket>::addRef(this));
}
Future<int64_t> TaskBucket::getTaskCount(Reference<ReadYourWritesTransaction> tr){
return TaskBucketImpl::getTaskCount(tr, Reference<TaskBucket>::addRef(this));
}
Future<Void> TaskBucket::watchTaskCount(Reference<ReadYourWritesTransaction> tr) {
return tr->watch(prefix.pack(LiteralStringRef("task_count")));
}
Future<Void> TaskBucket::debugPrintRange(Reference<ReadYourWritesTransaction> tr, Subspace subspace, Key msg) {
return TaskBucketImpl::debugPrintRange(tr, subspace, msg);
}
class FutureBucketImpl {
public:
ACTOR static Future<bool> isEmpty(Reference<ReadYourWritesTransaction> tr, Reference<FutureBucket> futureBucket) {
futureBucket->setOptions(tr);
Key lastKey = wait(tr->getKey(lastLessOrEqual(futureBucket->prefix.pack(maxUIDKey))));
return !futureBucket->prefix.contains(lastKey);
}
};
FutureBucket::FutureBucket(const Subspace& subspace, bool sysAccess, bool lockAware)
: prefix(subspace)
, system_access(sysAccess)
, lock_aware(lockAware)
{
}
FutureBucket::~FutureBucket() {
}
Future<Void> FutureBucket::clear(Reference<ReadYourWritesTransaction> tr){
setOptions(tr);
tr->clear(prefix.range());
return Void();
}
Reference<TaskFuture> FutureBucket::future(Reference<ReadYourWritesTransaction> tr){
setOptions(tr);
Reference<TaskFuture> taskFuture(new TaskFuture(Reference<FutureBucket>::addRef(this)));
taskFuture->addBlock(tr, StringRef());
return taskFuture;
}
Future<bool> FutureBucket::isEmpty(Reference<ReadYourWritesTransaction> tr) {
return FutureBucketImpl::isEmpty(tr, Reference<FutureBucket>::addRef(this));
}
Reference<TaskFuture> FutureBucket::unpack(Key key) {
return Reference<TaskFuture>(new TaskFuture(Reference<FutureBucket>::addRef(this), key));
}
class TaskFutureImpl {
public:
ACTOR static Future<Void> join(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> taskBucket, Reference<TaskFuture> taskFuture, std::vector<Reference<TaskFuture>> vectorFuture) {
taskFuture->futureBucket->setOptions(tr);
bool is_set = wait(isSet(tr, taskFuture));
if (is_set) {
return Void();
}
tr->clear(taskFuture->blocks.pack(StringRef()));
wait(_join(tr, taskBucket, taskFuture, vectorFuture));
return Void();
}
ACTOR static Future<Void> _join(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> taskBucket, Reference<TaskFuture> taskFuture, std::vector<Reference<TaskFuture>> vectorFuture) {
std::vector<Future<Void>> onSetFutures;
for (int i = 0; i < vectorFuture.size(); ++i) {
Key key = StringRef(deterministicRandom()->randomUniqueID().toString());
taskFuture->addBlock(tr, key);
Reference<Task> task(new Task());
task->params[Task::reservedTaskParamKeyType] = LiteralStringRef("UnblockFuture");
task->params[Task::reservedTaskParamKeyFuture] = taskFuture->key;
task->params[Task::reservedTaskParamKeyBlockID] = key;
onSetFutures.push_back( vectorFuture[i]->onSet(tr, taskBucket, task) );
}
wait( waitForAll(onSetFutures) );
return Void();
}
ACTOR static Future<bool> isSet(Reference<ReadYourWritesTransaction> tr, Reference<TaskFuture> taskFuture) {
taskFuture->futureBucket->setOptions(tr);
Standalone<RangeResultRef> values = wait(tr->getRange(taskFuture->blocks.range(), 1));
if (values.size() > 0)
return false;
return true;
}
ACTOR static Future<Void> onSet(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> taskBucket, Reference<TaskFuture> taskFuture, Reference<Task> task) {
taskFuture->futureBucket->setOptions(tr);
bool is_set = wait(isSet(tr, taskFuture));
if (is_set) {
TEST(true); // is_set == true
wait(performAction(tr, taskBucket, taskFuture, task));
}
else {
TEST(true); // is_set == false
Subspace callbackSpace = taskFuture->callbacks.get(StringRef(deterministicRandom()->randomUniqueID().toString()));
for (auto & v : task->params) {
tr->set(callbackSpace.pack(v.key), v.value);
}
}
return Void();
}
ACTOR static Future<Void> set(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> taskBucket, Reference<TaskFuture> taskFuture) {
taskFuture->futureBucket->setOptions(tr);
tr->clear(taskFuture->blocks.range());
wait(performAllActions(tr, taskBucket, taskFuture));
return Void();
}
ACTOR static Future<Void> performAction(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> taskBucket, Reference<TaskFuture> taskFuture, Reference<Task> task) {
taskFuture->futureBucket->setOptions(tr);
if (task && TaskFuncBase::isValidTask(task)) {
Reference<TaskFuncBase> taskFunc = TaskFuncBase::create(task->params[Task::reservedTaskParamKeyType]);
if (taskFunc.getPtr()) {
wait(taskFunc->finish(tr, taskBucket, taskFuture->futureBucket, task));
}
}
return Void();
}
ACTOR static Future<Void> performAllActions(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> taskBucket, Reference<TaskFuture> taskFuture) {
taskFuture->futureBucket->setOptions(tr);
Standalone<RangeResultRef> values = wait(tr->getRange(taskFuture->callbacks.range(), CLIENT_KNOBS->TOO_MANY));
tr->clear(taskFuture->callbacks.range());
std::vector<Future<Void>> actions;
if(values.size() != 0) {
state Reference<Task> task(new Task());
Key lastTaskID;
for (auto & s : values) {
Tuple t = taskFuture->callbacks.unpack(s.key);
Key taskID = t.getString(0);
Key key = t.getString(1);
// If we see a new task ID and the old one isn't empty then process the task accumulated so far and make a new task
if(taskID.size() != 0 && taskID != lastTaskID) {
actions.push_back(performAction(tr, taskBucket, taskFuture, task));
task = Reference<Task>(new Task());
}
task->params[key] = s.value;
lastTaskID = taskID;
}
// Process the last task
actions.push_back(performAction(tr, taskBucket, taskFuture, task));
}
wait(waitForAll(actions));
return Void();
}
ACTOR static Future<Void> onSetAddTask(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> taskBucket, Reference<TaskFuture> taskFuture, Reference<Task> task) {
taskFuture->futureBucket->setOptions(tr);
task->params[Task::reservedTaskParamKeyAddTask] = task->params[Task::reservedTaskParamKeyType];
task->params[Task::reservedTaskParamKeyType] = LiteralStringRef("AddTask");
wait(onSet(tr, taskBucket, taskFuture, task));
return Void();
}
ACTOR static Future<Void> onSetAddTask(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> taskBucket, Reference<TaskFuture> taskFuture, Reference<Task> task, KeyRef validationKey) {
taskFuture->futureBucket->setOptions(tr);
Optional<Value> validationValue = wait(tr->get(validationKey));
if (!validationValue.present()) {
TraceEvent(SevError, "TB_OnSetAddTaskInvalidKey")
.detail("Task", task->params[Task::reservedTaskParamKeyType])
.detail("ValidationKey", validationKey);
throw invalid_option_value();
}
task->params[Task::reservedTaskParamValidKey] = validationKey;
task->params[Task::reservedTaskParamValidValue] = validationValue.get();
wait(onSetAddTask(tr, taskBucket, taskFuture, task));
return Void();
}
static Future<Void> onSetAddTask(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> taskBucket, Reference<TaskFuture> taskFuture, Reference<Task> task, KeyRef validationKey, KeyRef validationValue) {
taskFuture->futureBucket->setOptions(tr);
task->params[Task::reservedTaskParamValidKey] = validationKey;
task->params[Task::reservedTaskParamValidValue] = validationValue;
return onSetAddTask(tr, taskBucket, taskFuture, task);
}
ACTOR static Future<Reference<TaskFuture>> joinedFuture(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> taskBucket, Reference<TaskFuture> taskFuture) {
taskFuture->futureBucket->setOptions(tr);
std::vector<Reference<TaskFuture>> vectorFuture;
state Reference<TaskFuture> future = taskFuture->futureBucket->future(tr);
vectorFuture.push_back(future);
wait(join(tr, taskBucket, taskFuture, vectorFuture));
return future;
}
};
TaskFuture::TaskFuture()
{
}
TaskFuture::TaskFuture(const Reference<FutureBucket> bucket, Key k)
: futureBucket(bucket), key(k)
{
if (k.size() == 0) {
key = deterministicRandom()->randomUniqueID().toString();
}
prefix = futureBucket->prefix.get(key);
blocks = prefix.get(LiteralStringRef("bl"));
callbacks = prefix.get(LiteralStringRef("cb"));
}
TaskFuture::~TaskFuture(){
}
void TaskFuture::addBlock(Reference<ReadYourWritesTransaction> tr, StringRef block_id) {
tr->set(blocks.pack(block_id), LiteralStringRef(""));
}
Future<Void> TaskFuture::set(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> taskBucket) {
return TaskFutureImpl::set(tr, taskBucket, Reference<TaskFuture>::addRef(this));
}
Future<Void> TaskFuture::performAllActions(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> taskBucket) {
return TaskFutureImpl::performAllActions(tr, taskBucket, Reference<TaskFuture>::addRef(this));
}
Future<Void> TaskFuture::join(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> taskBucket, std::vector<Reference<TaskFuture>> vectorFuture) {
return TaskFutureImpl::join(tr, taskBucket, Reference<TaskFuture>::addRef(this), vectorFuture);
}
Future<bool> TaskFuture::isSet(Reference<ReadYourWritesTransaction> tr) {
return TaskFutureImpl::isSet(tr, Reference<TaskFuture>::addRef(this));
}
Future<Void> TaskFuture::onSet(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> taskBucket, Reference<Task> task) {
return TaskFutureImpl::onSet(tr, taskBucket, Reference<TaskFuture>::addRef(this), task);
}
Future<Void> TaskFuture::onSetAddTask(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> taskBucket, Reference<Task> task) {
return TaskFutureImpl::onSetAddTask(tr, taskBucket, Reference<TaskFuture>::addRef(this), task);
}
Future<Void> TaskFuture::onSetAddTask(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> taskBucket, Reference<Task> task, KeyRef validationKey) {
return TaskFutureImpl::onSetAddTask(tr, taskBucket, Reference<TaskFuture>::addRef(this), task, validationKey);
}
Future<Void> TaskFuture::onSetAddTask(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> taskBucket, Reference<Task> task, KeyRef validationKey, KeyRef validationValue) {
return TaskFutureImpl::onSetAddTask(tr, taskBucket, Reference<TaskFuture>::addRef(this), task, validationKey, validationValue);
}
Future<Reference<TaskFuture>> TaskFuture::joinedFuture(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> taskBucket) {
return TaskFutureImpl::joinedFuture(tr, taskBucket, Reference<TaskFuture>::addRef(this));
}
ACTOR Future<Key> getCompletionKey(TaskCompletionKey *self, Future<Reference<TaskFuture>> f) {
Reference<TaskFuture> taskFuture = wait(f);
self->joinFuture.clear();
self->key = taskFuture->key;
return self->key.get();
}
Future<Key> TaskCompletionKey::get(Reference<ReadYourWritesTransaction> tr, Reference<TaskBucket> taskBucket) {
ASSERT(key.present() == (joinFuture.getPtr() == NULL));
return key.present() ? key.get() : getCompletionKey(this, joinFuture->joinedFuture(tr, taskBucket));
}