foundationdb/fdbserver/workloads/WriteDuringRead.actor.cpp

1104 lines
45 KiB
C++

/*
* WriteDuringRead.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "fdbclient/ClusterConnectionMemoryRecord.h"
#include "fdbclient/ManagementAPI.actor.h"
#include "fdbclient/NativeAPI.actor.h"
#include "fdbserver/TesterInterface.actor.h"
#include "fdbclient/ReadYourWrites.h"
#include "flow/ActorCollection.h"
#include "fdbserver/workloads/workloads.actor.h"
#include "fdbclient/Atomic.h"
#include "flow/actorcompiler.h" // This must be the last #include.
struct WriteDuringReadWorkload : TestWorkload {
double testDuration, slowModeStart;
int numOps;
bool rarelyCommit, adjacentKeys;
PerfIntCounter transactions, retries;
std::map<Key, Value> memoryDatabase;
std::map<Key, Value> lastCommittedDatabase;
KeyRangeMap<int> changeCount;
int minNode, nodes;
double initialKeyDensity;
AsyncTrigger finished;
KeyRange conflictRange;
std::pair<int, int> valueSizeRange;
int maxClearSize;
CoalescedKeyRangeMap<bool> addedConflicts;
bool useSystemKeys;
std::string keyPrefix;
int64_t maximumTotalData;
int64_t maximumDataWritten;
int64_t dataWritten = 0;
bool success;
Database extraDB;
bool useExtraDB;
WriteDuringReadWorkload(WorkloadContext const& wcx)
: TestWorkload(wcx), transactions("Transactions"), retries("Retries"), success(true) {
testDuration = getOption(options, LiteralStringRef("testDuration"), 60.0);
slowModeStart = getOption(options, LiteralStringRef("slowModeStart"), 1000.0);
numOps = getOption(options, LiteralStringRef("numOps"), 21);
rarelyCommit = getOption(options, LiteralStringRef("rarelyCommit"), false);
maximumTotalData = getOption(options, LiteralStringRef("maximumTotalData"), 3e6);
maximumDataWritten =
getOption(options, LiteralStringRef("maximumDataWritten"), std::numeric_limits<int64_t>::max());
minNode = getOption(options, LiteralStringRef("minNode"), 0);
useSystemKeys = getOption(options, LiteralStringRef("useSystemKeys"), deterministicRandom()->random01() < 0.5);
adjacentKeys = deterministicRandom()->random01() < 0.5;
initialKeyDensity = deterministicRandom()->random01(); // This fraction of keys are present before the first
// transaction (and after an unknown result)
valueSizeRange = std::make_pair(
0,
std::min<int>(deterministicRandom()->randomInt(0, 4 << deterministicRandom()->randomInt(0, 16)),
CLIENT_KNOBS->VALUE_SIZE_LIMIT * 1.2));
if (adjacentKeys) {
nodes = std::min<int64_t>(deterministicRandom()->randomInt(1, 4 << deterministicRandom()->randomInt(0, 14)),
CLIENT_KNOBS->KEY_SIZE_LIMIT * 1.2);
} else {
nodes = deterministicRandom()->randomInt(1, 4 << deterministicRandom()->randomInt(0, 20));
}
dataWritten = 0;
int newNodes = std::min<int>(nodes, maximumTotalData / (getKeyForIndex(nodes).size() + valueSizeRange.second));
minNode = std::max(minNode, nodes - newNodes);
nodes = newNodes;
TEST(adjacentKeys &&
(nodes + minNode) > CLIENT_KNOBS->KEY_SIZE_LIMIT); // WriteDuringReadWorkload testing large keys
useExtraDB = g_simulator.extraDB != nullptr;
if (useExtraDB) {
auto extraFile = makeReference<ClusterConnectionMemoryRecord>(*g_simulator.extraDB);
extraDB = Database::createDatabase(extraFile, -1);
useSystemKeys = false;
}
if (useSystemKeys && deterministicRandom()->random01() < 0.5) {
keyPrefix = "\xff\x01";
} else {
keyPrefix = "\x02";
}
maxClearSize = 1 << deterministicRandom()->randomInt(0, 20);
conflictRange = KeyRangeRef(LiteralStringRef("\xfe"), LiteralStringRef("\xfe\x00"));
if (clientId == 0)
TraceEvent("RYWConfiguration")
.detail("Nodes", nodes)
.detail("InitialKeyDensity", initialKeyDensity)
.detail("AdjacentKeys", adjacentKeys)
.detail("ValueSizeMin", valueSizeRange.first)
.detail("ValueSizeMax", valueSizeRange.second)
.detail("MaxClearSize", maxClearSize);
}
std::string description() const override { return "WriteDuringRead"; }
ACTOR Future<Void> setupImpl(WriteDuringReadWorkload* self, Database cx) {
// If we are operating in the default tenant but enable raw access, we should only write keys
// in the tenant's key-space.
if (self->useSystemKeys && cx->defaultTenant.present() && self->keyPrefix < systemKeys.begin) {
TenantMapEntry entry = wait(ManagementAPI::getTenant(cx.getReference(), cx->defaultTenant.get()));
self->keyPrefix = entry.prefix.withSuffix(self->keyPrefix).toString();
}
return Void();
}
Future<Void> setup(Database const& cx) override { return setupImpl(this, cx); }
Future<Void> start(Database const& cx) override {
if (clientId == 0)
return loadAndRun(cx, this);
return Void();
}
Future<bool> check(Database const& cx) override { return success; }
void getMetrics(std::vector<PerfMetric>& m) override {
m.push_back(transactions.getMetric());
m.push_back(retries.getMetric());
}
Key memoryGetKey(std::map<Key, Value>* db, KeySelector key) const {
std::map<Key, Value>::iterator iter;
if (key.orEqual)
iter = db->upper_bound(key.getKey());
else
iter = db->lower_bound(key.getKey());
int offset = key.offset - 1;
while (offset > 0) {
if (iter == db->end())
return useSystemKeys ? allKeys.end : normalKeys.end;
++iter;
--offset;
}
while (offset < 0) {
if (iter == db->begin())
return allKeys.begin;
--iter;
++offset;
}
if (iter == db->end())
return useSystemKeys ? allKeys.end : normalKeys.end;
return iter->first;
}
ACTOR Future<Void> getKeyAndCompare(ReadYourWritesTransaction* tr,
KeySelector key,
Snapshot snapshot,
bool readYourWritesDisabled,
bool snapshotRYWDisabled,
WriteDuringReadWorkload* self,
bool* doingCommit,
int64_t* memLimit) {
state UID randomID = nondeterministicRandom()->randomUniqueID();
//TraceEvent("WDRGetKey", randomID);
try {
state Key memRes = self->memoryGetKey(readYourWritesDisabled || (snapshot && snapshotRYWDisabled)
? &self->lastCommittedDatabase
: &self->memoryDatabase,
key);
*memLimit -= memRes.expectedSize();
Key _res = wait(tr->getKey(key, snapshot));
Key res = _res;
*memLimit += memRes.expectedSize();
if (self->useSystemKeys && res > self->getKeyForIndex(self->nodes))
res = allKeys.end;
if (res != memRes) {
TraceEvent(SevError, "WDRGetKeyWrongResult", randomID)
.detail("Key", key.getKey())
.detail("Offset", key.offset)
.detail("OrEqual", key.orEqual)
.detail("Snapshot", snapshot)
.detail("MemoryResult", memRes)
.detail("DbResult", res);
self->success = false;
}
return Void();
} catch (Error& e) {
//TraceEvent("WDRGetKeyError", randomID).error(e,true);
if (e.code() == error_code_used_during_commit) {
ASSERT(*doingCommit);
return Void();
} else if (e.code() == error_code_transaction_cancelled)
return Void();
throw;
}
}
Standalone<VectorRef<KeyValueRef>> memoryGetRange(std::map<Key, Value>* db,
KeySelector begin,
KeySelector end,
GetRangeLimits limit,
Reverse reverse) {
Key beginKey = memoryGetKey(db, begin);
Key endKey = memoryGetKey(db, end);
//TraceEvent("WDRGetRange").detail("Begin", beginKey).detail("End", endKey);
if (beginKey >= endKey)
return Standalone<VectorRef<KeyValueRef>>();
auto beginIter = db->lower_bound(beginKey);
auto endIter = db->lower_bound(endKey);
Standalone<VectorRef<KeyValueRef>> results;
if (reverse) {
loop {
if (beginIter == endIter || limit.reachedBy(results))
break;
--endIter;
results.push_back_deep(results.arena(), KeyValueRef(endIter->first, endIter->second));
}
} else {
for (; beginIter != endIter && !limit.reachedBy(results); ++beginIter)
results.push_back_deep(results.arena(), KeyValueRef(beginIter->first, beginIter->second));
}
return results;
}
ACTOR Future<Void> getRangeAndCompare(ReadYourWritesTransaction* tr,
KeySelector begin,
KeySelector end,
GetRangeLimits limit,
Snapshot snapshot,
Reverse reverse,
bool readYourWritesDisabled,
bool snapshotRYWDisabled,
WriteDuringReadWorkload* self,
bool* doingCommit,
int64_t* memLimit) {
state UID randomID = nondeterministicRandom()->randomUniqueID();
/*TraceEvent("WDRGetRange", randomID).detail("BeginKey", begin.getKey()).detail("BeginOffset", begin.offset).detail("BeginOrEqual", begin.orEqual)
.detail("EndKey", end.getKey()).detail("EndOffset", end.offset).detail("EndOrEqual", end.orEqual)
.detail("Limit", limit.rows).detail("Snapshot", snapshot).detail("Reverse",
reverse).detail("ReadYourWritesDisabled", readYourWritesDisabled);*/
try {
state Standalone<VectorRef<KeyValueRef>> memRes = self->memoryGetRange(
readYourWritesDisabled || (snapshot && snapshotRYWDisabled) ? &self->lastCommittedDatabase
: &self->memoryDatabase,
begin,
end,
limit,
reverse);
*memLimit -= memRes.expectedSize();
RangeResult _res = wait(tr->getRange(begin, end, limit, snapshot, reverse));
RangeResult res = _res;
*memLimit += memRes.expectedSize();
int systemKeyCount = 0;
bool resized = false;
if (self->useSystemKeys) {
if (!reverse) {
int newSize =
std::lower_bound(
res.begin(), res.end(), self->getKeyForIndex(self->nodes), KeyValueRef::OrderByKey()) -
res.begin();
if (newSize != res.size()) {
res.resize(res.arena(), newSize);
resized = true;
}
} else {
for (; systemKeyCount < res.size(); systemKeyCount++)
if (res[systemKeyCount].key < self->getKeyForIndex(self->nodes))
break;
if (systemKeyCount > 0) {
res = RangeResultRef(VectorRef<KeyValueRef>(&res[systemKeyCount], res.size() - systemKeyCount),
true);
resized = true;
}
}
}
if (!limit.hasByteLimit() && systemKeyCount == 0) {
if (res.size() != memRes.size()) {
TraceEvent(SevError, "WDRGetRangeWrongResult", randomID)
.detail("BeginKey", begin.getKey())
.detail("BeginOffset", begin.offset)
.detail("BeginOrEqual", begin.orEqual)
.detail("EndKey", end.getKey())
.detail("EndOffset", end.offset)
.detail("EndOrEqual", end.orEqual)
.detail("LimitRows", limit.rows)
.detail("LimitBytes", limit.bytes)
.detail("Snapshot", snapshot)
.detail("Reverse", reverse)
.detail("MemorySize", memRes.size())
.detail("DbSize", res.size())
.detail("ReadYourWritesDisabled", readYourWritesDisabled);
self->success = false;
return Void();
}
for (int i = 0; i < res.size(); i++) {
if (res[i] != memRes[i]) {
TraceEvent(SevError, "WDRGetRangeWrongResult", randomID)
.detail("BeginKey", begin.getKey())
.detail("BeginOffset", begin.offset)
.detail("BeginOrEqual", begin.orEqual)
.detail("EndKey", end.getKey())
.detail("EndOffset", end.offset)
.detail("EndOrEqual", end.orEqual)
.detail("LimitRows", limit.rows)
.detail("LimitBytes", limit.bytes)
.detail("Snapshot", snapshot)
.detail("Reverse", reverse)
.detail("Size", memRes.size())
.detail("WrongLocation", i)
.detail("MemoryResultKey", memRes[i].key)
.detail("DbResultKey", res[i].key)
.detail("MemoryResultValueSize", memRes[i].value.size())
.detail("DbResultValueSize", res[i].value.size())
.detail("ReadYourWritesDisabled", readYourWritesDisabled);
self->success = false;
return Void();
}
}
} else {
if (res.size() > memRes.size() || (res.size() < memRes.size() && !res.more) ||
(res.size() == 0 && res.more && !resized)) {
TraceEvent(SevError, "WDRGetRangeWrongResult", randomID)
.detail("BeginKey", begin.getKey())
.detail("BeginOffset", begin.offset)
.detail("BeginOrEqual", begin.orEqual)
.detail("EndKey", end.getKey())
.detail("EndOffset", end.offset)
.detail("EndOrEqual", end.orEqual)
.detail("LimitRows", limit.rows)
.detail("LimitBytes", limit.bytes)
.detail("Snapshot", snapshot)
.detail("Reverse", reverse)
.detail("MemorySize", memRes.size())
.detail("DbSize", res.size())
.detail("ReadYourWritesDisabled", readYourWritesDisabled)
.detail("More", res.more)
.detail("SystemKeyCount", systemKeyCount);
self->success = false;
return Void();
}
for (int i = 0; i < res.size(); i++) {
if (res[i] != memRes[i]) {
TraceEvent(SevError, "WDRGetRangeWrongResult", randomID)
.detail("BeginKey", begin.getKey())
.detail("BeginOffset", begin.offset)
.detail("BeginOrEqual", begin.orEqual)
.detail("EndKey", end.getKey())
.detail("EndOffset", end.offset)
.detail("EndOrEqual", end.orEqual)
.detail("LimitRows", limit.rows)
.detail("LimitBytes", limit.bytes)
.detail("Snapshot", snapshot)
.detail("Reverse", reverse)
.detail("Size", memRes.size())
.detail("WrongLocation", i)
.detail("MemoryResultKey", memRes[i].key)
.detail("DbResultKey", res[i].key)
.detail("MemoryResultValueSize", memRes[i].value.size())
.detail("DbResultValueSize", res[i].value.size())
.detail("ReadYourWritesDisabled", readYourWritesDisabled)
.detail("More", res.more);
self->success = false;
return Void();
}
}
}
return Void();
} catch (Error& e) {
//TraceEvent("WDRGetRangeError", randomID).error(e,true);
if (e.code() == error_code_used_during_commit) {
ASSERT(*doingCommit);
return Void();
} else if (e.code() == error_code_transaction_cancelled)
return Void();
throw;
}
}
Optional<Value> memoryGet(std::map<Key, Value>* db, Key key) {
auto iter = db->find(key);
if (iter == db->end())
return Optional<Value>();
else
return iter->second;
}
ACTOR Future<Void> getAndCompare(ReadYourWritesTransaction* tr,
Key key,
Snapshot snapshot,
bool readYourWritesDisabled,
bool snapshotRYWDisabled,
WriteDuringReadWorkload* self,
bool* doingCommit,
int64_t* memLimit) {
state UID randomID = nondeterministicRandom()->randomUniqueID();
//TraceEvent("WDRGet", randomID);
try {
state Optional<Value> memRes = self->memoryGet(readYourWritesDisabled || (snapshot && snapshotRYWDisabled)
? &self->lastCommittedDatabase
: &self->memoryDatabase,
key);
*memLimit -= memRes.expectedSize();
Optional<Value> res = wait(tr->get(key, snapshot));
*memLimit += memRes.expectedSize();
if (res != memRes) {
TraceEvent(SevError, "WDRGetWrongResult", randomID)
.detail("Key", key)
.detail("Snapshot", snapshot)
.detail("MemoryResult", memRes.present() ? memRes.get().size() : -1)
.detail("DbResult", res.present() ? res.get().size() : -1)
.detail("RywDisable", readYourWritesDisabled);
self->success = false;
}
return Void();
} catch (Error& e) {
//TraceEvent("WDRGetError", randomID).error(e,true);
if (e.code() == error_code_used_during_commit) {
ASSERT(*doingCommit);
return Void();
} else if (e.code() == error_code_transaction_cancelled)
return Void();
throw;
}
}
ACTOR Future<Void> watchAndCompare(ReadYourWritesTransaction* tr,
Key key,
bool readYourWritesDisabled,
WriteDuringReadWorkload* self,
bool* doingCommit,
int64_t* memLimit) {
state UID randomID = nondeterministicRandom()->randomUniqueID();
// SOMEDAY: test setting a low outstanding watch limit
if (readYourWritesDisabled) // Only tests RYW activated watches
return Void();
//TraceEvent("WDRWatch", randomID).detail("Key", key);
try {
state int changeNum = self->changeCount[key];
state Optional<Value> memRes = self->memoryGet(&self->memoryDatabase, key);
*memLimit -= memRes.expectedSize();
// This if block prevents formatting issues with clang-format
if (1) {
choose {
when(wait(tr->watch(key))) {
if (changeNum == self->changeCount[key]) {
TraceEvent(SevError, "WDRWatchWrongResult", randomID)
.detail("Reason", "Triggered without changing")
.detail("Key", key)
.detail("Value", changeNum)
.detail("DuringCommit", *doingCommit);
}
}
when(wait(self->finished.onTrigger())) {
Optional<Value> memRes2 = self->memoryGet(&self->memoryDatabase, key);
if (memRes != memRes2) {
TraceEvent(SevError, "WDRWatchWrongResult", randomID)
.detail("Reason", "Changed without triggering")
.detail("Key", key)
.detail("Value1", memRes)
.detail("Value2", memRes2);
}
}
}
}
*memLimit += memRes.expectedSize();
return Void();
} catch (Error& e) {
// check for transaction cancelled if the watch was not committed
//TraceEvent("WDRWatchError", randomID).error(e,true);
if (e.code() == error_code_used_during_commit) {
ASSERT(*doingCommit);
return Void();
} else if (e.code() == error_code_transaction_cancelled)
return Void();
throw;
}
}
ACTOR Future<Void> commitAndUpdateMemory(ReadYourWritesTransaction* tr,
WriteDuringReadWorkload* self,
bool* cancelled,
bool readYourWritesDisabled,
bool snapshotRYWDisabled,
bool readAheadDisabled,
bool useBatchPriority,
bool* doingCommit,
double* startTime,
Key timebombStr) {
// state UID randomID = nondeterministicRandom()->randomUniqueID();
//TraceEvent("WDRCommit", randomID);
try {
if (!readYourWritesDisabled && !*cancelled) {
KeyRangeMap<bool> transactionConflicts;
tr->getWriteConflicts(&transactionConflicts);
auto transactionRanges = transactionConflicts.ranges();
auto addedRanges = self->addedConflicts.ranges();
auto transactionIter = transactionRanges.begin();
auto addedIter = addedRanges.begin();
bool failed = false;
while (transactionIter != transactionRanges.end() && addedIter != addedRanges.end()) {
if (transactionIter->begin() != addedIter->begin() ||
transactionIter->value() != addedIter->value()) {
TraceEvent(SevError, "WriteConflictError")
.detail("TransactionKey", transactionIter->begin())
.detail("AddedKey", addedIter->begin())
.detail("TransactionVal", transactionIter->value())
.detail("AddedVal", addedIter->value());
failed = true;
}
++transactionIter;
++addedIter;
}
if (transactionIter != transactionRanges.end() || addedIter != addedRanges.end()) {
failed = true;
}
if (failed) {
TraceEvent(SevError, "WriteConflictRangeError").log();
for (transactionIter = transactionRanges.begin(); transactionIter != transactionRanges.end();
++transactionIter) {
TraceEvent("WCRTransaction")
.detail("Range", transactionIter.range())
.detail("Value", transactionIter.value());
}
for (addedIter = addedRanges.begin(); addedIter != addedRanges.end(); ++addedIter) {
TraceEvent("WCRAdded").detail("Range", addedIter.range()).detail("Value", addedIter.value());
}
}
}
state int64_t txnSize = tr->getApproximateSize();
state std::map<Key, Value> committedDB = self->memoryDatabase;
*doingCommit = true;
wait(tr->commit());
*doingCommit = false;
self->finished.trigger();
self->dataWritten += txnSize;
if (readYourWritesDisabled)
tr->setOption(FDBTransactionOptions::READ_YOUR_WRITES_DISABLE);
if (snapshotRYWDisabled)
tr->setOption(FDBTransactionOptions::SNAPSHOT_RYW_DISABLE);
if (readAheadDisabled)
tr->setOption(FDBTransactionOptions::READ_AHEAD_DISABLE);
if (useBatchPriority)
tr->setOption(FDBTransactionOptions::PRIORITY_BATCH);
if (self->useSystemKeys)
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr->addWriteConflictRange(self->conflictRange);
self->addedConflicts.insert(allKeys, false);
self->addedConflicts.insert(self->conflictRange, true);
*startTime = now();
tr->setOption(FDBTransactionOptions::TIMEOUT, timebombStr);
//TraceEvent("WDRCommitSuccess", randomID).detail("CommittedVersion", tr->getCommittedVersion());
self->lastCommittedDatabase = committedDB;
return Void();
} catch (Error& e) {
//TraceEvent("WDRCommitCancelled", randomID).error(e,true);
if (e.code() == error_code_actor_cancelled || e.code() == error_code_transaction_cancelled ||
e.code() == error_code_used_during_commit)
*cancelled = true;
if (e.code() == error_code_actor_cancelled || e.code() == error_code_transaction_cancelled)
throw commit_unknown_result();
if (e.code() == error_code_transaction_too_old)
throw not_committed();
throw;
}
}
Value getRandomValue() {
return Value(
std::string(deterministicRandom()->randomInt(valueSizeRange.first, valueSizeRange.second + 1), 'x'));
}
// Prevent a write only transaction whose commit was previously cancelled from being reordered after this
// transaction
ACTOR Future<Void> writeBarrier(Database cx) {
state Transaction tr(cx);
loop {
try {
tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
// Write-only transactions have a self-conflict in the system keys
tr.addWriteConflictRange(allKeys);
wait(tr.commit());
return Void();
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
ACTOR Future<Void> loadAndRun(Database cx, WriteDuringReadWorkload* self) {
state double startTime = now();
loop {
wait(self->writeBarrier(cx));
state int i = 0;
state int keysPerBatch =
std::min<int64_t>(1000,
1 + CLIENT_KNOBS->TRANSACTION_SIZE_LIMIT / 6 /
(self->getKeyForIndex(self->nodes).size() + self->valueSizeRange.second));
self->memoryDatabase = std::map<Key, Value>();
for (; i < self->nodes; i += keysPerBatch) {
state Transaction tr(cx);
loop {
try {
if (now() - startTime > self->testDuration || self->dataWritten >= self->maximumDataWritten)
return Void();
if (self->useSystemKeys)
tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
state int64_t txnSize = 0;
if (i == 0) {
tr.clear(normalKeys);
}
int end = std::min(self->nodes, i + keysPerBatch);
tr.clear(KeyRangeRef(self->getKeyForIndex(i), self->getKeyForIndex(end)));
self->memoryDatabase.erase(self->memoryDatabase.lower_bound(self->getKeyForIndex(i)),
self->memoryDatabase.lower_bound(self->getKeyForIndex(end)));
for (int j = i; j < end; j++) {
if (deterministicRandom()->random01() < self->initialKeyDensity) {
Key key = self->getKeyForIndex(j);
if (key.size() <= getMaxWriteKeySize(key, false)) {
Value value = self->getRandomValue();
value =
value.substr(0, std::min<int>(value.size(), CLIENT_KNOBS->VALUE_SIZE_LIMIT));
self->memoryDatabase[key] = value;
tr.set(key, value);
int64_t rowSize = key.expectedSize() + value.expectedSize();
txnSize += rowSize;
}
}
}
wait(tr.commit());
self->dataWritten += txnSize;
//TraceEvent("WDRInitBatch").detail("I", i).detail("CommittedVersion", tr.getCommittedVersion());
break;
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
self->lastCommittedDatabase = self->memoryDatabase;
self->addedConflicts.insert(allKeys, false);
//TraceEvent("WDRInit");
loop {
wait(delay(now() - startTime > self->slowModeStart ||
(g_network->isSimulated() && g_simulator.speedUpSimulation)
? 1.0
: 0.1));
try {
wait(self->randomTransaction(
(self->useExtraDB && deterministicRandom()->random01() < 0.5) ? self->extraDB : cx,
self,
startTime));
} catch (Error& e) {
if (e.code() != error_code_not_committed)
throw;
break;
}
if (now() - startTime > self->testDuration || self->dataWritten >= self->maximumDataWritten)
return Void();
}
}
}
Key getRandomKey() { return getKeyForIndex(deterministicRandom()->randomInt(0, nodes)); }
Key getKeyForIndex(int idx) {
idx += minNode;
if (adjacentKeys) {
return Key(keyPrefix + (idx ? std::string(idx, '\x00') : ""));
} else {
return Key(keyPrefix + format("%010d", idx));
}
}
Key versionStampKeyForIndex(int idx) {
Key result = KeyRef(getKeyForIndex(idx).toString() + std::string(14, '\x00'));
int32_t pos = deterministicRandom()->randomInt(0, result.size() - 13);
pos = littleEndian32(pos);
uint8_t* data = mutateString(result);
memcpy(data + result.size() - sizeof(int32_t), &pos, sizeof(int32_t));
return result;
}
Key getRandomVersionStampKey() { return versionStampKeyForIndex(deterministicRandom()->randomInt(0, nodes)); }
KeySelector getRandomKeySelector() {
int scale = 1 << deterministicRandom()->randomInt(0, 14);
return KeySelectorRef(
getRandomKey(), deterministicRandom()->random01() < 0.5, deterministicRandom()->randomInt(-scale, scale));
}
GetRangeLimits getRandomLimits() {
int kind = deterministicRandom()->randomInt(0, 3);
return GetRangeLimits(
(kind & 1) ? GetRangeLimits::ROW_LIMIT_UNLIMITED
: deterministicRandom()->randomInt(0, 1 << deterministicRandom()->randomInt(1, 10)),
(kind & 2) ? GetRangeLimits::BYTE_LIMIT_UNLIMITED
: deterministicRandom()->randomInt(0, 1 << deterministicRandom()->randomInt(1, 15)));
}
KeyRange getRandomRange(int sizeLimit) {
int startLocation = deterministicRandom()->randomInt(0, nodes);
int scale = deterministicRandom()->randomInt(
0, deterministicRandom()->randomInt(2, 5) * deterministicRandom()->randomInt(2, 5));
int endLocation = startLocation + deterministicRandom()->randomInt(
0, 1 + std::min(sizeLimit, std::min(nodes - startLocation, 1 << scale)));
return KeyRangeRef(getKeyForIndex(startLocation), getKeyForIndex(endLocation));
}
Value applyAtomicOp(Optional<StringRef> existingValue, Value value, MutationRef::Type type) {
Arena arena;
if (type == MutationRef::SetValue)
return value;
else if (type == MutationRef::AddValue)
return doLittleEndianAdd(existingValue, value, arena);
else if (type == MutationRef::AppendIfFits)
return doAppendIfFits(existingValue, value, arena);
else if (type == MutationRef::And)
return doAndV2(existingValue, value, arena);
else if (type == MutationRef::Or)
return doOr(existingValue, value, arena);
else if (type == MutationRef::Xor)
return doXor(existingValue, value, arena);
else if (type == MutationRef::Max)
return doMax(existingValue, value, arena);
else if (type == MutationRef::Min)
return doMinV2(existingValue, value, arena);
else if (type == MutationRef::ByteMin)
return doByteMin(existingValue, value, arena);
else if (type == MutationRef::ByteMax)
return doByteMax(existingValue, value, arena);
ASSERT(false);
return Value();
}
ACTOR Future<Void> randomTransaction(Database cx, WriteDuringReadWorkload* self, double testStartTime) {
state ReadYourWritesTransaction tr(cx);
state bool readYourWritesDisabled = deterministicRandom()->random01() < 0.5;
state bool readAheadDisabled = deterministicRandom()->random01() < 0.5;
state bool snapshotRYWDisabled = deterministicRandom()->random01() < 0.5;
state bool useBatchPriority = deterministicRandom()->random01() < 0.5;
state int64_t timebomb =
(FLOW_KNOBS->MAX_BUGGIFIED_DELAY == 0.0 && deterministicRandom()->random01() < 0.01)
? deterministicRandom()->randomInt64(1, 6000)
: 0; // timebomb check can fail incorrectly if simulation injects delay longer than the timebomb
state std::vector<Future<Void>> operations;
state ActorCollection commits(false);
state std::vector<Future<Void>> watches;
state int changeNum = 1;
state bool doingCommit = false;
state int waitLocation = 0;
state double startTime = now();
state bool disableGetKey = BUGGIFY;
state bool disableGetRange = BUGGIFY;
state bool disableGet = BUGGIFY;
state bool disableCommit = BUGGIFY;
state bool disableClearRange = BUGGIFY;
state bool disableClear = BUGGIFY;
state bool disableWatch = BUGGIFY;
state bool disableWriteConflictRange = BUGGIFY;
state bool disableDelay = BUGGIFY;
state bool disableReset = BUGGIFY;
state bool disableReadConflictRange = BUGGIFY;
state bool disableSet = BUGGIFY;
state bool disableAtomicOp = BUGGIFY;
state Key timebombStr = makeString(8);
uint8_t* data = mutateString(timebombStr);
memcpy(data, &timebomb, 8);
loop {
if (now() - testStartTime > self->testDuration) {
return Void();
}
state int64_t memLimit = 1e8;
state bool cancelled = false;
if (readYourWritesDisabled)
tr.setOption(FDBTransactionOptions::READ_YOUR_WRITES_DISABLE);
if (snapshotRYWDisabled)
tr.setOption(FDBTransactionOptions::SNAPSHOT_RYW_DISABLE);
if (readAheadDisabled)
tr.setOption(FDBTransactionOptions::READ_AHEAD_DISABLE);
if (useBatchPriority)
tr.setOption(FDBTransactionOptions::PRIORITY_BATCH);
if (self->useSystemKeys)
tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr.setOption(FDBTransactionOptions::TIMEOUT, timebombStr);
tr.addWriteConflictRange(self->conflictRange);
self->addedConflicts.insert(self->conflictRange, true);
try {
state int numWaits = deterministicRandom()->randomInt(1, 5);
state int i = 0;
for (; i < numWaits && memLimit > 0; i++) {
//TraceEvent("WDROps").detail("Count", i).detail("Max", numWaits).detail("ReadYourWritesDisabled",readYourWritesDisabled);
state int numOps = deterministicRandom()->randomInt(1, self->numOps);
state int j = 0;
for (; j < numOps && memLimit > 0; j++) {
if (commits.getResult().isError())
throw commits.getResult().getError();
try {
state int operationType = deterministicRandom()->randomInt(0, 21);
if (operationType == 0 && !disableGetKey) {
operations.push_back(
self->getKeyAndCompare(&tr,
self->getRandomKeySelector(),
Snapshot{ deterministicRandom()->coinflip() },
readYourWritesDisabled,
snapshotRYWDisabled,
self,
&doingCommit,
&memLimit));
} else if (operationType == 1 && !disableGetRange) {
operations.push_back(
self->getRangeAndCompare(&tr,
self->getRandomKeySelector(),
self->getRandomKeySelector(),
self->getRandomLimits(),
Snapshot{ deterministicRandom()->coinflip() },
Reverse{ deterministicRandom()->coinflip() },
readYourWritesDisabled,
snapshotRYWDisabled,
self,
&doingCommit,
&memLimit));
} else if (operationType == 2 && !disableGet) {
operations.push_back(self->getAndCompare(&tr,
self->getRandomKey(),
Snapshot{ deterministicRandom()->coinflip() },
readYourWritesDisabled,
snapshotRYWDisabled,
self,
&doingCommit,
&memLimit));
} else if (operationType == 3 && !disableCommit) {
if (!self->rarelyCommit || deterministicRandom()->random01() < 1.0 / self->numOps) {
Future<Void> commit = self->commitAndUpdateMemory(&tr,
self,
&cancelled,
readYourWritesDisabled,
snapshotRYWDisabled,
readAheadDisabled,
useBatchPriority,
&doingCommit,
&startTime,
timebombStr);
operations.push_back(commit);
commits.add(commit);
}
} else if (operationType == 4 && !disableClearRange) {
KeyRange range = self->getRandomRange(self->maxClearSize);
self->changeCount.insert(range, changeNum++);
bool noConflict = deterministicRandom()->random01() < 0.5;
//TraceEvent("WDRClearRange").detail("Begin", range).detail("NoConflict", noConflict);
if (noConflict)
tr.setOption(FDBTransactionOptions::NEXT_WRITE_NO_WRITE_CONFLICT_RANGE);
tr.clear(range);
if (!noConflict) {
KeyRangeRef conflict(
range.begin.substr(
0, std::min<int>(range.begin.size(), getMaxClearKeySize(range.begin) + 1)),
range.end.substr(
0, std::min<int>(range.end.size(), getMaxClearKeySize(range.end) + 1)));
self->addedConflicts.insert(conflict, true);
}
self->memoryDatabase.erase(self->memoryDatabase.lower_bound(range.begin),
self->memoryDatabase.lower_bound(range.end));
} else if (operationType == 5 && !disableClear) {
Key key = self->getRandomKey();
self->changeCount.insert(key, changeNum++);
bool noConflict = deterministicRandom()->random01() < 0.5;
//TraceEvent("WDRClear").detail("Key", key).detail("NoConflict", noConflict);
if (noConflict)
tr.setOption(FDBTransactionOptions::NEXT_WRITE_NO_WRITE_CONFLICT_RANGE);
tr.clear(key);
if (!noConflict && key.size() <= getMaxClearKeySize(key)) {
self->addedConflicts.insert(key, true);
}
self->memoryDatabase.erase(key);
} else if (operationType == 6 && !disableWatch) {
watches.push_back(self->watchAndCompare(
&tr, self->getRandomKey(), readYourWritesDisabled, self, &doingCommit, &memLimit));
} else if (operationType == 7 && !disableWriteConflictRange) {
KeyRange range = self->getRandomRange(self->nodes);
//TraceEvent("WDRAddWriteConflict").detail("Range", range);
tr.addWriteConflictRange(range);
KeyRangeRef conflict(
range.begin.substr(
0, std::min<int>(range.begin.size(), getMaxKeySize(range.begin) + 1)),
range.end.substr(0, std::min<int>(range.end.size(), getMaxKeySize(range.end) + 1)));
self->addedConflicts.insert(conflict, true);
} else if (operationType == 8 && !disableDelay) {
double maxTime = 6.0;
if (timebomb > 0)
maxTime = startTime + timebomb / 1000.0 - now();
operations.push_back(
delay(deterministicRandom()->random01() * deterministicRandom()->random01() *
deterministicRandom()->random01() * maxTime));
} else if (operationType == 9 && !disableReset) {
if (deterministicRandom()->random01() < 0.001) {
//TraceEvent("WDRReset");
tr.reset();
self->memoryDatabase = self->lastCommittedDatabase;
self->addedConflicts.insert(allKeys, false);
if (readYourWritesDisabled)
tr.setOption(FDBTransactionOptions::READ_YOUR_WRITES_DISABLE);
if (snapshotRYWDisabled)
tr.setOption(FDBTransactionOptions::SNAPSHOT_RYW_DISABLE);
if (readAheadDisabled)
tr.setOption(FDBTransactionOptions::READ_AHEAD_DISABLE);
if (self->useSystemKeys)
tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr.addWriteConflictRange(self->conflictRange);
self->addedConflicts.insert(self->conflictRange, true);
startTime = now();
tr.setOption(FDBTransactionOptions::TIMEOUT, timebombStr);
}
} else if (operationType == 10 && !disableReadConflictRange) {
KeyRange range = self->getRandomRange(self->maxClearSize);
tr.addReadConflictRange(range);
} else if (operationType == 11 && !disableAtomicOp) {
if (!self->useSystemKeys && deterministicRandom()->random01() < 0.01) {
Key versionStampKey = self->getRandomVersionStampKey();
Value value = self->getRandomValue();
KeyRangeRef range = getVersionstampKeyRange(versionStampKey.arena(),
versionStampKey,
tr.getCachedReadVersion().orDefault(0),
normalKeys.end);
self->changeCount.insert(range, changeNum++);
//TraceEvent("WDRVersionStamp").detail("VersionStampKey", versionStampKey).detail("Range", range);
tr.atomicOp(versionStampKey, value, MutationRef::SetVersionstampedKey);
tr.clear(range);
KeyRangeRef conflict(
range.begin.substr(
0, std::min<int>(range.begin.size(), getMaxClearKeySize(range.begin) + 1)),
range.end.substr(
0, std::min<int>(range.end.size(), getMaxClearKeySize(range.end) + 1)));
self->addedConflicts.insert(conflict, true);
self->memoryDatabase.erase(self->memoryDatabase.lower_bound(range.begin),
self->memoryDatabase.lower_bound(range.end));
} else {
Key key = self->getRandomKey();
Value value = self->getRandomValue();
MutationRef::Type opType;
switch (deterministicRandom()->randomInt(0, 8)) {
case 0:
opType = MutationRef::AddValue;
break;
case 1:
opType = MutationRef::And;
break;
case 2:
opType = MutationRef::Or;
break;
case 3:
opType = MutationRef::Xor;
break;
case 4:
opType = MutationRef::Max;
break;
case 5:
opType = MutationRef::Min;
break;
case 6:
opType = MutationRef::ByteMin;
break;
case 7:
opType = MutationRef::ByteMax;
break;
}
self->changeCount.insert(key, changeNum++);
bool noConflict = deterministicRandom()->random01() < 0.5;
//TraceEvent("WDRAtomicOp").detail("Key", key).detail("Value", value.size()).detail("NoConflict", noConflict);
if (noConflict)
tr.setOption(FDBTransactionOptions::NEXT_WRITE_NO_WRITE_CONFLICT_RANGE);
tr.atomicOp(key, value, opType);
//TraceEvent("WDRAtomicOpSuccess").detail("Key", key).detail("Value", value.size());
if (!noConflict && key.size() <= getMaxWriteKeySize(key, self->useSystemKeys)) {
self->addedConflicts.insert(key, true);
}
Optional<Value> existing = self->memoryGet(&self->memoryDatabase, key);
self->memoryDatabase[key] =
self->applyAtomicOp(existing.present() ? Optional<StringRef>(existing.get())
: Optional<StringRef>(),
value,
opType);
}
} else if (operationType > 11 && !disableSet) {
Key key = self->getRandomKey();
Value value = self->getRandomValue();
self->changeCount.insert(key, changeNum++);
bool noConflict = deterministicRandom()->random01() < 0.5;
//TraceEvent("WDRSet").detail("Key", key).detail("Value", value.size()).detail("NoConflict", noConflict);
if (noConflict)
tr.setOption(FDBTransactionOptions::NEXT_WRITE_NO_WRITE_CONFLICT_RANGE);
tr.set(key, value);
if (!noConflict && key.size() <= getMaxWriteKeySize(key, self->useSystemKeys)) {
self->addedConflicts.insert(key, true);
}
//TraceEvent("WDRSetSuccess").detail("Key", key).detail("Value", value.size());
self->memoryDatabase[key] = value;
}
} catch (Error& e) {
if (e.code() == error_code_used_during_commit) {
ASSERT(doingCommit);
} else if (e.code() != error_code_transaction_cancelled) {
throw;
}
}
}
if (waitLocation < operations.size()) {
int waitOp = deterministicRandom()->randomInt(waitLocation, operations.size());
//TraceEvent("WDRWait").detail("Op", waitOp).detail("Operations", operations.size()).detail("WaitLocation", waitLocation);
wait(operations[waitOp]);
wait(delay(0.000001)); // to ensure errors have propgated from reads to commits
waitLocation = operations.size();
}
}
wait(waitForAll(operations));
ASSERT(timebomb == 0 || 1000 * (now() - startTime) <= timebomb + 1);
wait(tr.debug_onIdle());
wait(delay(0.000001)); // to ensure triggered watches have a change to register
self->finished.trigger();
wait(waitForAll(watches)); // only for errors, should have all returned
self->changeCount.insert(allKeys, 0);
break;
} catch (Error& e) {
operations.clear();
commits.clear(false);
waitLocation = 0;
watches.clear();
self->changeCount.insert(allKeys, 0);
doingCommit = false;
//TraceEvent("WDRError").errorUnsuppressed(e);
if (e.code() == error_code_database_locked) {
self->memoryDatabase = self->lastCommittedDatabase;
self->addedConflicts.insert(allKeys, false);
return Void();
}
if (e.code() == error_code_not_committed || e.code() == error_code_commit_unknown_result ||
e.code() == error_code_transaction_too_large || e.code() == error_code_key_too_large ||
e.code() == error_code_value_too_large || e.code() == error_code_too_many_watches || cancelled)
throw not_committed();
try {
wait(tr.onError(e));
} catch (Error& e) {
if (e.code() == error_code_transaction_timed_out) {
ASSERT(timebomb != 0 && 1000 * (now() - startTime) >= timebomb - 1);
throw not_committed();
}
throw e;
}
self->memoryDatabase = self->lastCommittedDatabase;
self->addedConflicts.insert(allKeys, false);
}
}
self->memoryDatabase = self->lastCommittedDatabase;
self->addedConflicts.insert(allKeys, false);
return Void();
}
};
WorkloadFactory<WriteDuringReadWorkload> WriteDuringReadWorkloadFactory("WriteDuringRead");