foundationdb/fdbserver/workloads/EncryptKeyProxyTest.actor.cpp

305 lines
10 KiB
C++

/*
* EncryptKeyProxyTest.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "fdbrpc/Locality.h"
#include "fdbserver/EncryptKeyProxyInterface.h"
#include "fdbserver/Knobs.h"
#include "fdbserver/ServerDBInfo.actor.h"
#include "fdbserver/WorkerInterface.actor.h"
#include "fdbserver/workloads/workloads.actor.h"
#include "flow/Error.h"
#include "flow/FastRef.h"
#include "flow/Trace.h"
#include "flow/IRandom.h"
#include "flow/flow.h"
#include "flow/xxhash.h"
#include <atomic>
#include <boost/range/const_iterator.hpp>
#include <utility>
#include "flow/actorcompiler.h" // This must be the last #include.
struct EncryptKeyProxyTestWorkload : TestWorkload {
EncryptKeyProxyInterface ekpInf;
Reference<AsyncVar<struct ServerDBInfo> const> dbInfo;
Arena arena;
uint64_t minDomainId;
uint64_t maxDomainId;
std::unordered_map<uint64_t, StringRef> cipherIdMap;
std::vector<uint64_t> cipherIds;
int numDomains;
std::vector<uint64_t> domainIds;
static std::atomic<int> seed;
bool enableTest;
EncryptKeyProxyTestWorkload(WorkloadContext const& wcx) : TestWorkload(wcx), dbInfo(wcx.dbInfo), enableTest(false) {
if (wcx.clientId == 0) {
enableTest = true;
minDomainId = 1000 + (++seed * 30) + 1;
maxDomainId = deterministicRandom()->randomInt(minDomainId, minDomainId + 50) + 5;
TraceEvent("EKPTest_Init").detail("MinDomainId", minDomainId).detail("MaxDomainId", maxDomainId);
}
}
std::string description() const override { return "EncryptKeyProxyTest"; }
Future<Void> setup(Database const& ctx) override { return Void(); }
ACTOR Future<Void> simEmptyDomainIdCache(EncryptKeyProxyTestWorkload* self) {
TraceEvent("SimEmptyDomainIdCache_Start").log();
for (int i = 0; i < self->numDomains / 2; i++) {
self->domainIds.emplace_back(self->minDomainId + i);
}
state int nAttempts = 0;
loop {
EKPGetLatestBaseCipherKeysRequest req(deterministicRandom()->randomUniqueID(), self->domainIds);
ErrorOr<EKPGetLatestBaseCipherKeysReply> rep = wait(self->ekpInf.getLatestBaseCipherKeys.tryGetReply(req));
if (rep.present()) {
ASSERT(!rep.get().error.present());
ASSERT_EQ(rep.get().baseCipherDetails.size(), self->domainIds.size());
for (const uint64_t id : self->domainIds) {
bool found = false;
for (const auto& item : rep.get().baseCipherDetails) {
if (item.baseCipherId == id) {
found = true;
break;
}
}
ASSERT(found);
}
// Ensure no hits reported by the cache.
if (nAttempts == 0) {
ASSERT_EQ(rep.get().numHits, 0);
} else {
ASSERT_GE(rep.get().numHits, 0);
}
break;
} else {
nAttempts++;
wait(delay(0.0));
}
}
TraceEvent("SimEmptyDomainIdCache_Done").log();
return Void();
}
ACTOR Future<Void> simPartialDomainIdCache(EncryptKeyProxyTestWorkload* self) {
state int expectedHits;
state int expectedMisses;
TraceEvent("SimPartialDomainIdCache_Start").log();
self->domainIds.clear();
expectedHits = deterministicRandom()->randomInt(1, self->numDomains / 2);
for (int i = 0; i < expectedHits; i++) {
self->domainIds.emplace_back(self->minDomainId + i);
}
expectedMisses = deterministicRandom()->randomInt(1, self->numDomains / 2);
for (int i = 0; i < expectedMisses; i++) {
self->domainIds.emplace_back(self->minDomainId + i + self->numDomains / 2 + 1);
}
state int nAttempts = 0;
loop {
// Test case given is measuring correctness for cache hit/miss scenarios is designed to have strict
// assertions. However, in simulation runs, RPCs can be force failed to inject retries, hence, code leverage
// tryGetReply to ensure at-most once delivery of message, further, assertions are relaxed to account of
// cache warm-up due to retries.
EKPGetLatestBaseCipherKeysRequest req(deterministicRandom()->randomUniqueID(), self->domainIds);
ErrorOr<EKPGetLatestBaseCipherKeysReply> rep = wait(self->ekpInf.getLatestBaseCipherKeys.tryGetReply(req));
if (rep.present()) {
ASSERT(!rep.get().error.present());
ASSERT_EQ(rep.get().baseCipherDetails.size(), self->domainIds.size());
for (const uint64_t id : self->domainIds) {
bool found = false;
for (const auto& item : rep.get().baseCipherDetails) {
if (item.baseCipherId == id) {
found = true;
break;
}
}
ASSERT(found);
}
// Ensure desired cache-hit counts
if (nAttempts == 0) {
ASSERT_EQ(rep.get().numHits, expectedHits);
} else {
ASSERT_GE(rep.get().numHits, expectedHits);
}
break;
} else {
nAttempts++;
wait(delay(0.0));
}
}
self->domainIds.clear();
TraceEvent("SimPartialDomainIdCache_Done").log();
return Void();
}
ACTOR Future<Void> simRandomBaseCipherIdCache(EncryptKeyProxyTestWorkload* self) {
state int expectedHits;
TraceEvent("SimRandomDomainIdCache_Start").log();
self->domainIds.clear();
for (int i = 0; i < self->numDomains; i++) {
self->domainIds.emplace_back(self->minDomainId + i);
}
EKPGetLatestBaseCipherKeysRequest req(deterministicRandom()->randomUniqueID(), self->domainIds);
EKPGetLatestBaseCipherKeysReply rep = wait(self->ekpInf.getLatestBaseCipherKeys.getReply(req));
ASSERT(!rep.error.present());
ASSERT_EQ(rep.baseCipherDetails.size(), self->domainIds.size());
for (const uint64_t id : self->domainIds) {
bool found = false;
for (const auto& item : rep.baseCipherDetails) {
if (item.baseCipherId == id) {
found = true;
break;
}
}
ASSERT(found);
}
self->cipherIdMap.clear();
self->cipherIds.clear();
for (auto& item : rep.baseCipherDetails) {
self->cipherIdMap.emplace(item.baseCipherId, StringRef(self->arena, item.baseCipherKey));
self->cipherIds.emplace_back(item.baseCipherId);
}
state int numIterations = deterministicRandom()->randomInt(512, 786);
for (; numIterations > 0; numIterations--) {
int idx = deterministicRandom()->randomInt(1, self->cipherIds.size());
int nIds = deterministicRandom()->randomInt(1, self->cipherIds.size());
EKPGetBaseCipherKeysByIdsRequest req;
for (int i = idx; i < nIds && i < self->cipherIds.size(); i++) {
req.baseCipherIds.emplace_back(std::make_pair(self->cipherIds[i], 1));
}
expectedHits = req.baseCipherIds.size();
EKPGetBaseCipherKeysByIdsReply rep = wait(self->ekpInf.getBaseCipherKeysByIds.getReply(req));
ASSERT(!rep.error.present());
ASSERT_EQ(rep.baseCipherDetails.size(), expectedHits);
ASSERT_EQ(rep.numHits, expectedHits);
// Valdiate the 'cipherKey' content against the one read while querying by domainIds
for (auto& item : rep.baseCipherDetails) {
const auto itr = self->cipherIdMap.find(item.baseCipherId);
ASSERT(itr != self->cipherIdMap.end());
Standalone<StringRef> toCompare = self->cipherIdMap[item.baseCipherId];
if (toCompare.compare(item.baseCipherKey) != 0) {
TraceEvent("Mismatch")
.detail("Id", item.baseCipherId)
.detail("CipherMapDataHash", XXH3_64bits(toCompare.begin(), toCompare.size()))
.detail("CipherMapSize", toCompare.size())
.detail("CipherMapValue", toCompare.toString())
.detail("ReadDataHash", XXH3_64bits(item.baseCipherKey.begin(), item.baseCipherKey.size()))
.detail("ReadValue", item.baseCipherKey.toString())
.detail("ReadDataSize", item.baseCipherKey.size());
ASSERT(false);
}
}
}
TraceEvent("SimRandomDomainIdCache_Done").log();
return Void();
}
ACTOR Future<Void> simLookupInvalidKeyId(EncryptKeyProxyTestWorkload* self) {
TraceEvent("SimLookupInvalidKeyId_Start").log();
// Prepare a lookup with valid and invalid keyIds - SimEncryptKmsProxy should throw encrypt_key_not_found()
std::vector<std::pair<uint64_t, int64_t>> baseCipherIds;
for (auto id : self->cipherIds) {
baseCipherIds.emplace_back(std::make_pair(id, 1));
}
baseCipherIds.emplace_back(std::make_pair(SERVER_KNOBS->SIM_KMS_MAX_KEYS + 10, 1));
EKPGetBaseCipherKeysByIdsRequest req(deterministicRandom()->randomUniqueID(), baseCipherIds);
EKPGetBaseCipherKeysByIdsReply rep = wait(self->ekpInf.getBaseCipherKeysByIds.getReply(req));
ASSERT_EQ(rep.baseCipherDetails.size(), 0);
ASSERT(rep.error.present());
ASSERT_EQ(rep.error.get().code(), error_code_encrypt_key_not_found);
TraceEvent("SimLookupInvalidKeyId_Done").log();
return Void();
}
// Following test cases are covered:
// 1. Simulate an empty domainIdCache.
// 2. Simulate an mixed lookup (partial cache-hit) for domainIdCache.
// 3. Simulate a lookup on all domainIdCache keys and validate lookup by baseCipherKeyIds.
// 4. Simulate lookup for an invalid baseCipherKeyId.
ACTOR Future<Void> testWorkload(Reference<AsyncVar<ServerDBInfo> const> dbInfo, EncryptKeyProxyTestWorkload* self) {
// Ensure EncryptKeyProxy role is recruited (a singleton role)
while (!dbInfo->get().encryptKeyProxy.present()) {
wait(delay(.1));
}
self->ekpInf = dbInfo->get().encryptKeyProxy.get();
self->numDomains = self->maxDomainId - self->minDomainId;
// Simulate empty cache access
wait(self->simEmptyDomainIdCache(self));
// Simulate partial cache-hit usecase
wait(self->simPartialDomainIdCache(self));
// Warm up cached with all domain Ids and randomly access known baseCipherIds
wait(self->simRandomBaseCipherIdCache(self));
// Simulate lookup BaseCipherIds which aren't yet cached
wait(self->simLookupInvalidKeyId(self));
return Void();
}
Future<Void> start(Database const& cx) override {
TEST(true); // Testing
if (!enableTest) {
return Void();
}
return testWorkload(dbInfo, this);
}
Future<bool> check(Database const& cx) override { return true; }
void getMetrics(std::vector<PerfMetric>& m) override {}
};
std::atomic<int> EncryptKeyProxyTestWorkload::seed = 0;
WorkloadFactory<EncryptKeyProxyTestWorkload> EncryptKeyProxyTestWorkloadFactory("EncryptKeyProxyTest");