foundationdb/fdbserver/KeyValueStoreMemory.actor.cpp

741 lines
27 KiB
C++

/*
* KeyValueStoreMemory.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "fdbserver/IKeyValueStore.h"
#include "fdbserver/IDiskQueue.h"
#include "flow/IndexedSet.h"
#include "flow/ActorCollection.h"
#include "fdbclient/Notified.h"
#include "fdbclient/SystemData.h"
#include "flow/actorcompiler.h" // This must be the last #include.
#define OP_DISK_OVERHEAD (sizeof(OpHeader) + 1)
//Stored in the IndexedSets that hold the database.
//Each KeyValueMapPair is 32 bytes, excluding arena memory.
//It is stored in an IndexedSet<KeyValueMapPair, uint64_t>::Node, for a total size of 72 bytes.
struct KeyValueMapPair {
Arena arena; //8 Bytes (excluding arena memory)
KeyRef key; //12 Bytes
ValueRef value; //12 Bytes
void operator= ( KeyValueMapPair const& rhs ) { arena = rhs.arena; key = rhs.key; value = rhs.value; }
KeyValueMapPair( KeyValueMapPair const& rhs ) : arena(rhs.arena), key(rhs.key), value(rhs.value) {}
KeyValueMapPair(KeyRef key, ValueRef value) : arena(key.expectedSize() + value.expectedSize()), key(arena, key), value(arena, value) { }
bool operator<(KeyValueMapPair const& r) const { return key < r.key; }
bool operator==(KeyValueMapPair const& r) const { return key == r.key; }
bool operator!=(KeyValueMapPair const& r) const { return key != r.key; }
};
template <class CompatibleWithKey>
bool operator<(KeyValueMapPair const& l, CompatibleWithKey const& r) { return l.key < r; }
template <class CompatibleWithKey>
bool operator<(CompatibleWithKey const& l, KeyValueMapPair const& r) { return l < r.key; }
extern bool noUnseed;
class KeyValueStoreMemory : public IKeyValueStore, NonCopyable {
public:
KeyValueStoreMemory( IDiskQueue* log, UID id, int64_t memoryLimit, bool disableSnapshot, bool replaceContent, bool exactRecovery );
// IClosable
virtual Future<Void> getError() { return log->getError(); }
virtual Future<Void> onClosed() { return log->onClosed(); }
virtual void dispose() { recovering.cancel(); log->dispose(); delete this; }
virtual void close() { recovering.cancel(); log->close(); delete this; }
// IKeyValueStore
virtual KeyValueStoreType getType() { return KeyValueStoreType::MEMORY; }
int64_t getAvailableSize() {
int64_t residentSize =
data.sumTo(data.end()) +
queue.totalSize() + // doesn't account for overhead in queue
transactionSize;
return memoryLimit - residentSize;
}
virtual StorageBytes getStorageBytes() {
StorageBytes diskQueueBytes = log->getStorageBytes();
// Try to bound how many in-memory bytes we might need to write to disk if we commit() now
int64_t uncommittedBytes = queue.totalSize() + transactionSize;
//Check that we have enough space in memory and on disk
int64_t freeSize = std::min(getAvailableSize(), diskQueueBytes.free / 4 - uncommittedBytes);
int64_t availableSize = std::min(getAvailableSize(), diskQueueBytes.available / 4 - uncommittedBytes);
int64_t totalSize = std::min(memoryLimit, diskQueueBytes.total / 4 - uncommittedBytes);
return StorageBytes(std::max((int64_t)0, freeSize), std::max((int64_t)0, totalSize), diskQueueBytes.used,
std::max((int64_t)0, availableSize));
}
void semiCommit() {
transactionSize += queue.totalSize();
if(transactionSize > 0.5 * committedDataSize) {
transactionIsLarge = true;
TraceEvent("KVSMemSwitchingToLargeTransactionMode", id).detail("TransactionSize", transactionSize).detail("DataSize", committedDataSize);
TEST(true); // KeyValueStoreMemory switching to large transaction mode
TEST(committedDataSize > 1e3); // KeyValueStoreMemory switching to large transaction mode with committed data
}
int64_t bytesWritten = commit_queue(queue, true);
committedWriteBytes += bytesWritten;
}
virtual void set(KeyValueRef keyValue, const Arena* arena) {
//A commit that occurs with no available space returns Never, so we can throw out all modifications
if(getAvailableSize() <= 0)
return;
if(transactionIsLarge) {
KeyValueMapPair pair(keyValue.key, keyValue.value);
data.insert(pair, pair.arena.getSize() + data.getElementBytes());
}
else {
queue.set(keyValue, arena);
if(recovering.isReady() && !disableSnapshot) {
semiCommit();
}
}
}
virtual void clear(KeyRangeRef range, const Arena* arena) {
//A commit that occurs with no available space returns Never, so we can throw out all modifications
if(getAvailableSize() <= 0)
return;
if(transactionIsLarge) {
data.erase(data.lower_bound(range.begin), data.lower_bound(range.end));
}
else {
queue.clear(range, arena);
if(recovering.isReady() && !disableSnapshot) {
semiCommit();
}
}
}
virtual Future<Void> commit(bool sequential) {
if(getAvailableSize() <= 0) {
TraceEvent(SevError, "KeyValueStoreMemory_OutOfSpace", id);
return Never();
}
if(recovering.isError()) throw recovering.getError();
if(!recovering.isReady())
return waitAndCommit(this, sequential);
if(!disableSnapshot && replaceContent && !firstCommitWithSnapshot) {
transactionSize += SERVER_KNOBS->REPLACE_CONTENTS_BYTES;
committedWriteBytes += SERVER_KNOBS->REPLACE_CONTENTS_BYTES;
semiCommit();
}
if(transactionIsLarge) {
fullSnapshot(data);
resetSnapshot = true;
committedWriteBytes = notifiedCommittedWriteBytes.get();
overheadWriteBytes = 0;
if(disableSnapshot) {
return Void();
}
log_op(OpCommit, StringRef(), StringRef());
}
else {
int64_t bytesWritten = commit_queue(queue, !disableSnapshot, sequential);
if(disableSnapshot) {
return Void();
}
if(bytesWritten > 0 || committedWriteBytes > notifiedCommittedWriteBytes.get()) {
committedWriteBytes += bytesWritten + overheadWriteBytes + OP_DISK_OVERHEAD; //OP_DISK_OVERHEAD is for the following log_op(OpCommit)
notifiedCommittedWriteBytes.set(committedWriteBytes); //This set will cause snapshot items to be written, so it must happen before the OpCommit
log_op(OpCommit, StringRef(), StringRef());
overheadWriteBytes = log->getCommitOverhead();
}
}
auto c = log->commit();
committedDataSize = data.sumTo(data.end());
transactionSize = 0;
transactionIsLarge = false;
firstCommitWithSnapshot = false;
addActor.send( commitAndUpdateVersions( this, c, previousSnapshotEnd ) );
return c;
}
virtual Future<Optional<Value>> readValue( KeyRef key, Optional<UID> debugID = Optional<UID>() ) {
if(recovering.isError()) throw recovering.getError();
if (!recovering.isReady()) return waitAndReadValue(this, key);
auto it = data.find(key);
if (it == data.end()) return Optional<Value>();
return Optional<Value>(it->value);
}
virtual Future<Optional<Value>> readValuePrefix( KeyRef key, int maxLength, Optional<UID> debugID = Optional<UID>() ) {
if(recovering.isError()) throw recovering.getError();
if (!recovering.isReady()) return waitAndReadValuePrefix(this, key, maxLength);
auto it = data.find(key);
if (it == data.end()) return Optional<Value>();
auto val = it->value;
if(maxLength < val.size()) {
return Optional<Value>(val.substr(0, maxLength));
}
else {
return Optional<Value>(val);
}
}
// If rowLimit>=0, reads first rows sorted ascending, otherwise reads last rows sorted descending
// The total size of the returned value (less the last entry) will be less than byteLimit
virtual Future<Standalone<RangeResultRef>> readRange( KeyRangeRef keys, int rowLimit = 1<<30, int byteLimit = 1<<30 ) {
if(recovering.isError()) throw recovering.getError();
if (!recovering.isReady()) return waitAndReadRange(this, keys, rowLimit, byteLimit);
Standalone<RangeResultRef> result;
if (rowLimit == 0) {
return result;
}
if (rowLimit > 0) {
auto it = data.lower_bound(keys.begin);
while (it!=data.end() && it->key < keys.end && rowLimit && byteLimit>0) {
byteLimit -= sizeof(KeyValueRef) + it->key.size() + it->value.size();
result.push_back_deep( result.arena(), KeyValueRef(it->key, it->value) );
++it;
--rowLimit;
}
} else {
rowLimit = -rowLimit;
auto it = data.previous( data.lower_bound(keys.end) );
while (it!=data.end() && it->key >= keys.begin && rowLimit && byteLimit>0) {
byteLimit -= sizeof(KeyValueRef) + it->key.size() + it->value.size();
result.push_back_deep( result.arena(), KeyValueRef(it->key, it->value) );
it = data.previous(it);
--rowLimit;
}
}
result.more = rowLimit == 0 || byteLimit <= 0;
if(result.more) {
ASSERT(result.size() > 0);
result.readThrough = result[result.size()-1].key;
}
return result;
}
virtual void resyncLog() {
ASSERT( recovering.isReady() );
resetSnapshot = true;
log_op(OpSnapshotAbort, StringRef(), StringRef());
}
virtual void enableSnapshot() {
disableSnapshot = false;
}
private:
enum OpType {
OpSet,
OpClear,
OpClearToEnd,
OpSnapshotItem,
OpSnapshotEnd,
OpSnapshotAbort, // terminate an in progress snapshot in order to start a full snapshot
OpCommit, // only in log, not in queue
OpRollback // only in log, not in queue
};
struct OpRef {
OpType op;
StringRef p1, p2;
OpRef() {}
OpRef(Arena& a, OpRef const& o) : op(o.op), p1(a,o.p1), p2(a,o.p2) {}
size_t expectedSize() {
return p1.expectedSize() + p2.expectedSize();
}
};
struct OpHeader {
int op;
int len1, len2;
};
struct OpQueue {
OpQueue() : numBytes(0) { }
int totalSize() const { return numBytes; }
void clear() {
numBytes = 0;
operations = Standalone<VectorRef<OpRef>>();
arenas.clear();
}
void rollback() {
clear();
}
void set( KeyValueRef keyValue, const Arena* arena = NULL ) {
queue_op(OpSet, keyValue.key, keyValue.value, arena);
}
void clear( KeyRangeRef range, const Arena* arena = NULL ) {
queue_op(OpClear, range.begin, range.end, arena);
}
void clear_to_end( StringRef fromKey, const Arena* arena = NULL ) {
queue_op(OpClearToEnd, fromKey, StringRef(), arena);
}
void queue_op( OpType op, StringRef p1, StringRef p2, const Arena* arena ) {
numBytes += p1.size() + p2.size() + sizeof(OpHeader) + sizeof(OpRef);
OpRef r; r.op = op; r.p1 = p1; r.p2 = p2;
if(arena == NULL) {
operations.push_back_deep( operations.arena(), r );
} else {
operations.push_back( operations.arena(), r );
arenas.push_back(*arena);
}
}
const OpRef* begin() {
return operations.begin();
}
const OpRef* end() {
return operations.end();
}
private:
Standalone<VectorRef<OpRef>> operations;
uint64_t numBytes;
std::vector<Arena> arenas;
};
UID id;
IndexedSet< KeyValueMapPair, uint64_t > data;
OpQueue queue; // mutations not yet commit()ted
IDiskQueue *log;
Future<Void> recovering, snapshotting;
int64_t committedWriteBytes;
int64_t overheadWriteBytes;
NotifiedVersion notifiedCommittedWriteBytes;
Key recoveredSnapshotKey; // After recovery, the next key in the currently uncompleted snapshot
IDiskQueue::location currentSnapshotEnd; //The end of the most recently completed snapshot (this snapshot cannot be discarded)
IDiskQueue::location previousSnapshotEnd; //The end of the second most recently completed snapshot (on commit, this snapshot can be discarded)
PromiseStream<Future<Void>> addActor;
Future<Void> commitActors;
int64_t committedDataSize;
int64_t transactionSize;
bool transactionIsLarge;
bool resetSnapshot; //Set to true after a fullSnapshot is performed. This causes the regular snapshot mechanism to restart
bool disableSnapshot;
bool replaceContent;
bool firstCommitWithSnapshot;
int snapshotCount;
int64_t memoryLimit; //The upper limit on the memory used by the store (excluding, possibly, some clear operations)
std::vector<std::pair<KeyValueMapPair, uint64_t>> dataSets;
int64_t commit_queue(OpQueue &ops, bool log, bool sequential = false) {
int64_t total = 0, count = 0;
IDiskQueue::location log_location = 0;
for(auto o = ops.begin(); o != ops.end(); ++o) {
++count;
total += o->p1.size() + o->p2.size() + OP_DISK_OVERHEAD;
if (o->op == OpSet) {
KeyValueMapPair pair(o->p1, o->p2);
if(sequential) {
dataSets.push_back(std::make_pair(pair, pair.arena.getSize() + data.getElementBytes()));
} else {
data.insert( pair, pair.arena.getSize() + data.getElementBytes() );
}
}
else if (o->op == OpClear) {
if(sequential) {
data.insert(dataSets);
dataSets.clear();
}
data.erase( data.lower_bound(o->p1), data.lower_bound(o->p2) );
}
else if (o->op == OpClearToEnd) {
if(sequential) {
data.insert(dataSets);
dataSets.clear();
}
data.erase( data.lower_bound(o->p1), data.end() );
}
else ASSERT(false);
if ( log )
log_location = log_op( o->op, o->p1, o->p2 );
}
if(sequential) {
data.insert(dataSets);
dataSets.clear();
}
bool ok = count < 1e6;
if( !ok ) {
TraceEvent(/*ok ? SevInfo : */SevWarnAlways, "KVSMemCommitQueue", id)
.detail("Bytes", total)
.detail("Log", log)
.detail("Ops", count)
.detail("LastLoggedLocation", log_location)
.detail("Details", count);
}
ops.clear();
return total;
}
IDiskQueue::location log_op(OpType op, StringRef v1, StringRef v2) {
OpHeader h = {(int)op, v1.size(), v2.size()};
log->push( StringRef((const uint8_t*)&h, sizeof(h)) );
log->push( v1 );
log->push( v2 );
return log->push( LiteralStringRef("\x01") ); // Changes here should be reflected in OP_DISK_OVERHEAD
}
ACTOR static Future<Void> recover( KeyValueStoreMemory* self, bool exactRecovery ) {
loop {
// 'uncommitted' variables track something that might be rolled back by an OpRollback, and are copied into permanent variables
// (in self) in OpCommit. OpRollback does the reverse (copying the permanent versions over the uncommitted versions)
// the uncommitted and committed variables should be equal initially (to whatever makes sense if there are no committed transactions recovered)
state Key uncommittedNextKey = self->recoveredSnapshotKey;
state IDiskQueue::location uncommittedPrevSnapshotEnd = self->previousSnapshotEnd = self->log->getNextReadLocation(); // not really, but popping up to here does nothing
state IDiskQueue::location uncommittedSnapshotEnd = self->currentSnapshotEnd = uncommittedPrevSnapshotEnd;
state int zeroFillSize = 0;
state int dbgSnapshotItemCount=0;
state int dbgSnapshotEndCount=0;
state int dbgMutationCount=0;
state int dbgCommitCount=0;
state double startt = now();
state UID dbgid = self->id;
state Future<Void> loggingDelay = delay(1.0);
state OpQueue recoveryQueue;
state OpHeader h;
TraceEvent("KVSMemRecoveryStarted", self->id)
.detail("SnapshotEndLocation", uncommittedSnapshotEnd);
try {
loop {
{
Standalone<StringRef> data = wait( self->log->readNext( sizeof(OpHeader) ) );
if (data.size() != sizeof(OpHeader)) {
if (data.size()) {
TEST(true); // zero fill partial header in KeyValueStoreMemory
memset(&h, 0, sizeof(OpHeader));
memcpy(&h, data.begin(), data.size());
zeroFillSize = sizeof(OpHeader)-data.size() + h.len1 + h.len2 + 1;
}
TraceEvent("KVSMemRecoveryComplete", self->id)
.detail("Reason", "Non-header sized data read")
.detail("DataSize", data.size())
.detail("ZeroFillSize", zeroFillSize)
.detail("SnapshotEndLocation", uncommittedSnapshotEnd)
.detail("NextReadLoc", self->log->getNextReadLocation());
break;
}
h = *(OpHeader*)data.begin();
}
Standalone<StringRef> data = wait( self->log->readNext( h.len1 + h.len2+1 ) );
if (data.size() != h.len1 + h.len2 + 1) {
zeroFillSize = h.len1 + h.len2 + 1 - data.size();
TraceEvent("KVSMemRecoveryComplete", self->id)
.detail("Reason", "data specified by header does not exist")
.detail("DataSize", data.size())
.detail("ZeroFillSize", zeroFillSize)
.detail("SnapshotEndLocation", uncommittedSnapshotEnd)
.detail("OpCode", h.op)
.detail("NextReadLoc", self->log->getNextReadLocation());
break;
}
if (data[data.size()-1]) {
StringRef p1 = data.substr(0, h.len1);
StringRef p2 = data.substr(h.len1, h.len2);
if (h.op == OpSnapshotItem) { // snapshot data item
/*if (p1 < uncommittedNextKey) {
TraceEvent(SevError, "RecSnapshotBack", self->id)
.detail("NextKey", uncommittedNextKey)
.detail("P1", p1)
.detail("Nextlocation", self->log->getNextReadLocation());
}
ASSERT( p1 >= uncommittedNextKey );*/
if( p1 >= uncommittedNextKey )
recoveryQueue.clear( KeyRangeRef(uncommittedNextKey, p1), &uncommittedNextKey.arena() ); //FIXME: Not sure what this line is for, is it necessary?
recoveryQueue.set( KeyValueRef(p1, p2), &data.arena() );
uncommittedNextKey = keyAfter(p1);
++dbgSnapshotItemCount;
} else if (h.op == OpSnapshotEnd || h.op == OpSnapshotAbort) { // snapshot complete
TraceEvent("RecSnapshotEnd", self->id)
.detail("NextKey", uncommittedNextKey)
.detail("Nextlocation", self->log->getNextReadLocation())
.detail("IsSnapshotEnd", h.op == OpSnapshotEnd);
if(h.op == OpSnapshotEnd) {
uncommittedPrevSnapshotEnd = uncommittedSnapshotEnd;
uncommittedSnapshotEnd = self->log->getNextReadLocation();
recoveryQueue.clear_to_end( uncommittedNextKey, &uncommittedNextKey.arena() );
}
uncommittedNextKey = Key();
++dbgSnapshotEndCount;
} else if (h.op == OpSet) { // set mutation
recoveryQueue.set( KeyValueRef(p1,p2), &data.arena() );
++dbgMutationCount;
} else if (h.op == OpClear) { // clear mutation
recoveryQueue.clear( KeyRangeRef(p1,p2), &data.arena() );
++dbgMutationCount;
} else if (h.op == OpClearToEnd) { //clear all data from begin key to end
recoveryQueue.clear_to_end( p1, &data.arena() );
} else if (h.op == OpCommit) { // commit previous transaction
self->commit_queue(recoveryQueue, false);
++dbgCommitCount;
self->recoveredSnapshotKey = uncommittedNextKey;
self->previousSnapshotEnd = uncommittedPrevSnapshotEnd;
self->currentSnapshotEnd = uncommittedSnapshotEnd;
} else if (h.op == OpRollback) { // rollback previous transaction
recoveryQueue.rollback();
TraceEvent("KVSMemRecSnapshotRollback", self->id)
.detail("NextKey", uncommittedNextKey);
uncommittedNextKey = self->recoveredSnapshotKey;
uncommittedPrevSnapshotEnd = self->previousSnapshotEnd;
uncommittedSnapshotEnd = self->currentSnapshotEnd;
} else
ASSERT(false);
} else {
TraceEvent("KVSMemRecoverySkippedZeroFill", self->id)
.detail("PayloadSize", data.size())
.detail("ExpectedSize", h.len1 + h.len2 + 1)
.detail("OpCode", h.op)
.detail("EndsAt", self->log->getNextReadLocation());
}
if (loggingDelay.isReady()) {
TraceEvent("KVSMemRecoveryLogSnap", self->id)
.detail("SnapshotItems", dbgSnapshotItemCount)
.detail("SnapshotEnd", dbgSnapshotEndCount)
.detail("Mutations", dbgMutationCount)
.detail("Commits", dbgCommitCount)
.detail("EndsAt", self->log->getNextReadLocation());
loggingDelay = delay(1.0);
}
wait( yield() );
}
if (zeroFillSize) {
if( exactRecovery ) {
TraceEvent(SevError, "KVSMemExpectedExact", self->id);
ASSERT(false);
}
TEST( true ); // Fixing a partial commit at the end of the KeyValueStoreMemory log
for(int i=0; i<zeroFillSize; i++)
self->log->push( StringRef((const uint8_t*)"",1) );
}
//self->rollback(); not needed, since we are about to discard anything left in the recoveryQueue
//TraceEvent("KVSMemRecRollback", self->id).detail("QueueEmpty", data.size() == 0);
// make sure that before any new operations are added to the log that all uncommitted operations are "rolled back"
self->log_op( OpRollback, StringRef(), StringRef() ); // rollback previous transaction
self->committedDataSize = self->data.sumTo(self->data.end());
TraceEvent("KVSMemRecovered", self->id)
.detail("SnapshotItems", dbgSnapshotItemCount)
.detail("SnapshotEnd", dbgSnapshotEndCount)
.detail("Mutations", dbgMutationCount)
.detail("Commits", dbgCommitCount)
.detail("TimeTaken", now()-startt);
self->semiCommit();
return Void();
} catch( Error &e ) {
bool ok = e.code() == error_code_operation_cancelled || e.code() == error_code_file_not_found || e.code() == error_code_disk_adapter_reset;
TraceEvent(ok ? SevInfo : SevError, "ErrorDuringRecovery", dbgid).error(e, true);
if(e.code() != error_code_disk_adapter_reset) {
throw e;
}
self->data.clear();
self->dataSets.clear();
}
}
}
//Snapshots an entire data set
void fullSnapshot( IndexedSet< KeyValueMapPair, uint64_t> &snapshotData ) {
previousSnapshotEnd = log_op(OpSnapshotAbort, StringRef(), StringRef());
replaceContent = false;
//Clear everything since we are about to write the whole database
log_op(OpClearToEnd, allKeys.begin, StringRef());
int count = 0;
int64_t snapshotSize = 0;
for(auto kv = snapshotData.begin(); kv != snapshotData.end(); ++kv) {
log_op(OpSnapshotItem, kv->key, kv->value);
snapshotSize += kv->key.size() + kv->value.size() + OP_DISK_OVERHEAD;
++count;
}
TraceEvent("FullSnapshotEnd", id)
.detail("PreviousSnapshotEndLoc", previousSnapshotEnd)
.detail("SnapshotSize", snapshotSize)
.detail("SnapshotElements", count);
currentSnapshotEnd = log_op(OpSnapshotEnd, StringRef(), StringRef());
}
ACTOR static Future<Void> snapshot( KeyValueStoreMemory* self ) {
wait(self->recovering);
state Key nextKey = self->recoveredSnapshotKey;
state bool nextKeyAfter = false; //setting this to true is equilvent to setting nextKey = keyAfter(nextKey)
state uint64_t snapshotTotalWrittenBytes = 0;
state int lastDiff = 0;
state int snapItems = 0;
state uint64_t snapshotBytes = 0;
TraceEvent("KVSMemStartingSnapshot", self->id).detail("StartKey", nextKey);
loop {
wait( self->notifiedCommittedWriteBytes.whenAtLeast( snapshotTotalWrittenBytes + 1 ) );
if(self->resetSnapshot) {
nextKey = Key();
nextKeyAfter = false;
snapItems = 0;
snapshotBytes = 0;
self->resetSnapshot = false;
}
auto next = nextKeyAfter ? self->data.upper_bound(nextKey) : self->data.lower_bound(nextKey);
int diff = self->notifiedCommittedWriteBytes.get() - snapshotTotalWrittenBytes;
if( diff > lastDiff && diff > 5e7 )
TraceEvent(SevWarnAlways, "ManyWritesAtOnce", self->id)
.detail("CommittedWrites", self->notifiedCommittedWriteBytes.get())
.detail("SnapshotWrites", snapshotTotalWrittenBytes)
.detail("Diff", diff)
.detail("LastOperationWasASnapshot", nextKey == Key() && !nextKeyAfter);
lastDiff = diff;
if (next == self->data.end()) {
auto thisSnapshotEnd = self->log_op( OpSnapshotEnd, StringRef(), StringRef() );
//TraceEvent("SnapshotEnd", self->id)
// .detail("LastKey", lastKey.present() ? lastKey.get() : LiteralStringRef("<none>"))
// .detail("CurrentSnapshotEndLoc", self->currentSnapshotEnd)
// .detail("PreviousSnapshotEndLoc", self->previousSnapshotEnd)
// .detail("ThisSnapshotEnd", thisSnapshotEnd)
// .detail("Items", snapItems)
// .detail("CommittedWrites", self->notifiedCommittedWriteBytes.get())
// .detail("SnapshotSize", snapshotBytes);
ASSERT(thisSnapshotEnd >= self->currentSnapshotEnd);
self->previousSnapshotEnd = self->currentSnapshotEnd;
self->currentSnapshotEnd = thisSnapshotEnd;
if(++self->snapshotCount == 2) {
self->replaceContent = false;
}
nextKey = Key();
nextKeyAfter = false;
snapItems = 0;
snapshotBytes = 0;
snapshotTotalWrittenBytes += OP_DISK_OVERHEAD;
} else {
self->log_op( OpSnapshotItem, next->key, next->value );
nextKey = next->key;
nextKeyAfter = true;
snapItems++;
uint64_t opBytes = next->key.size() + next->value.size() + OP_DISK_OVERHEAD;
snapshotBytes += opBytes;
snapshotTotalWrittenBytes += opBytes;
}
}
}
ACTOR static Future<Optional<Value>> waitAndReadValue( KeyValueStoreMemory* self, Key key ) {
wait( self->recovering );
return self->readValue(key).get();
}
ACTOR static Future<Optional<Value>> waitAndReadValuePrefix( KeyValueStoreMemory* self, Key key, int maxLength) {
wait( self->recovering );
return self->readValuePrefix(key, maxLength).get();
}
ACTOR static Future<Standalone<RangeResultRef>> waitAndReadRange( KeyValueStoreMemory* self, KeyRange keys, int rowLimit, int byteLimit ) {
wait( self->recovering );
return self->readRange(keys, rowLimit, byteLimit).get();
}
ACTOR static Future<Void> waitAndCommit(KeyValueStoreMemory* self, bool sequential) {
wait(self->recovering);
wait(self->commit(sequential));
return Void();
}
ACTOR static Future<Void> commitAndUpdateVersions( KeyValueStoreMemory* self, Future<Void> commit, IDiskQueue::location location ) {
wait( commit );
self->log->pop(location);
return Void();
}
};
KeyValueStoreMemory::KeyValueStoreMemory( IDiskQueue* log, UID id, int64_t memoryLimit, bool disableSnapshot, bool replaceContent, bool exactRecovery )
: log(log), id(id), previousSnapshotEnd(-1), currentSnapshotEnd(-1), resetSnapshot(false), memoryLimit(memoryLimit), committedWriteBytes(0), overheadWriteBytes(0),
committedDataSize(0), transactionSize(0), transactionIsLarge(false), disableSnapshot(disableSnapshot), replaceContent(replaceContent), snapshotCount(0), firstCommitWithSnapshot(true)
{
recovering = recover( this, exactRecovery );
snapshotting = snapshot( this );
commitActors = actorCollection( addActor.getFuture() );
}
IKeyValueStore* keyValueStoreMemory( std::string const& basename, UID logID, int64_t memoryLimit, std::string ext ) {
TraceEvent("KVSMemOpening", logID).detail("Basename", basename).detail("MemoryLimit", memoryLimit);
IDiskQueue *log = openDiskQueue( basename, ext, logID, DiskQueueVersion::V1 );
return new KeyValueStoreMemory( log, logID, memoryLimit, false, false, false );
}
IKeyValueStore* keyValueStoreLogSystem( class IDiskQueue* queue, UID logID, int64_t memoryLimit, bool disableSnapshot, bool replaceContent, bool exactRecovery ) {
return new KeyValueStoreMemory( queue, logID, memoryLimit, disableSnapshot, replaceContent, exactRecovery );
}