foundationdb/flow/IRandom.h

182 lines
5.8 KiB
C++

/*
* IRandom.h
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef FLOW_IRANDOM_H
#define FLOW_IRANDOM_H
#pragma once
#include "flow/Platform.h"
#include "flow/FileIdentifier.h"
#include "flow/ObjectSerializerTraits.h"
#include "flow/FastRef.h"
#include <stdint.h>
#if (defined(__APPLE__))
#include <ext/hash_map>
#else
#include <unordered_map>
#endif
#include <functional>
#include <utility>
// Until we move to C++20, we'll need something to take the place of operator<=>.
// This is as good a place as any, I guess.
template <typename T>
typename std::enable_if<std::is_integral<T>::value, int>::type compare(T l, T r) {
const int gt = l > r;
const int lt = l < r;
return gt - lt;
// GCC also emits branchless code for the following, but the above performs
// slightly better in benchmarks as of this writing.
// return l < r ? -1 : l == r ? 0 : 1;
}
template <typename T, typename U>
typename std::enable_if<!std::is_integral<T>::value, int>::type compare(T const& l, U const& r) {
return l.compare(r);
}
template <class K, class V>
int compare(std::pair<K, V> const& l, std::pair<K, V> const& r) {
if (int cmp = compare(l.first, r.first)) {
return cmp;
}
return compare(l.second, r.second);
}
class UID {
uint64_t part[2];
public:
constexpr static FileIdentifier file_identifier = 15597147;
UID() { part[0] = part[1] = 0; }
constexpr UID(uint64_t a, uint64_t b) : part{ a, b } {}
std::string toString() const;
std::string shortString() const;
bool isValid() const { return part[0] || part[1]; }
int compare(const UID& r) const {
if (int cmp = ::compare(part[0], r.part[0])) {
return cmp;
}
return ::compare(part[1], r.part[1]);
}
bool operator == ( const UID& r ) const { return part[0]==r.part[0] && part[1]==r.part[1]; }
bool operator != ( const UID& r ) const { return part[0]!=r.part[0] || part[1]!=r.part[1]; }
bool operator < ( const UID& r ) const { return part[0] < r.part[0] || (part[0] == r.part[0] && part[1] < r.part[1]); }
bool operator>(const UID& r) const { return r < *this; }
bool operator<=(const UID& r) const { return !(*this > r); }
bool operator>=(const UID& r) const { return !(*this < r); }
uint64_t hash() const { return first(); }
uint64_t first() const { return part[0]; }
uint64_t second() const { return part[1]; }
static UID fromString( std::string const& );
template <class Ar>
void serialize_unversioned(Ar& ar) { // Changing this serialization format will affect key definitions, so can't simply be versioned!
serializer(ar, part[0], part[1]);
}
};
template <class Ar> void load( Ar& ar, UID& uid ) { uid.serialize_unversioned(ar); }
template <class Ar> void save( Ar& ar, UID const& uid ) { const_cast<UID&>(uid).serialize_unversioned(ar); }
template <>
struct scalar_traits<UID> : std::true_type {
constexpr static size_t size = sizeof(uint64_t[2]);
template <class Context>
static void save(uint8_t* out, const UID& uid, Context&) {
uint64_t* outI = reinterpret_cast<uint64_t*>(out);
outI[0] = uid.first();
outI[1] = uid.second();
}
template <class Context>
static void load(const uint8_t* i, UID& out, Context& context) {
const uint64_t* in = reinterpret_cast<const uint64_t*>(i);
out = UID(in[0], in[1]);
}
};
namespace std {
template <>
class hash<UID> {
public:
size_t operator()(UID const& u) const { return u.hash(); }
};
}
class IRandom {
public:
virtual double random01() = 0; // return random value in [0, 1]
virtual int randomInt(int min, int maxPlusOne) = 0;
virtual int64_t randomInt64(int64_t min, int64_t maxPlusOne) = 0;
virtual uint32_t randomUInt32() = 0;
virtual uint64_t randomUInt64() = 0;
virtual UID randomUniqueID() = 0;
virtual char randomAlphaNumeric() = 0;
virtual std::string randomAlphaNumeric( int length ) = 0;
virtual uint32_t randomSkewedUInt32(uint32_t min, uint32_t maxPlusOne) = 0;
virtual uint64_t peek() const = 0; // returns something that is probably different for different random states. Deterministic (and idempotent) for a deterministic generator.
virtual void addref() = 0;
virtual void delref() = 0;
// The following functions have fixed implementations for now:
template <class C>
decltype((std::declval<const C>()[0])) randomChoice(const C& c) {
return c[randomInt(0, (int)c.size())];
}
template <class C>
void randomShuffle( C& container ) {
int s = (int)container.size();
for(int i=0; i<s; i++) {
int j = randomInt( i, s );
if (i != j) {
std::swap( container[i], container[j] );
}
}
}
bool coinflip() { return (this->random01() < 0.5); }
};
extern FILE* randLog;
// Sets the seed for the deterministic random number generator on the current thread
void setThreadLocalDeterministicRandomSeed(uint32_t seed);
// Returns the random number generator that can be seeded. This generator should only
// be used in contexts where the choice to call it is deterministic.
//
// This generator is only deterministic if given a seed using setThreadLocalDeterministicRandomSeed
Reference<IRandom> deterministicRandom();
// A random number generator that cannot be manually seeded and may be called in
// non-deterministic contexts.
Reference<IRandom> nondeterministicRandom();
// Populates a buffer with a random sequence of bytes
void generateRandomData(uint8_t* buffer, int length);
#endif