foundationdb/fdbserver/DataDistribution.actor.cpp

6952 lines
278 KiB
C++

/*
* DataDistribution.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <set>
#include <sstream>
#include "fdbclient/FDBOptions.g.h"
#include "fdbclient/FDBTypes.h"
#include "fdbclient/Knobs.h"
#include "fdbclient/StorageServerInterface.h"
#include "fdbclient/SystemData.h"
#include "fdbclient/DatabaseContext.h"
#include "fdbclient/ManagementAPI.actor.h"
#include "fdbclient/RunTransaction.actor.h"
#include "fdbrpc/Replication.h"
#include "fdbserver/DataDistribution.actor.h"
#include "fdbserver/FDBExecHelper.actor.h"
#include "fdbserver/IKeyValueStore.h"
#include "fdbserver/Knobs.h"
#include "fdbserver/MoveKeys.actor.h"
#include "fdbserver/QuietDatabase.h"
#include "fdbserver/ServerDBInfo.h"
#include "fdbserver/TLogInterface.h"
#include "fdbserver/WaitFailure.h"
#include "flow/ActorCollection.h"
#include "flow/Arena.h"
#include "flow/BooleanParam.h"
#include "flow/Trace.h"
#include "flow/UnitTest.h"
#include "flow/actorcompiler.h" // This must be the last #include.
#include "flow/serialize.h"
class TCTeamInfo;
struct TCMachineInfo;
class TCMachineTeamInfo;
namespace {
// Helper function for STL containers, with flow-friendly error handling
template <class MapContainer, class K>
auto get(MapContainer& m, K const& k) -> decltype(m.at(k)) {
auto it = m.find(k);
ASSERT(it != m.end());
return it->second;
}
} // namespace
FDB_BOOLEAN_PARAM(IsPrimary);
ACTOR Future<Void> checkAndRemoveInvalidLocalityAddr(DDTeamCollection* self);
ACTOR Future<Void> removeWrongStoreType(DDTeamCollection* self);
ACTOR Future<Void> waitForAllDataRemoved(Database cx, UID serverID, Version addedVersion, DDTeamCollection* teams);
bool _exclusionSafetyCheck(std::vector<UID>& excludeServerIDs, DDTeamCollection* teamCollection);
struct TCServerInfo : public ReferenceCounted<TCServerInfo> {
UID id;
Version addedVersion; // Read version when this Server is added
DDTeamCollection* collection;
StorageServerInterface lastKnownInterface;
ProcessClass lastKnownClass;
std::vector<Reference<TCTeamInfo>> teams;
Reference<TCMachineInfo> machine;
Future<Void> tracker;
int64_t dataInFlightToServer;
ErrorOr<GetStorageMetricsReply> serverMetrics;
Promise<std::pair<StorageServerInterface, ProcessClass>> interfaceChanged;
Future<std::pair<StorageServerInterface, ProcessClass>> onInterfaceChanged;
Promise<Void> removed;
Future<Void> onRemoved;
Future<Void> onTSSPairRemoved;
Promise<Void> killTss;
Promise<Void> wakeUpTracker;
bool inDesiredDC;
LocalityEntry localityEntry;
Promise<Void> updated;
AsyncVar<bool> wrongStoreTypeToRemove;
AsyncVar<bool> ssVersionTooFarBehind;
// A storage server's StoreType does not change.
// To change storeType for an ip:port, we destroy the old one and create a new one.
KeyValueStoreType storeType; // Storage engine type
TCServerInfo(StorageServerInterface ssi,
DDTeamCollection* collection,
ProcessClass processClass,
bool inDesiredDC,
Reference<LocalitySet> storageServerSet,
Version addedVersion = 0)
: id(ssi.id()), addedVersion(addedVersion), collection(collection), lastKnownInterface(ssi),
lastKnownClass(processClass), dataInFlightToServer(0), onInterfaceChanged(interfaceChanged.getFuture()),
onRemoved(removed.getFuture()), onTSSPairRemoved(Never()), inDesiredDC(inDesiredDC),
storeType(KeyValueStoreType::END) {
if (!ssi.isTss()) {
localityEntry = ((LocalityMap<UID>*)storageServerSet.getPtr())->add(ssi.locality, &id);
}
}
bool isCorrectStoreType(KeyValueStoreType configStoreType) const {
// A new storage server's store type may not be set immediately.
// If a storage server does not reply its storeType, it will be tracked by failure monitor and removed.
return (storeType == configStoreType || storeType == KeyValueStoreType::END);
}
~TCServerInfo();
};
class TCMachineInfo : public ReferenceCounted<TCMachineInfo> {
TCMachineInfo() = default;
public:
std::vector<Reference<TCServerInfo>> serversOnMachine; // SOMEDAY: change from vector to set
Standalone<StringRef> machineID;
std::vector<Reference<TCMachineTeamInfo>> machineTeams; // SOMEDAY: split good and bad machine teams.
LocalityEntry localityEntry;
Reference<TCMachineInfo> clone() const {
auto result = Reference<TCMachineInfo>(new TCMachineInfo);
result->serversOnMachine = serversOnMachine;
result->machineID = machineID;
result->machineTeams = machineTeams;
result->localityEntry = localityEntry;
return result;
}
explicit TCMachineInfo(Reference<TCServerInfo> server, const LocalityEntry& entry) : localityEntry(entry) {
ASSERT(serversOnMachine.empty());
serversOnMachine.push_back(server);
LocalityData& locality = server->lastKnownInterface.locality;
ASSERT(locality.zoneId().present());
machineID = locality.zoneId().get();
}
std::string getServersIDStr() const {
std::stringstream ss;
if (serversOnMachine.empty())
return "[unset]";
for (const auto& server : serversOnMachine) {
ss << server->id.toString() << " ";
}
return std::move(ss).str();
}
};
ACTOR Future<Void> updateServerMetrics(Reference<TCServerInfo> server);
// TeamCollection's machine team information
class TCMachineTeamInfo : public ReferenceCounted<TCMachineTeamInfo> {
public:
std::vector<Reference<TCMachineInfo>> machines;
std::vector<Standalone<StringRef>> machineIDs;
std::vector<Reference<TCTeamInfo>> serverTeams;
UID id;
explicit TCMachineTeamInfo(std::vector<Reference<TCMachineInfo>> const& machines)
: machines(machines), id(deterministicRandom()->randomUniqueID()) {
machineIDs.reserve(machines.size());
for (int i = 0; i < machines.size(); i++) {
machineIDs.push_back(machines[i]->machineID);
}
sort(machineIDs.begin(), machineIDs.end());
}
int size() const {
ASSERT(machines.size() == machineIDs.size());
return machineIDs.size();
}
std::string getMachineIDsStr() const {
std::stringstream ss;
if (machineIDs.empty())
return "[unset]";
for (const auto& id : machineIDs) {
ss << id.contents().toString() << " ";
}
return std::move(ss).str();
}
bool operator==(TCMachineTeamInfo& rhs) const { return this->machineIDs == rhs.machineIDs; }
};
// TeamCollection's server team info.
class TCTeamInfo final : public ReferenceCounted<TCTeamInfo>, public IDataDistributionTeam {
std::vector<Reference<TCServerInfo>> servers;
std::vector<UID> serverIDs;
bool healthy;
bool wrongConfiguration; // True if any of the servers in the team have the wrong configuration
int priority;
UID id;
public:
Reference<TCMachineTeamInfo> machineTeam;
Future<Void> tracker;
explicit TCTeamInfo(std::vector<Reference<TCServerInfo>> const& servers)
: servers(servers), healthy(true), wrongConfiguration(false), priority(SERVER_KNOBS->PRIORITY_TEAM_HEALTHY),
id(deterministicRandom()->randomUniqueID()) {
if (servers.empty()) {
TraceEvent(SevInfo, "ConstructTCTeamFromEmptyServers").log();
}
serverIDs.reserve(servers.size());
for (int i = 0; i < servers.size(); i++) {
serverIDs.push_back(servers[i]->id);
}
}
std::string getTeamID() const override { return id.shortString(); }
std::vector<StorageServerInterface> getLastKnownServerInterfaces() const override {
std::vector<StorageServerInterface> v;
v.reserve(servers.size());
for (const auto& server : servers) {
v.push_back(server->lastKnownInterface);
}
return v;
}
int size() const override {
ASSERT(servers.size() == serverIDs.size());
return servers.size();
}
std::vector<UID> const& getServerIDs() const override { return serverIDs; }
const std::vector<Reference<TCServerInfo>>& getServers() const { return servers; }
std::string getServerIDsStr() const {
std::stringstream ss;
if (serverIDs.empty())
return "[unset]";
for (const auto& id : serverIDs) {
ss << id.toString() << " ";
}
return std::move(ss).str();
}
void addDataInFlightToTeam(int64_t delta) override {
for (int i = 0; i < servers.size(); i++)
servers[i]->dataInFlightToServer += delta;
}
int64_t getDataInFlightToTeam() const override {
int64_t dataInFlight = 0.0;
for (int i = 0; i < servers.size(); i++)
dataInFlight += servers[i]->dataInFlightToServer;
return dataInFlight;
}
int64_t getLoadBytes(bool includeInFlight = true, double inflightPenalty = 1.0) const override {
int64_t physicalBytes = getLoadAverage();
double minAvailableSpaceRatio = getMinAvailableSpaceRatio(includeInFlight);
int64_t inFlightBytes = includeInFlight ? getDataInFlightToTeam() / servers.size() : 0;
double availableSpaceMultiplier =
SERVER_KNOBS->AVAILABLE_SPACE_RATIO_CUTOFF /
(std::max(std::min(SERVER_KNOBS->AVAILABLE_SPACE_RATIO_CUTOFF, minAvailableSpaceRatio), 0.000001));
if (servers.size() > 2) {
// make sure in triple replication the penalty is high enough that you will always avoid a team with a
// member at 20% free space
availableSpaceMultiplier = availableSpaceMultiplier * availableSpaceMultiplier;
}
if (minAvailableSpaceRatio < SERVER_KNOBS->TARGET_AVAILABLE_SPACE_RATIO) {
TraceEvent(SevWarn, "DiskNearCapacity")
.suppressFor(1.0)
.detail("AvailableSpaceRatio", minAvailableSpaceRatio);
}
return (physicalBytes + (inflightPenalty * inFlightBytes)) * availableSpaceMultiplier;
}
int64_t getMinAvailableSpace(bool includeInFlight = true) const override {
int64_t minAvailableSpace = std::numeric_limits<int64_t>::max();
for (const auto& server : servers) {
if (server->serverMetrics.present()) {
auto& replyValue = server->serverMetrics.get();
ASSERT(replyValue.available.bytes >= 0);
ASSERT(replyValue.capacity.bytes >= 0);
int64_t bytesAvailable = replyValue.available.bytes;
if (includeInFlight) {
bytesAvailable -= server->dataInFlightToServer;
}
minAvailableSpace = std::min(bytesAvailable, minAvailableSpace);
}
}
return minAvailableSpace; // Could be negative
}
double getMinAvailableSpaceRatio(bool includeInFlight = true) const override {
double minRatio = 1.0;
for (const auto& server : servers) {
if (server->serverMetrics.present()) {
auto& replyValue = server->serverMetrics.get();
ASSERT(replyValue.available.bytes >= 0);
ASSERT(replyValue.capacity.bytes >= 0);
int64_t bytesAvailable = replyValue.available.bytes;
if (includeInFlight) {
bytesAvailable = std::max((int64_t)0, bytesAvailable - server->dataInFlightToServer);
}
if (replyValue.capacity.bytes == 0)
minRatio = 0;
else
minRatio = std::min(minRatio, ((double)bytesAvailable) / replyValue.capacity.bytes);
}
}
return minRatio;
}
bool hasHealthyAvailableSpace(double minRatio) const override {
return getMinAvailableSpaceRatio() >= minRatio && getMinAvailableSpace() > SERVER_KNOBS->MIN_AVAILABLE_SPACE;
}
Future<Void> updateStorageMetrics() override { return doUpdateStorageMetrics(this); }
bool isOptimal() const override {
for (const auto& server : servers) {
if (server->lastKnownClass.machineClassFitness(ProcessClass::Storage) > ProcessClass::UnsetFit) {
return false;
}
}
return true;
}
bool isWrongConfiguration() const override { return wrongConfiguration; }
void setWrongConfiguration(bool wrongConfiguration) override { this->wrongConfiguration = wrongConfiguration; }
bool isHealthy() const override { return healthy; }
void setHealthy(bool h) override { healthy = h; }
int getPriority() const override { return priority; }
void setPriority(int p) override { priority = p; }
void addref() override { ReferenceCounted<TCTeamInfo>::addref(); }
void delref() override { ReferenceCounted<TCTeamInfo>::delref(); }
bool hasServer(const UID& server) {
return std::find(serverIDs.begin(), serverIDs.end(), server) != serverIDs.end();
}
void addServers(const std::vector<UID>& servers) override {
serverIDs.reserve(servers.size());
for (int i = 0; i < servers.size(); i++) {
serverIDs.push_back(servers[i]);
}
}
private:
// Calculate an "average" of the metrics replies that we received. Penalize teams from which we did not receive all
// replies.
int64_t getLoadAverage() const {
int64_t bytesSum = 0;
int added = 0;
for (int i = 0; i < servers.size(); i++)
if (servers[i]->serverMetrics.present()) {
added++;
bytesSum += servers[i]->serverMetrics.get().load.bytes;
}
if (added < servers.size())
bytesSum *= 2;
return added == 0 ? 0 : bytesSum / added;
}
// Calculate the max of the metrics replies that we received.
ACTOR Future<Void> doUpdateStorageMetrics(TCTeamInfo* self) {
std::vector<Future<Void>> updates;
updates.reserve(self->servers.size());
for (int i = 0; i < self->servers.size(); i++)
updates.push_back(updateServerMetrics(self->servers[i]));
wait(waitForAll(updates));
return Void();
}
};
struct ServerStatus {
bool isWiggling;
bool isFailed;
bool isUndesired;
bool isWrongConfiguration;
bool initialized; // AsyncMap erases default constructed objects
LocalityData locality;
ServerStatus()
: isWiggling(false), isFailed(true), isUndesired(false), isWrongConfiguration(false), initialized(false) {}
ServerStatus(bool isFailed, bool isUndesired, bool isWiggling, LocalityData const& locality)
: isWiggling(isWiggling), isFailed(isFailed), isUndesired(isUndesired), isWrongConfiguration(false),
initialized(true), locality(locality) {}
bool isUnhealthy() const { return isFailed || isUndesired; }
const char* toString() const {
return isFailed ? "Failed" : isUndesired ? "Undesired" : isWiggling ? "Wiggling" : "Healthy";
}
bool operator==(ServerStatus const& r) const {
return isFailed == r.isFailed && isUndesired == r.isUndesired && isWiggling == r.isWiggling &&
isWrongConfiguration == r.isWrongConfiguration && locality == r.locality && initialized == r.initialized;
}
bool operator!=(ServerStatus const& r) const { return !(*this == r); }
// If a process has reappeared without the storage server that was on it (isFailed == true), we don't need to
// exclude it We also don't need to exclude processes who are in the wrong configuration (since those servers will
// be removed)
bool excludeOnRecruit() const { return !isFailed && !isWrongConfiguration; }
};
typedef AsyncMap<UID, ServerStatus> ServerStatusMap;
// Read keyservers, return unique set of teams
ACTOR Future<Reference<InitialDataDistribution>> getInitialDataDistribution(Database cx,
UID distributorId,
MoveKeysLock moveKeysLock,
std::vector<Optional<Key>> remoteDcIds,
const DDEnabledState* ddEnabledState) {
state Reference<InitialDataDistribution> result = makeReference<InitialDataDistribution>();
state Key beginKey = allKeys.begin;
state bool succeeded;
state Transaction tr(cx);
state std::map<UID, Optional<Key>> server_dc;
state std::map<std::vector<UID>, std::pair<std::vector<UID>, std::vector<UID>>> team_cache;
state std::vector<std::pair<StorageServerInterface, ProcessClass>> tss_servers;
// Get the server list in its own try/catch block since it modifies result. We don't want a subsequent failure
// causing entries to be duplicated
loop {
server_dc.clear();
succeeded = false;
try {
// Read healthyZone value which is later used to determine on/off of failure triggered DD
tr.setOption(FDBTransactionOptions::READ_SYSTEM_KEYS);
tr.setOption(FDBTransactionOptions::READ_LOCK_AWARE);
Optional<Value> val = wait(tr.get(healthyZoneKey));
if (val.present()) {
auto p = decodeHealthyZoneValue(val.get());
if (p.second > tr.getReadVersion().get() || p.first == ignoreSSFailuresZoneString) {
result->initHealthyZoneValue = Optional<Key>(p.first);
} else {
result->initHealthyZoneValue = Optional<Key>();
}
} else {
result->initHealthyZoneValue = Optional<Key>();
}
result->mode = 1;
tr.setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE);
Optional<Value> mode = wait(tr.get(dataDistributionModeKey));
if (mode.present()) {
BinaryReader rd(mode.get(), Unversioned());
rd >> result->mode;
}
if (!result->mode || !ddEnabledState->isDDEnabled()) {
// DD can be disabled persistently (result->mode = 0) or transiently (isDDEnabled() = 0)
TraceEvent(SevDebug, "GetInitialDataDistribution_DisabledDD").log();
return result;
}
state Future<std::vector<ProcessData>> workers = getWorkers(&tr);
state Future<RangeResult> serverList = tr.getRange(serverListKeys, CLIENT_KNOBS->TOO_MANY);
wait(success(workers) && success(serverList));
ASSERT(!serverList.get().more && serverList.get().size() < CLIENT_KNOBS->TOO_MANY);
std::map<Optional<Standalone<StringRef>>, ProcessData> id_data;
for (int i = 0; i < workers.get().size(); i++)
id_data[workers.get()[i].locality.processId()] = workers.get()[i];
succeeded = true;
for (int i = 0; i < serverList.get().size(); i++) {
auto ssi = decodeServerListValue(serverList.get()[i].value);
if (!ssi.isTss()) {
result->allServers.emplace_back(ssi, id_data[ssi.locality.processId()].processClass);
server_dc[ssi.id()] = ssi.locality.dcId();
} else {
tss_servers.emplace_back(ssi, id_data[ssi.locality.processId()].processClass);
}
}
break;
} catch (Error& e) {
wait(tr.onError(e));
ASSERT(!succeeded); // We shouldn't be retrying if we have already started modifying result in this loop
TraceEvent("GetInitialTeamsRetry", distributorId).log();
}
}
// If keyServers is too large to read in a single transaction, then we will have to break this process up into
// multiple transactions. In that case, each iteration should begin where the previous left off
while (beginKey < allKeys.end) {
TEST(beginKey > allKeys.begin); // Multi-transactional getInitialDataDistribution
loop {
succeeded = false;
try {
tr.setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE);
wait(checkMoveKeysLockReadOnly(&tr, moveKeysLock, ddEnabledState));
state RangeResult UIDtoTagMap = wait(tr.getRange(serverTagKeys, CLIENT_KNOBS->TOO_MANY));
ASSERT(!UIDtoTagMap.more && UIDtoTagMap.size() < CLIENT_KNOBS->TOO_MANY);
RangeResult keyServers = wait(krmGetRanges(&tr,
keyServersPrefix,
KeyRangeRef(beginKey, allKeys.end),
SERVER_KNOBS->MOVE_KEYS_KRM_LIMIT,
SERVER_KNOBS->MOVE_KEYS_KRM_LIMIT_BYTES));
succeeded = true;
std::vector<UID> src, dest, last;
// for each range
for (int i = 0; i < keyServers.size() - 1; i++) {
DDShardInfo info(keyServers[i].key);
decodeKeyServersValue(UIDtoTagMap, keyServers[i].value, src, dest);
if (remoteDcIds.size()) {
auto srcIter = team_cache.find(src);
if (srcIter == team_cache.end()) {
for (auto& id : src) {
auto& dc = server_dc[id];
if (std::find(remoteDcIds.begin(), remoteDcIds.end(), dc) != remoteDcIds.end()) {
info.remoteSrc.push_back(id);
} else {
info.primarySrc.push_back(id);
}
}
result->primaryTeams.insert(info.primarySrc);
result->remoteTeams.insert(info.remoteSrc);
team_cache[src] = std::make_pair(info.primarySrc, info.remoteSrc);
} else {
info.primarySrc = srcIter->second.first;
info.remoteSrc = srcIter->second.second;
}
if (dest.size()) {
info.hasDest = true;
auto destIter = team_cache.find(dest);
if (destIter == team_cache.end()) {
for (auto& id : dest) {
auto& dc = server_dc[id];
if (std::find(remoteDcIds.begin(), remoteDcIds.end(), dc) != remoteDcIds.end()) {
info.remoteDest.push_back(id);
} else {
info.primaryDest.push_back(id);
}
}
result->primaryTeams.insert(info.primaryDest);
result->remoteTeams.insert(info.remoteDest);
team_cache[dest] = std::make_pair(info.primaryDest, info.remoteDest);
} else {
info.primaryDest = destIter->second.first;
info.remoteDest = destIter->second.second;
}
}
} else {
info.primarySrc = src;
auto srcIter = team_cache.find(src);
if (srcIter == team_cache.end()) {
result->primaryTeams.insert(src);
team_cache[src] = std::pair<std::vector<UID>, std::vector<UID>>();
}
if (dest.size()) {
info.hasDest = true;
info.primaryDest = dest;
auto destIter = team_cache.find(dest);
if (destIter == team_cache.end()) {
result->primaryTeams.insert(dest);
team_cache[dest] = std::pair<std::vector<UID>, std::vector<UID>>();
}
}
}
result->shards.push_back(info);
}
ASSERT(keyServers.size() > 0);
beginKey = keyServers.end()[-1].key;
break;
} catch (Error& e) {
TraceEvent("GetInitialTeamsKeyServersRetry", distributorId).error(e);
wait(tr.onError(e));
ASSERT(!succeeded); // We shouldn't be retrying if we have already started modifying result in this loop
}
}
tr.reset();
}
// a dummy shard at the end with no keys or servers makes life easier for trackInitialShards()
result->shards.push_back(DDShardInfo(allKeys.end));
// add tss to server list AFTER teams are built
for (auto& it : tss_servers) {
result->allServers.push_back(it);
}
return result;
}
ACTOR Future<Void> storageServerTracker(struct DDTeamCollection* self,
Database cx,
TCServerInfo* server,
Promise<Void> errorOut,
Version addedVersion,
const DDEnabledState* ddEnabledState,
bool isTss);
Future<Void> teamTracker(struct DDTeamCollection* const& self,
Reference<TCTeamInfo> const& team,
bool const& badTeam,
bool const& redundantTeam);
struct DDTeamCollection : ReferenceCounted<DDTeamCollection> {
// clang-format off
enum class Status { NONE = 0, WIGGLING = 1, EXCLUDED = 2, FAILED = 3};
// addActor: add to actorCollection so that when an actor has error, the ActorCollection can catch the error.
// addActor is used to create the actorCollection when the dataDistributionTeamCollection is created
PromiseStream<Future<Void>> addActor;
Database cx;
UID distributorId;
DatabaseConfiguration configuration;
bool doBuildTeams;
bool lastBuildTeamsFailed;
Future<Void> teamBuilder;
AsyncTrigger restartTeamBuilder;
MoveKeysLock lock;
PromiseStream<RelocateShard> output;
std::vector<UID> allServers;
ServerStatusMap server_status;
int64_t unhealthyServers;
std::map<int,int> priority_teams;
std::map<UID, Reference<TCServerInfo>> server_info;
std::map<Key, std::vector<Reference<TCServerInfo>>> pid2server_info; // some process may serve as multiple storage servers
std::vector<AddressExclusion> wiggle_addresses; // collection of wiggling servers' address
std::map<UID, Reference<TCServerInfo>> tss_info_by_pair;
std::map<UID, Reference<TCServerInfo>> server_and_tss_info; // TODO could replace this with an efficient way to do a read-only concatenation of 2 data structures?
std::map<Key, int> lagging_zones; // zone to number of storage servers lagging
AsyncVar<bool> disableFailingLaggingServers;
Optional<Key> wigglingPid; // Process id of current wiggling storage server;
Reference<AsyncVar<bool>> pauseWiggle;
// machine_info has all machines info; key must be unique across processes on the same machine
std::map<Standalone<StringRef>, Reference<TCMachineInfo>> machine_info;
std::vector<Reference<TCMachineTeamInfo>> machineTeams; // all machine teams
LocalityMap<UID> machineLocalityMap; // locality info of machines
std::vector<Reference<TCTeamInfo>> teams;
std::vector<Reference<TCTeamInfo>> badTeams;
Reference<ShardsAffectedByTeamFailure> shardsAffectedByTeamFailure;
PromiseStream<UID> removedServers;
PromiseStream<UID> removedTSS;
std::set<UID> recruitingIds; // The IDs of the SS/TSS which are being recruited
std::set<NetworkAddress> recruitingLocalities;
Future<Void> initialFailureReactionDelay;
Future<Void> initializationDoneActor;
Promise<Void> serverTrackerErrorOut;
AsyncVar<int> recruitingStream;
Debouncer restartRecruiting;
int healthyTeamCount;
Reference<AsyncVar<bool>> zeroHealthyTeams;
int optimalTeamCount;
AsyncVar<bool> zeroOptimalTeams;
int bestTeamKeepStuckCount = 0;
bool isTssRecruiting; // If tss recruiting is waiting on a pair, don't consider DD recruiting for the purposes of QuietDB
// WIGGLING if an address is under storage wiggling.
// EXCLUDED if an address is in the excluded list in the database.
// FAILED if an address is permanently failed.
// NONE by default. Updated asynchronously (eventually)
AsyncMap< AddressExclusion, Status > excludedServers;
std::set<AddressExclusion> invalidLocalityAddr; // These address have invalidLocality for the configured storagePolicy
std::vector<Optional<Key>> includedDCs;
Optional<std::vector<Optional<Key>>> otherTrackedDCs;
bool primary;
Reference<AsyncVar<bool>> processingUnhealthy;
Future<Void> readyToStart;
Future<Void> checkTeamDelay;
Promise<Void> addSubsetComplete;
Future<Void> badTeamRemover;
Future<Void> checkInvalidLocalities;
Future<Void> wrongStoreTypeRemover;
Reference<LocalitySet> storageServerSet;
std::vector<DDTeamCollection*> teamCollections;
AsyncVar<Optional<Key>> healthyZone;
Future<bool> clearHealthyZoneFuture;
double medianAvailableSpace;
double lastMedianAvailableSpaceUpdate;
// clang-format on
int lowestUtilizationTeam;
int highestUtilizationTeam;
AsyncTrigger printDetailedTeamsInfo;
PromiseStream<GetMetricsRequest> getShardMetrics;
PromiseStream<Promise<int>> getUnhealthyRelocationCount;
Promise<UID> removeFailedServer;
Reference<EventCacheHolder> ddTrackerStartingEventHolder;
Reference<EventCacheHolder> teamCollectionInfoEventHolder;
Reference<EventCacheHolder> storageServerRecruitmentEventHolder;
void resetLocalitySet() {
storageServerSet = Reference<LocalitySet>(new LocalityMap<UID>());
LocalityMap<UID>* storageServerMap = (LocalityMap<UID>*)storageServerSet.getPtr();
for (auto& it : server_info) {
it.second->localityEntry = storageServerMap->add(it.second->lastKnownInterface.locality, &it.second->id);
}
}
bool satisfiesPolicy(const std::vector<Reference<TCServerInfo>>& team, int amount = -1) const {
std::vector<LocalityEntry> forcedEntries, resultEntries;
if (amount == -1) {
amount = team.size();
}
forcedEntries.reserve(amount);
for (int i = 0; i < amount; i++) {
forcedEntries.push_back(team[i]->localityEntry);
}
bool result = storageServerSet->selectReplicas(configuration.storagePolicy, forcedEntries, resultEntries);
return result && resultEntries.size() == 0;
}
DDTeamCollection(Database const& cx,
UID distributorId,
MoveKeysLock const& lock,
PromiseStream<RelocateShard> const& output,
Reference<ShardsAffectedByTeamFailure> const& shardsAffectedByTeamFailure,
DatabaseConfiguration configuration,
std::vector<Optional<Key>> includedDCs,
Optional<std::vector<Optional<Key>>> otherTrackedDCs,
Future<Void> readyToStart,
Reference<AsyncVar<bool>> zeroHealthyTeams,
IsPrimary primary,
Reference<AsyncVar<bool>> processingUnhealthy,
PromiseStream<GetMetricsRequest> getShardMetrics,
Promise<UID> removeFailedServer,
PromiseStream<Promise<int>> getUnhealthyRelocationCount)
: cx(cx), distributorId(distributorId), configuration(configuration), doBuildTeams(true),
lastBuildTeamsFailed(false), teamBuilder(Void()), lock(lock), output(output), unhealthyServers(0),
shardsAffectedByTeamFailure(shardsAffectedByTeamFailure),
initialFailureReactionDelay(
delayed(readyToStart, SERVER_KNOBS->INITIAL_FAILURE_REACTION_DELAY, TaskPriority::DataDistribution)),
initializationDoneActor(logOnCompletion(readyToStart && initialFailureReactionDelay, this)),
recruitingStream(0), restartRecruiting(SERVER_KNOBS->DEBOUNCE_RECRUITING_DELAY), healthyTeamCount(0),
zeroHealthyTeams(zeroHealthyTeams), optimalTeamCount(0), zeroOptimalTeams(true), isTssRecruiting(false),
includedDCs(includedDCs), otherTrackedDCs(otherTrackedDCs), primary(primary),
processingUnhealthy(processingUnhealthy), readyToStart(readyToStart),
checkTeamDelay(delay(SERVER_KNOBS->CHECK_TEAM_DELAY, TaskPriority::DataDistribution)), badTeamRemover(Void()),
checkInvalidLocalities(Void()), wrongStoreTypeRemover(Void()), storageServerSet(new LocalityMap<UID>()),
clearHealthyZoneFuture(true), medianAvailableSpace(SERVER_KNOBS->MIN_AVAILABLE_SPACE_RATIO),
lastMedianAvailableSpaceUpdate(0), lowestUtilizationTeam(0), highestUtilizationTeam(0),
getShardMetrics(getShardMetrics), getUnhealthyRelocationCount(getUnhealthyRelocationCount),
removeFailedServer(removeFailedServer),
ddTrackerStartingEventHolder(makeReference<EventCacheHolder>("DDTrackerStarting")),
teamCollectionInfoEventHolder(makeReference<EventCacheHolder>("TeamCollectionInfo")),
storageServerRecruitmentEventHolder(
makeReference<EventCacheHolder>("StorageServerRecruitment_" + distributorId.toString())) {
if (!primary || configuration.usableRegions == 1) {
TraceEvent("DDTrackerStarting", distributorId)
.detail("State", "Inactive")
.trackLatest(ddTrackerStartingEventHolder->trackingKey);
}
}
~DDTeamCollection() {
TraceEvent("DDTeamCollectionDestructed", distributorId).detail("Primary", primary);
// Cancel the teamBuilder to avoid creating new teams after teams are cancelled.
teamBuilder.cancel();
// TraceEvent("DDTeamCollectionDestructed", distributorId)
// .detail("Primary", primary)
// .detail("TeamBuilderDestroyed", server_info.size());
// Other teamCollections also hold pointer to this teamCollection;
// TeamTracker may access the destructed DDTeamCollection if we do not reset the pointer
for (int i = 0; i < teamCollections.size(); i++) {
if (teamCollections[i] != nullptr && teamCollections[i] != this) {
for (int j = 0; j < teamCollections[i]->teamCollections.size(); ++j) {
if (teamCollections[i]->teamCollections[j] == this) {
teamCollections[i]->teamCollections[j] = nullptr;
}
}
}
}
// Team tracker has pointers to DDTeamCollections both in primary and remote.
// The following kills a reference cycle between the teamTracker actor and the TCTeamInfo that both holds and is
// held by the actor It also ensures that the trackers are done fiddling with healthyTeamCount before we free
// this
for (auto& team : teams) {
team->tracker.cancel();
}
// The commented TraceEvent log is useful in detecting what is running during the destruction
// TraceEvent("DDTeamCollectionDestructed", distributorId)
// .detail("Primary", primary)
// .detail("TeamTrackerDestroyed", teams.size());
for (auto& badTeam : badTeams) {
badTeam->tracker.cancel();
}
// TraceEvent("DDTeamCollectionDestructed", distributorId)
// .detail("Primary", primary)
// .detail("BadTeamTrackerDestroyed", badTeams.size());
// The following makes sure that, even if a reference to a team is held in the DD Queue, the tracker will be
// stopped
// before the server_status map to which it has a pointer, is destroyed.
for (auto& [_, info] : server_and_tss_info) {
info->tracker.cancel();
info->collection = nullptr;
}
// TraceEvent("DDTeamCollectionDestructed", distributorId)
// .detail("Primary", primary)
// .detail("ServerTrackerDestroyed", server_info.size());
}
void addLaggingStorageServer(Key zoneId) {
lagging_zones[zoneId]++;
if (lagging_zones.size() > std::max(1, configuration.storageTeamSize - 1) &&
!disableFailingLaggingServers.get())
disableFailingLaggingServers.set(true);
}
void removeLaggingStorageServer(Key zoneId) {
auto iter = lagging_zones.find(zoneId);
ASSERT(iter != lagging_zones.end());
iter->second--;
ASSERT(iter->second >= 0);
if (iter->second == 0)
lagging_zones.erase(iter);
if (lagging_zones.size() <= std::max(1, configuration.storageTeamSize - 1) &&
disableFailingLaggingServers.get())
disableFailingLaggingServers.set(false);
}
ACTOR static Future<Void> logOnCompletion(Future<Void> signal, DDTeamCollection* self) {
wait(signal);
wait(delay(SERVER_KNOBS->LOG_ON_COMPLETION_DELAY, TaskPriority::DataDistribution));
if (!self->primary || self->configuration.usableRegions == 1) {
TraceEvent("DDTrackerStarting", self->distributorId)
.detail("State", "Active")
.trackLatest(self->ddTrackerStartingEventHolder->trackingKey);
}
return Void();
}
ACTOR static Future<Void> interruptableBuildTeams(DDTeamCollection* self) {
if (!self->addSubsetComplete.isSet()) {
wait(addSubsetOfEmergencyTeams(self));
self->addSubsetComplete.send(Void());
}
loop {
choose {
when(wait(self->buildTeams(self))) { return Void(); }
when(wait(self->restartTeamBuilder.onTrigger())) {}
}
}
}
ACTOR static Future<Void> checkBuildTeams(DDTeamCollection* self) {
wait(self->checkTeamDelay);
while (!self->teamBuilder.isReady())
wait(self->teamBuilder);
if (self->doBuildTeams && self->readyToStart.isReady()) {
self->doBuildTeams = false;
self->teamBuilder = self->interruptableBuildTeams(self);
wait(self->teamBuilder);
}
return Void();
}
// Returns a random healthy team, which does not contain excludeServer.
std::vector<UID> getRandomHealthyTeam(const UID& excludeServer) {
std::vector<int> candidates, backup;
for (int i = 0; i < teams.size(); ++i) {
if (teams[i]->isHealthy() && !teams[i]->hasServer(excludeServer)) {
candidates.push_back(i);
} else if (teams[i]->size() - (teams[i]->hasServer(excludeServer) ? 1 : 0) > 0) {
// If a team has at least one other server besides excludeServer, select it
// as a backup candidate.
backup.push_back(i);
}
}
// Prefer a healthy team not containing excludeServer.
if (candidates.size() > 0) {
return teams[deterministicRandom()->randomInt(0, candidates.size())]->getServerIDs();
}
// The backup choice is a team with at least one server besides excludeServer, in this
// case, the team will be possibily relocated to a healthy destination later by DD.
if (backup.size() > 0) {
std::vector<UID> res = teams[deterministicRandom()->randomInt(0, backup.size())]->getServerIDs();
std::remove(res.begin(), res.end(), excludeServer);
return res;
}
return std::vector<UID>();
}
// SOMEDAY: Make bestTeam better about deciding to leave a shard where it is (e.g. in PRIORITY_TEAM_HEALTHY case)
// use keys, src, dest, metrics, priority, system load, etc.. to decide...
ACTOR static Future<Void> getTeam(DDTeamCollection* self, GetTeamRequest req) {
try {
wait(self->checkBuildTeams(self));
if (now() - self->lastMedianAvailableSpaceUpdate > SERVER_KNOBS->AVAILABLE_SPACE_UPDATE_DELAY) {
self->lastMedianAvailableSpaceUpdate = now();
std::vector<double> teamAvailableSpace;
teamAvailableSpace.reserve(self->teams.size());
for (const auto& team : self->teams) {
if (team->isHealthy()) {
teamAvailableSpace.push_back(team->getMinAvailableSpaceRatio());
}
}
size_t pivot = teamAvailableSpace.size() / 2;
if (teamAvailableSpace.size() > 1) {
std::nth_element(
teamAvailableSpace.begin(), teamAvailableSpace.begin() + pivot, teamAvailableSpace.end());
self->medianAvailableSpace =
std::max(SERVER_KNOBS->MIN_AVAILABLE_SPACE_RATIO,
std::min(SERVER_KNOBS->TARGET_AVAILABLE_SPACE_RATIO, teamAvailableSpace[pivot]));
} else {
self->medianAvailableSpace = SERVER_KNOBS->MIN_AVAILABLE_SPACE_RATIO;
}
if (self->medianAvailableSpace < SERVER_KNOBS->TARGET_AVAILABLE_SPACE_RATIO) {
TraceEvent(SevWarn, "DDTeamMedianAvailableSpaceTooSmall", self->distributorId)
.detail("MedianAvailableSpaceRatio", self->medianAvailableSpace)
.detail("TargetAvailableSpaceRatio", SERVER_KNOBS->TARGET_AVAILABLE_SPACE_RATIO)
.detail("Primary", self->primary);
self->printDetailedTeamsInfo.trigger();
}
}
bool foundSrc = false;
for (int i = 0; i < req.src.size(); i++) {
if (self->server_info.count(req.src[i])) {
foundSrc = true;
break;
}
}
// Select the best team
// Currently the metric is minimum used disk space (adjusted for data in flight)
// Only healthy teams may be selected. The team has to be healthy at the moment we update
// shardsAffectedByTeamFailure or we could be dropping a shard on the floor (since team
// tracking is "edge triggered")
// SOMEDAY: Account for capacity, load (when shardMetrics load is high)
// self->teams.size() can be 0 under the ConfigureTest.txt test when we change configurations
// The situation happens rarely. We may want to eliminate this situation someday
if (!self->teams.size()) {
req.reply.send(std::make_pair(Optional<Reference<IDataDistributionTeam>>(), foundSrc));
return Void();
}
int64_t bestLoadBytes = 0;
Optional<Reference<IDataDistributionTeam>> bestOption;
std::vector<Reference<IDataDistributionTeam>> randomTeams;
const std::set<UID> completeSources(req.completeSources.begin(), req.completeSources.end());
// Note: this block does not apply any filters from the request
if (!req.wantsNewServers) {
for (int i = 0; i < req.completeSources.size(); i++) {
if (!self->server_info.count(req.completeSources[i])) {
continue;
}
auto& teamList = self->server_info[req.completeSources[i]]->teams;
for (int j = 0; j < teamList.size(); j++) {
bool found = true;
auto serverIDs = teamList[j]->getServerIDs();
for (int k = 0; k < teamList[j]->size(); k++) {
if (!completeSources.count(serverIDs[k])) {
found = false;
break;
}
}
if (found && teamList[j]->isHealthy()) {
bestOption = teamList[j];
req.reply.send(std::make_pair(bestOption, foundSrc));
return Void();
}
}
}
}
if (req.wantsTrueBest) {
ASSERT(!bestOption.present());
auto& startIndex =
req.preferLowerUtilization ? self->lowestUtilizationTeam : self->highestUtilizationTeam;
if (startIndex >= self->teams.size()) {
startIndex = 0;
}
int bestIndex = startIndex;
for (int i = 0; i < self->teams.size(); i++) {
int currentIndex = (startIndex + i) % self->teams.size();
if (self->teams[currentIndex]->isHealthy() &&
(!req.preferLowerUtilization ||
self->teams[currentIndex]->hasHealthyAvailableSpace(self->medianAvailableSpace))) {
int64_t loadBytes = self->teams[currentIndex]->getLoadBytes(true, req.inflightPenalty);
if ((!bestOption.present() || (req.preferLowerUtilization && loadBytes < bestLoadBytes) ||
(!req.preferLowerUtilization && loadBytes > bestLoadBytes)) &&
(!req.teamMustHaveShards ||
self->shardsAffectedByTeamFailure->hasShards(ShardsAffectedByTeamFailure::Team(
self->teams[currentIndex]->getServerIDs(), self->primary)))) {
bestLoadBytes = loadBytes;
bestOption = self->teams[currentIndex];
bestIndex = currentIndex;
}
}
}
startIndex = bestIndex;
} else {
int nTries = 0;
while (randomTeams.size() < SERVER_KNOBS->BEST_TEAM_OPTION_COUNT &&
nTries < SERVER_KNOBS->BEST_TEAM_MAX_TEAM_TRIES) {
// If unhealthy team is majority, we may not find an ok dest in this while loop
Reference<IDataDistributionTeam> dest = deterministicRandom()->randomChoice(self->teams);
bool ok = dest->isHealthy() && (!req.preferLowerUtilization ||
dest->hasHealthyAvailableSpace(self->medianAvailableSpace));
for (int i = 0; ok && i < randomTeams.size(); i++) {
if (randomTeams[i]->getServerIDs() == dest->getServerIDs()) {
ok = false;
break;
}
}
ok = ok && (!req.teamMustHaveShards ||
self->shardsAffectedByTeamFailure->hasShards(
ShardsAffectedByTeamFailure::Team(dest->getServerIDs(), self->primary)));
if (ok)
randomTeams.push_back(dest);
else
nTries++;
}
// Log BestTeamStuck reason when we have healthy teams but they do not have healthy free space
if (randomTeams.empty() && !self->zeroHealthyTeams->get()) {
self->bestTeamKeepStuckCount++;
if (g_network->isSimulated()) {
TraceEvent(SevWarn, "GetTeamReturnEmpty").detail("HealthyTeams", self->healthyTeamCount);
}
} else {
self->bestTeamKeepStuckCount = 0;
}
for (int i = 0; i < randomTeams.size(); i++) {
int64_t loadBytes = randomTeams[i]->getLoadBytes(true, req.inflightPenalty);
if (!bestOption.present() || (req.preferLowerUtilization && loadBytes < bestLoadBytes) ||
(!req.preferLowerUtilization && loadBytes > bestLoadBytes)) {
bestLoadBytes = loadBytes;
bestOption = randomTeams[i];
}
}
}
// Note: req.completeSources can be empty and all servers (and server teams) can be unhealthy.
// We will get stuck at this! This only happens when a DC fails. No need to consider it right now.
// Note: this block does not apply any filters from the request
if (!bestOption.present() && self->zeroHealthyTeams->get()) {
// Attempt to find the unhealthy source server team and return it
for (int i = 0; i < req.completeSources.size(); i++) {
if (!self->server_info.count(req.completeSources[i])) {
continue;
}
auto& teamList = self->server_info[req.completeSources[i]]->teams;
for (int j = 0; j < teamList.size(); j++) {
bool found = true;
auto serverIDs = teamList[j]->getServerIDs();
for (int k = 0; k < teamList[j]->size(); k++) {
if (!completeSources.count(serverIDs[k])) {
found = false;
break;
}
}
if (found) {
bestOption = teamList[j];
req.reply.send(std::make_pair(bestOption, foundSrc));
return Void();
}
}
}
}
// if (!bestOption.present()) {
// TraceEvent("GetTeamRequest").detail("Request", req.getDesc());
// self->traceAllInfo(true);
// }
req.reply.send(std::make_pair(bestOption, foundSrc));
return Void();
} catch (Error& e) {
if (e.code() != error_code_actor_cancelled)
req.reply.sendError(e);
throw;
}
}
int64_t getDebugTotalDataInFlight() const {
int64_t total = 0;
for (auto itr = server_info.begin(); itr != server_info.end(); ++itr)
total += itr->second->dataInFlightToServer;
return total;
}
ACTOR static Future<Void> addSubsetOfEmergencyTeams(DDTeamCollection* self) {
state int idx = 0;
state std::vector<Reference<TCServerInfo>> servers;
state std::vector<UID> serverIds;
state Reference<LocalitySet> tempSet = Reference<LocalitySet>(new LocalityMap<UID>());
state LocalityMap<UID>* tempMap = (LocalityMap<UID>*)tempSet.getPtr();
for (; idx < self->badTeams.size(); idx++) {
servers.clear();
for (const auto& server : self->badTeams[idx]->getServers()) {
if (server->inDesiredDC && !self->server_status.get(server->id).isUnhealthy()) {
servers.push_back(server);
}
}
// For the bad team that is too big (too many servers), we will try to find a subset of servers in the team
// to construct a new healthy team, so that moving data to the new healthy team will not
// cause too much data movement overhead
// FIXME: This code logic can be simplified.
if (servers.size() >= self->configuration.storageTeamSize) {
bool foundTeam = false;
for (int j = 0; j < servers.size() - self->configuration.storageTeamSize + 1 && !foundTeam; j++) {
auto& serverTeams = servers[j]->teams;
for (int k = 0; k < serverTeams.size(); k++) {
auto& testTeam = serverTeams[k]->getServerIDs();
bool allInTeam = true; // All servers in testTeam belong to the healthy servers
for (int l = 0; l < testTeam.size(); l++) {
bool foundServer = false;
for (auto it : servers) {
if (it->id == testTeam[l]) {
foundServer = true;
break;
}
}
if (!foundServer) {
allInTeam = false;
break;
}
}
if (allInTeam) {
foundTeam = true;
break;
}
}
}
if (!foundTeam) {
if (self->satisfiesPolicy(servers)) {
if (servers.size() == self->configuration.storageTeamSize ||
self->satisfiesPolicy(servers, self->configuration.storageTeamSize)) {
servers.resize(self->configuration.storageTeamSize);
self->addTeam(servers, true);
// self->traceTeamCollectionInfo(); // Trace at the end of the function
} else {
tempSet->clear();
for (auto it : servers) {
tempMap->add(it->lastKnownInterface.locality, &it->id);
}
std::vector<LocalityEntry> resultEntries, forcedEntries;
bool result = tempSet->selectReplicas(
self->configuration.storagePolicy, forcedEntries, resultEntries);
ASSERT(result && resultEntries.size() == self->configuration.storageTeamSize);
serverIds.clear();
for (auto& it : resultEntries) {
serverIds.push_back(*tempMap->getObject(it));
}
std::sort(serverIds.begin(), serverIds.end());
self->addTeam(serverIds.begin(), serverIds.end(), true);
}
} else {
serverIds.clear();
for (auto it : servers) {
serverIds.push_back(it->id);
}
TraceEvent(SevWarnAlways, "CannotAddSubset", self->distributorId)
.detail("Servers", describe(serverIds));
}
}
}
wait(yield());
}
// Trace and record the current number of teams for correctness test
self->traceTeamCollectionInfo();
return Void();
}
ACTOR static Future<Void> init(DDTeamCollection* self,
Reference<InitialDataDistribution> initTeams,
const DDEnabledState* ddEnabledState) {
self->healthyZone.set(initTeams->initHealthyZoneValue);
// SOMEDAY: If some servers have teams and not others (or some servers have more data than others) and there is
// an address/locality collision, should we preferentially mark the least used server as undesirable?
for (auto i = initTeams->allServers.begin(); i != initTeams->allServers.end(); ++i) {
if (self->shouldHandleServer(i->first)) {
if (!self->isValidLocality(self->configuration.storagePolicy, i->first.locality)) {
TraceEvent(SevWarnAlways, "MissingLocality")
.detail("Server", i->first.uniqueID)
.detail("Locality", i->first.locality.toString());
auto addr = i->first.stableAddress();
self->invalidLocalityAddr.insert(AddressExclusion(addr.ip, addr.port));
if (self->checkInvalidLocalities.isReady()) {
self->checkInvalidLocalities = checkAndRemoveInvalidLocalityAddr(self);
self->addActor.send(self->checkInvalidLocalities);
}
}
self->addServer(i->first, i->second, self->serverTrackerErrorOut, 0, ddEnabledState);
}
}
state std::set<std::vector<UID>>::iterator teamIter =
self->primary ? initTeams->primaryTeams.begin() : initTeams->remoteTeams.begin();
state std::set<std::vector<UID>>::iterator teamIterEnd =
self->primary ? initTeams->primaryTeams.end() : initTeams->remoteTeams.end();
for (; teamIter != teamIterEnd; ++teamIter) {
self->addTeam(teamIter->begin(), teamIter->end(), true);
wait(yield());
}
return Void();
}
// Check if server or machine has a valid locality based on configured replication policy
bool isValidLocality(Reference<IReplicationPolicy> storagePolicy, const LocalityData& locality) const {
// Future: Once we add simulation test that misconfigure a cluster, such as not setting some locality entries,
// DD_VALIDATE_LOCALITY should always be true. Otherwise, simulation test may fail.
if (!SERVER_KNOBS->DD_VALIDATE_LOCALITY) {
// Disable the checking if locality is valid
return true;
}
std::set<std::string> replicationPolicyKeys = storagePolicy->attributeKeys();
for (auto& policy : replicationPolicyKeys) {
if (!locality.isPresent(policy)) {
return false;
}
}
return true;
}
void evaluateTeamQuality() const {
int teamCount = teams.size(), serverCount = allServers.size();
double teamsPerServer = (double)teamCount * configuration.storageTeamSize / serverCount;
ASSERT(serverCount == server_info.size());
int minTeams = std::numeric_limits<int>::max();
int maxTeams = std::numeric_limits<int>::min();
double varTeams = 0;
std::map<Optional<Standalone<StringRef>>, int> machineTeams;
for (const auto& [id, info] : server_info) {
if (!server_status.get(id).isUnhealthy()) {
int stc = info->teams.size();
minTeams = std::min(minTeams, stc);
maxTeams = std::max(maxTeams, stc);
varTeams += (stc - teamsPerServer) * (stc - teamsPerServer);
// Use zoneId as server's machine id
machineTeams[info->lastKnownInterface.locality.zoneId()] += stc;
}
}
varTeams /= teamsPerServer * teamsPerServer;
int minMachineTeams = std::numeric_limits<int>::max();
int maxMachineTeams = std::numeric_limits<int>::min();
for (auto m = machineTeams.begin(); m != machineTeams.end(); ++m) {
minMachineTeams = std::min(minMachineTeams, m->second);
maxMachineTeams = std::max(maxMachineTeams, m->second);
}
TraceEvent(minTeams > 0 ? SevInfo : SevWarn, "DataDistributionTeamQuality", distributorId)
.detail("Servers", serverCount)
.detail("Teams", teamCount)
.detail("TeamsPerServer", teamsPerServer)
.detail("Variance", varTeams / serverCount)
.detail("ServerMinTeams", minTeams)
.detail("ServerMaxTeams", maxTeams)
.detail("MachineMinTeams", minMachineTeams)
.detail("MachineMaxTeams", maxMachineTeams);
}
int overlappingMembers(const std::vector<UID>& team) const {
if (team.empty()) {
return 0;
}
int maxMatchingServers = 0;
const UID& serverID = team[0];
const auto it = server_info.find(serverID);
ASSERT(it != server_info.end());
const auto& usedTeams = it->second->teams;
for (const auto& usedTeam : usedTeams) {
auto used = usedTeam->getServerIDs();
int teamIdx = 0;
int usedIdx = 0;
int matchingServers = 0;
while (teamIdx < team.size() && usedIdx < used.size()) {
if (team[teamIdx] == used[usedIdx]) {
matchingServers++;
teamIdx++;
usedIdx++;
} else if (team[teamIdx] < used[usedIdx]) {
teamIdx++;
} else {
usedIdx++;
}
}
ASSERT(matchingServers > 0);
maxMatchingServers = std::max(maxMatchingServers, matchingServers);
if (maxMatchingServers == team.size()) {
return maxMatchingServers;
}
}
return maxMatchingServers;
}
int overlappingMachineMembers(std::vector<Standalone<StringRef>> const& team) const {
if (team.empty()) {
return 0;
}
int maxMatchingServers = 0;
auto it = machine_info.find(team[0]);
ASSERT(it != machine_info.end());
auto const& machineTeams = it->second->machineTeams;
for (auto const& usedTeam : machineTeams) {
auto used = usedTeam->machineIDs;
int teamIdx = 0;
int usedIdx = 0;
int matchingServers = 0;
while (teamIdx < team.size() && usedIdx < used.size()) {
if (team[teamIdx] == used[usedIdx]) {
matchingServers++;
teamIdx++;
usedIdx++;
} else if (team[teamIdx] < used[usedIdx]) {
teamIdx++;
} else {
usedIdx++;
}
}
ASSERT(matchingServers > 0);
maxMatchingServers = std::max(maxMatchingServers, matchingServers);
if (maxMatchingServers == team.size()) {
return maxMatchingServers;
}
}
return maxMatchingServers;
}
Reference<TCMachineTeamInfo> findMachineTeam(std::vector<Standalone<StringRef>> const& machineIDs) const {
if (machineIDs.empty()) {
return Reference<TCMachineTeamInfo>();
}
Standalone<StringRef> machineID = machineIDs[0];
for (auto& machineTeam : get(machine_info, machineID)->machineTeams) {
if (machineTeam->machineIDs == machineIDs) {
return machineTeam;
}
}
return Reference<TCMachineTeamInfo>();
}
// Assume begin to end is sorted by std::sort
// Assume InputIt is iterator to UID
// Note: We must allow creating empty teams because empty team is created when a remote DB is initialized.
// The empty team is used as the starting point to move data to the remote DB
// begin : the start of the team member ID
// end : end of the team member ID
// isIntialTeam : False when the team is added by addTeamsBestOf(); True otherwise, e.g.,
// when the team added at init() when we recreate teams by looking up DB
template <class InputIt>
void addTeam(InputIt begin, InputIt end, bool isInitialTeam) {
std::vector<Reference<TCServerInfo>> newTeamServers;
for (auto i = begin; i != end; ++i) {
if (server_info.find(*i) != server_info.end()) {
newTeamServers.push_back(server_info[*i]);
}
}
addTeam(newTeamServers, isInitialTeam);
}
void addTeam(const std::vector<Reference<TCServerInfo>>& newTeamServers,
bool isInitialTeam,
bool redundantTeam = false) {
auto teamInfo = makeReference<TCTeamInfo>(newTeamServers);
// Move satisfiesPolicy to the end for performance benefit
bool badTeam = redundantTeam || teamInfo->size() != configuration.storageTeamSize ||
!satisfiesPolicy(teamInfo->getServers());
teamInfo->tracker = teamTracker(this, teamInfo, badTeam, redundantTeam);
// ASSERT( teamInfo->serverIDs.size() > 0 ); //team can be empty at DB initialization
if (badTeam) {
badTeams.push_back(teamInfo);
return;
}
// For a good team, we add it to teams and create machine team for it when necessary
teams.push_back(teamInfo);
for (int i = 0; i < newTeamServers.size(); ++i) {
newTeamServers[i]->teams.push_back(teamInfo);
}
// Find or create machine team for the server team
// Add the reference of machineTeam (with machineIDs) into process team
std::vector<Standalone<StringRef>> machineIDs;
for (auto server = newTeamServers.begin(); server != newTeamServers.end(); ++server) {
ASSERT_WE_THINK((*server)->machine.isValid());
machineIDs.push_back((*server)->machine->machineID);
}
sort(machineIDs.begin(), machineIDs.end());
Reference<TCMachineTeamInfo> machineTeamInfo = findMachineTeam(machineIDs);
// A team is not initial team if it is added by addTeamsBestOf() which always create a team with correct size
// A non-initial team must have its machine team created and its size must be correct
ASSERT(isInitialTeam || machineTeamInfo.isValid());
// Create a machine team if it does not exist
// Note an initial team may be added at init() even though the team size is not storageTeamSize
if (!machineTeamInfo.isValid() && !machineIDs.empty()) {
machineTeamInfo = addMachineTeam(machineIDs.begin(), machineIDs.end());
}
if (!machineTeamInfo.isValid()) {
TraceEvent(SevWarn, "AddTeamWarning")
.detail("NotFoundMachineTeam", "OKIfTeamIsEmpty")
.detail("TeamInfo", teamInfo->getDesc());
}
teamInfo->machineTeam = machineTeamInfo;
machineTeamInfo->serverTeams.push_back(teamInfo);
if (g_network->isSimulated()) {
// Update server team information for consistency check in simulation
traceTeamCollectionInfo();
}
}
void addTeam(std::set<UID> const& team, bool isInitialTeam) { addTeam(team.begin(), team.end(), isInitialTeam); }
// Add a machine team specified by input machines
Reference<TCMachineTeamInfo> addMachineTeam(std::vector<Reference<TCMachineInfo>> machines) {
auto machineTeamInfo = makeReference<TCMachineTeamInfo>(machines);
machineTeams.push_back(machineTeamInfo);
// Assign machine teams to machine
for (auto machine : machines) {
// A machine's machineTeams vector should not hold duplicate machineTeam members
ASSERT_WE_THINK(std::count(machine->machineTeams.begin(), machine->machineTeams.end(), machineTeamInfo) ==
0);
machine->machineTeams.push_back(machineTeamInfo);
}
return machineTeamInfo;
}
// Add a machine team by using the machineIDs from begin to end
Reference<TCMachineTeamInfo> addMachineTeam(std::vector<Standalone<StringRef>>::iterator begin,
std::vector<Standalone<StringRef>>::iterator end) {
std::vector<Reference<TCMachineInfo>> machines;
for (auto i = begin; i != end; ++i) {
if (machine_info.find(*i) != machine_info.end()) {
machines.push_back(machine_info[*i]);
} else {
TraceEvent(SevWarn, "AddMachineTeamError").detail("MachineIDNotExist", i->contents().toString());
}
}
return addMachineTeam(machines);
}
// Group storage servers (process) based on their machineId in LocalityData
// All created machines are healthy
// Return The number of healthy servers we grouped into machines
int constructMachinesFromServers() {
int totalServerIndex = 0;
for (auto i = server_info.begin(); i != server_info.end(); ++i) {
if (!server_status.get(i->first).isUnhealthy()) {
checkAndCreateMachine(i->second);
totalServerIndex++;
}
}
return totalServerIndex;
}
void traceConfigInfo() const {
TraceEvent("DDConfig", distributorId)
.detail("StorageTeamSize", configuration.storageTeamSize)
.detail("DesiredTeamsPerServer", SERVER_KNOBS->DESIRED_TEAMS_PER_SERVER)
.detail("MaxTeamsPerServer", SERVER_KNOBS->MAX_TEAMS_PER_SERVER)
.detail("StoreType", configuration.storageServerStoreType);
}
void traceServerInfo() const {
int i = 0;
TraceEvent("ServerInfo", distributorId).detail("Size", server_info.size());
for (auto& server : server_info) {
TraceEvent("ServerInfo", distributorId)
.detail("ServerInfoIndex", i++)
.detail("ServerID", server.first.toString())
.detail("ServerTeamOwned", server.second->teams.size())
.detail("MachineID", server.second->machine->machineID.contents().toString())
.detail("StoreType", server.second->storeType.toString())
.detail("InDesiredDC", server.second->inDesiredDC);
}
for (auto& server : server_info) {
const UID& uid = server.first;
TraceEvent("ServerStatus", distributorId)
.detail("ServerID", uid)
.detail("Healthy", !server_status.get(uid).isUnhealthy())
.detail("MachineIsValid", get(server_info, uid)->machine.isValid())
.detail("MachineTeamSize",
get(server_info, uid)->machine.isValid() ? get(server_info, uid)->machine->machineTeams.size()
: -1);
}
}
void traceServerTeamInfo() const {
int i = 0;
TraceEvent("ServerTeamInfo", distributorId).detail("Size", teams.size());
for (auto& team : teams) {
TraceEvent("ServerTeamInfo", distributorId)
.detail("TeamIndex", i++)
.detail("Healthy", team->isHealthy())
.detail("TeamSize", team->size())
.detail("MemberIDs", team->getServerIDsStr())
.detail("TeamID", team->getTeamID());
}
}
void traceMachineInfo() const {
int i = 0;
TraceEvent("MachineInfo").detail("Size", machine_info.size());
for (auto& machine : machine_info) {
TraceEvent("MachineInfo", distributorId)
.detail("MachineInfoIndex", i++)
.detail("Healthy", isMachineHealthy(machine.second))
.detail("MachineID", machine.first.contents().toString())
.detail("MachineTeamOwned", machine.second->machineTeams.size())
.detail("ServerNumOnMachine", machine.second->serversOnMachine.size())
.detail("ServersID", machine.second->getServersIDStr());
}
}
void traceMachineTeamInfo() const {
int i = 0;
TraceEvent("MachineTeamInfo", distributorId).detail("Size", machineTeams.size());
for (auto& team : machineTeams) {
TraceEvent("MachineTeamInfo", distributorId)
.detail("TeamIndex", i++)
.detail("MachineIDs", team->getMachineIDsStr())
.detail("ServerTeams", team->serverTeams.size());
}
}
// Locality string is hashed into integer, used as KeyIndex
// For better understand which KeyIndex is used for locality, we print this info in trace.
void traceLocalityArrayIndexName() const {
TraceEvent("LocalityRecordKeyName").detail("Size", machineLocalityMap._keymap->_lookuparray.size());
for (int i = 0; i < machineLocalityMap._keymap->_lookuparray.size(); ++i) {
TraceEvent("LocalityRecordKeyIndexName")
.detail("KeyIndex", i)
.detail("KeyName", machineLocalityMap._keymap->_lookuparray[i]);
}
}
void traceMachineLocalityMap() const {
int i = 0;
TraceEvent("MachineLocalityMap", distributorId).detail("Size", machineLocalityMap.size());
for (auto& uid : machineLocalityMap.getObjects()) {
Reference<LocalityRecord> record = machineLocalityMap.getRecord(i);
if (record.isValid()) {
TraceEvent("MachineLocalityMap", distributorId)
.detail("LocalityIndex", i++)
.detail("UID", uid->toString())
.detail("LocalityRecord", record->toString());
} else {
TraceEvent("MachineLocalityMap")
.detail("LocalityIndex", i++)
.detail("UID", uid->toString())
.detail("LocalityRecord", "[NotFound]");
}
}
}
// To enable verbose debug info, set shouldPrint to true
void traceAllInfo(bool shouldPrint = false) const {
if (!shouldPrint)
return;
// Record all team collections IDs
for (int i = 0; i < teamCollections.size(); ++i) {
if (teamCollections[i] != nullptr) {
TraceEvent("TraceAllInfo", distributorId)
.detail("TeamCollectionIndex", i)
.detail("Primary", teamCollections[i]->primary);
}
}
TraceEvent("TraceAllInfo", distributorId).detail("Primary", primary);
traceConfigInfo();
traceServerInfo();
traceServerTeamInfo();
traceMachineInfo();
traceMachineTeamInfo();
traceLocalityArrayIndexName();
traceMachineLocalityMap();
}
// We must rebuild machine locality map whenever the entry in the map is inserted or removed
void rebuildMachineLocalityMap() {
machineLocalityMap.clear();
int numHealthyMachine = 0;
for (auto machine = machine_info.begin(); machine != machine_info.end(); ++machine) {
if (machine->second->serversOnMachine.empty()) {
TraceEvent(SevWarn, "RebuildMachineLocalityMapError")
.detail("Machine", machine->second->machineID.toString())
.detail("NumServersOnMachine", 0);
continue;
}
if (!isMachineHealthy(machine->second)) {
continue;
}
Reference<TCServerInfo> representativeServer = machine->second->serversOnMachine[0];
auto& locality = representativeServer->lastKnownInterface.locality;
if (!isValidLocality(configuration.storagePolicy, locality)) {
TraceEvent(SevWarn, "RebuildMachineLocalityMapError")
.detail("Machine", machine->second->machineID.toString())
.detail("InvalidLocality", locality.toString());
continue;
}
const LocalityEntry& localityEntry = machineLocalityMap.add(locality, &representativeServer->id);
machine->second->localityEntry = localityEntry;
++numHealthyMachine;
}
}
// Create machineTeamsToBuild number of machine teams
// No operation if machineTeamsToBuild is 0
// Note: The creation of machine teams should not depend on server teams:
// No matter how server teams will be created, we will create the same set of machine teams;
// We should never use server team number in building machine teams.
//
// Five steps to create each machine team, which are document in the function
// Reuse ReplicationPolicy selectReplicas func to select machine team
// return number of added machine teams
int addBestMachineTeams(int machineTeamsToBuild) {
int addedMachineTeams = 0;
ASSERT(machineTeamsToBuild >= 0);
// The number of machines is always no smaller than the storageTeamSize in a correct configuration
ASSERT(machine_info.size() >= configuration.storageTeamSize);
// Future: Consider if we should overbuild more machine teams to
// allow machineTeamRemover() to get a more balanced machine teams per machine
// Step 1: Create machineLocalityMap which will be used in building machine team
rebuildMachineLocalityMap();
// Add a team in each iteration
while (addedMachineTeams < machineTeamsToBuild || notEnoughMachineTeamsForAMachine()) {
// Step 2: Get least used machines from which we choose machines as a machine team
std::vector<Reference<TCMachineInfo>> leastUsedMachines; // A less used machine has less number of teams
int minTeamCount = std::numeric_limits<int>::max();
for (auto& machine : machine_info) {
// Skip invalid machine whose representative server is not in server_info
ASSERT_WE_THINK(server_info.find(machine.second->serversOnMachine[0]->id) != server_info.end());
// Skip unhealthy machines
if (!isMachineHealthy(machine.second))
continue;
// Skip machine with incomplete locality
if (!isValidLocality(configuration.storagePolicy,
machine.second->serversOnMachine[0]->lastKnownInterface.locality)) {
continue;
}
// Invariant: We only create correct size machine teams.
// When configuration (e.g., team size) is changed, the DDTeamCollection will be destroyed and rebuilt
// so that the invariant will not be violated.
int teamCount = machine.second->machineTeams.size();
if (teamCount < minTeamCount) {
leastUsedMachines.clear();
minTeamCount = teamCount;
}
if (teamCount == minTeamCount) {
leastUsedMachines.push_back(machine.second);
}
}
std::vector<UID*> team;
std::vector<LocalityEntry> forcedAttributes;
// Step 4: Reuse Policy's selectReplicas() to create team for the representative process.
std::vector<UID*> bestTeam;
int bestScore = std::numeric_limits<int>::max();
int maxAttempts = SERVER_KNOBS->BEST_OF_AMT; // BEST_OF_AMT = 4
for (int i = 0; i < maxAttempts && i < 100; ++i) {
// Step 3: Create a representative process for each machine.
// Construct forcedAttribute from leastUsedMachines.
// We will use forcedAttribute to call existing function to form a team
if (leastUsedMachines.size()) {
forcedAttributes.clear();
// Randomly choose 1 least used machine
Reference<TCMachineInfo> tcMachineInfo = deterministicRandom()->randomChoice(leastUsedMachines);
ASSERT(!tcMachineInfo->serversOnMachine.empty());
LocalityEntry process = tcMachineInfo->localityEntry;
forcedAttributes.push_back(process);
TraceEvent("ChosenMachine")
.detail("MachineInfo", tcMachineInfo->machineID)
.detail("LeaseUsedMachinesSize", leastUsedMachines.size())
.detail("ForcedAttributesSize", forcedAttributes.size());
} else {
// when leastUsedMachine is empty, we will never find a team later, so we can simply return.
return addedMachineTeams;
}
// Choose a team that balances the # of teams per server among the teams
// that have the least-utilized server
team.clear();
ASSERT_WE_THINK(forcedAttributes.size() == 1);
auto success = machineLocalityMap.selectReplicas(configuration.storagePolicy, forcedAttributes, team);
// NOTE: selectReplicas() should always return success when storageTeamSize = 1
ASSERT_WE_THINK(configuration.storageTeamSize > 1 || (configuration.storageTeamSize == 1 && success));
if (!success) {
continue; // Try up to maxAttempts, since next time we may choose a different forcedAttributes
}
ASSERT(forcedAttributes.size() > 0);
team.push_back((UID*)machineLocalityMap.getObject(forcedAttributes[0]));
// selectReplicas() may NEVER return server not in server_info.
for (auto& pUID : team) {
ASSERT_WE_THINK(server_info.find(*pUID) != server_info.end());
}
// selectReplicas() should always return a team with correct size. otherwise, it has a bug
ASSERT(team.size() == configuration.storageTeamSize);
int score = 0;
std::vector<Standalone<StringRef>> machineIDs;
for (auto process = team.begin(); process != team.end(); process++) {
Reference<TCServerInfo> server = server_info[**process];
score += server->machine->machineTeams.size();
Standalone<StringRef> machine_id = server->lastKnownInterface.locality.zoneId().get();
machineIDs.push_back(machine_id);
}
// Only choose healthy machines into machine team
ASSERT_WE_THINK(isMachineTeamHealthy(machineIDs));
std::sort(machineIDs.begin(), machineIDs.end());
int overlap = overlappingMachineMembers(machineIDs);
if (overlap == machineIDs.size()) {
maxAttempts += 1;
continue;
}
score += SERVER_KNOBS->DD_OVERLAP_PENALTY * overlap;
// SOMEDAY: randomly pick one from teams with the lowest score
if (score < bestScore) {
// bestTeam is the team which has the smallest number of teams its team members belong to.
bestTeam = team;
bestScore = score;
}
}
// bestTeam should be a new valid team to be added into machine team now
// Step 5: Restore machine from its representative process team and get the machine team
if (bestTeam.size() == configuration.storageTeamSize) {
// machineIDs is used to quickly check if the machineIDs belong to an existed team
// machines keep machines reference for performance benefit by avoiding looking up machine by machineID
std::vector<Reference<TCMachineInfo>> machines;
for (auto process = bestTeam.begin(); process < bestTeam.end(); process++) {
Reference<TCMachineInfo> machine = server_info[**process]->machine;
machines.push_back(machine);
}
addMachineTeam(machines);
addedMachineTeams++;
} else {
traceAllInfo(true);
TraceEvent(SevWarn, "DataDistributionBuildTeams", distributorId)
.detail("Primary", primary)
.detail("Reason", "Unable to make desired machine Teams");
lastBuildTeamsFailed = true;
break;
}
}
return addedMachineTeams;
}
bool isMachineTeamHealthy(std::vector<Standalone<StringRef>> const& machineIDs) const {
int healthyNum = 0;
// A healthy machine team should have the desired number of machines
if (machineIDs.size() != configuration.storageTeamSize)
return false;
for (auto& id : machineIDs) {
auto& machine = get(machine_info, id);
if (isMachineHealthy(machine)) {
healthyNum++;
}
}
return (healthyNum == machineIDs.size());
}
bool isMachineTeamHealthy(TCMachineTeamInfo const& machineTeam) const {
int healthyNum = 0;
// A healthy machine team should have the desired number of machines
if (machineTeam.size() != configuration.storageTeamSize)
return false;
for (auto& machine : machineTeam.machines) {
if (isMachineHealthy(machine)) {
healthyNum++;
}
}
return (healthyNum == machineTeam.machines.size());
}
bool isMachineHealthy(Reference<TCMachineInfo> const& machine) const {
if (!machine.isValid() || machine_info.find(machine->machineID) == machine_info.end() ||
machine->serversOnMachine.empty()) {
return false;
}
// Healthy machine has at least one healthy server
for (auto& server : machine->serversOnMachine) {
if (!server_status.get(server->id).isUnhealthy()) {
return true;
}
}
return false;
}
// Return the healthy server with the least number of correct-size server teams
Reference<TCServerInfo> findOneLeastUsedServer() const {
std::vector<Reference<TCServerInfo>> leastUsedServers;
int minTeams = std::numeric_limits<int>::max();
for (auto& server : server_info) {
// Only pick healthy server, which is not failed or excluded.
if (server_status.get(server.first).isUnhealthy())
continue;
if (!isValidLocality(configuration.storagePolicy, server.second->lastKnownInterface.locality))
continue;
int numTeams = server.second->teams.size();
if (numTeams < minTeams) {
minTeams = numTeams;
leastUsedServers.clear();
}
if (minTeams == numTeams) {
leastUsedServers.push_back(server.second);
}
}
if (leastUsedServers.empty()) {
// If we cannot find a healthy server with valid locality
TraceEvent("NoHealthyAndValidLocalityServers")
.detail("Servers", server_info.size())
.detail("UnhealthyServers", unhealthyServers);
return Reference<TCServerInfo>();
} else {
return deterministicRandom()->randomChoice(leastUsedServers);
}
}
// Randomly choose one machine team that has chosenServer and has the correct size
// When configuration is changed, we may have machine teams with old storageTeamSize
Reference<TCMachineTeamInfo> findOneRandomMachineTeam(TCServerInfo const& chosenServer) const {
if (!chosenServer.machine->machineTeams.empty()) {
std::vector<Reference<TCMachineTeamInfo>> healthyMachineTeamsForChosenServer;
for (auto& mt : chosenServer.machine->machineTeams) {
if (isMachineTeamHealthy(*mt)) {
healthyMachineTeamsForChosenServer.push_back(mt);
}
}
if (!healthyMachineTeamsForChosenServer.empty()) {
return deterministicRandom()->randomChoice(healthyMachineTeamsForChosenServer);
}
}
// If we cannot find a healthy machine team
TraceEvent("NoHealthyMachineTeamForServer")
.detail("ServerID", chosenServer.id)
.detail("MachineTeams", chosenServer.machine->machineTeams.size());
return Reference<TCMachineTeamInfo>();
}
// A server team should always come from servers on a machine team
// Check if it is true
bool isOnSameMachineTeam(TCTeamInfo const& team) const {
std::vector<Standalone<StringRef>> machineIDs;
for (const auto& server : team.getServers()) {
if (!server->machine.isValid())
return false;
machineIDs.push_back(server->machine->machineID);
}
std::sort(machineIDs.begin(), machineIDs.end());
int numExistance = 0;
for (const auto& server : team.getServers()) {
for (const auto& candidateMachineTeam : server->machine->machineTeams) {
std::sort(candidateMachineTeam->machineIDs.begin(), candidateMachineTeam->machineIDs.end());
if (machineIDs == candidateMachineTeam->machineIDs) {
numExistance++;
break;
}
}
}
return (numExistance == team.size());
}
// Sanity check the property of teams in unit test
// Return true if all server teams belong to machine teams
bool sanityCheckTeams() const {
for (auto& team : teams) {
if (isOnSameMachineTeam(*team) == false) {
return false;
}
}
return true;
}
int calculateHealthyServerCount() const {
int serverCount = 0;
for (auto i = server_info.begin(); i != server_info.end(); ++i) {
if (!server_status.get(i->first).isUnhealthy()) {
++serverCount;
}
}
return serverCount;
}
int calculateHealthyMachineCount() const {
int totalHealthyMachineCount = 0;
for (auto& m : machine_info) {
if (isMachineHealthy(m.second)) {
++totalHealthyMachineCount;
}
}
return totalHealthyMachineCount;
}
std::pair<int64_t, int64_t> calculateMinMaxServerTeamsOnServer() const {
int64_t minTeams = std::numeric_limits<int64_t>::max();
int64_t maxTeams = 0;
for (auto& server : server_info) {
if (server_status.get(server.first).isUnhealthy()) {
continue;
}
minTeams = std::min((int64_t)server.second->teams.size(), minTeams);
maxTeams = std::max((int64_t)server.second->teams.size(), maxTeams);
}
return std::make_pair(minTeams, maxTeams);
}
std::pair<int64_t, int64_t> calculateMinMaxMachineTeamsOnMachine() const {
int64_t minTeams = std::numeric_limits<int64_t>::max();
int64_t maxTeams = 0;
for (auto& machine : machine_info) {
if (!isMachineHealthy(machine.second)) {
continue;
}
minTeams = std::min<int64_t>((int64_t)machine.second->machineTeams.size(), minTeams);
maxTeams = std::max<int64_t>((int64_t)machine.second->machineTeams.size(), maxTeams);
}
return std::make_pair(minTeams, maxTeams);
}
// Sanity check
bool isServerTeamCountCorrect(Reference<TCMachineTeamInfo> const& mt) const {
int num = 0;
bool ret = true;
for (auto& team : teams) {
if (team->machineTeam->machineIDs == mt->machineIDs) {
++num;
}
}
if (num != mt->serverTeams.size()) {
ret = false;
TraceEvent(SevError, "ServerTeamCountOnMachineIncorrect")
.detail("MachineTeam", mt->getMachineIDsStr())
.detail("ServerTeamsSize", mt->serverTeams.size())
.detail("CountedServerTeams", num);
}
return ret;
}
// Find the machine team with the least number of server teams
std::pair<Reference<TCMachineTeamInfo>, int> getMachineTeamWithLeastProcessTeams() const {
Reference<TCMachineTeamInfo> retMT;
int minNumProcessTeams = std::numeric_limits<int>::max();
for (auto& mt : machineTeams) {
if (EXPENSIVE_VALIDATION) {
ASSERT(isServerTeamCountCorrect(mt));
}
if (mt->serverTeams.size() < minNumProcessTeams) {
minNumProcessTeams = mt->serverTeams.size();
retMT = mt;
}
}
return std::pair<Reference<TCMachineTeamInfo>, int>(retMT, minNumProcessTeams);
}
// Find the machine team whose members are on the most number of machine teams, same logic as serverTeamRemover
std::pair<Reference<TCMachineTeamInfo>, int> getMachineTeamWithMostMachineTeams() const {
Reference<TCMachineTeamInfo> retMT;
int maxNumMachineTeams = 0;
int targetMachineTeamNumPerMachine =
(SERVER_KNOBS->DESIRED_TEAMS_PER_SERVER * (configuration.storageTeamSize + 1)) / 2;
for (auto& mt : machineTeams) {
// The representative team number for the machine team mt is
// the minimum number of machine teams of a machine in the team mt
int representNumMachineTeams = std::numeric_limits<int>::max();
for (auto& m : mt->machines) {
representNumMachineTeams = std::min<int>(representNumMachineTeams, m->machineTeams.size());
}
if (representNumMachineTeams > targetMachineTeamNumPerMachine &&
representNumMachineTeams > maxNumMachineTeams) {
maxNumMachineTeams = representNumMachineTeams;
retMT = mt;
}
}
return std::pair<Reference<TCMachineTeamInfo>, int>(retMT, maxNumMachineTeams);
}
// Find the server team whose members are on the most number of server teams
std::pair<Reference<TCTeamInfo>, int> getServerTeamWithMostProcessTeams() const {
Reference<TCTeamInfo> retST;
int maxNumProcessTeams = 0;
int targetTeamNumPerServer = (SERVER_KNOBS->DESIRED_TEAMS_PER_SERVER * (configuration.storageTeamSize + 1)) / 2;
for (auto& t : teams) {
// The minimum number of teams of a server in a team is the representative team number for the team t
int representNumProcessTeams = std::numeric_limits<int>::max();
for (auto& server : t->getServers()) {
representNumProcessTeams = std::min<int>(representNumProcessTeams, server->teams.size());
}
// We only remove the team whose representNumProcessTeams is larger than the targetTeamNumPerServer number
// otherwise, teamBuilder will build the to-be-removed team again
if (representNumProcessTeams > targetTeamNumPerServer && representNumProcessTeams > maxNumProcessTeams) {
maxNumProcessTeams = representNumProcessTeams;
retST = t;
}
}
return std::pair<Reference<TCTeamInfo>, int>(retST, maxNumProcessTeams);
}
int getHealthyMachineTeamCount() const {
int healthyTeamCount = 0;
for (const auto& mt : machineTeams) {
ASSERT(mt->machines.size() == configuration.storageTeamSize);
if (isMachineTeamHealthy(*mt)) {
++healthyTeamCount;
}
}
return healthyTeamCount;
}
// Each machine is expected to have targetMachineTeamNumPerMachine
// Return true if there exists a machine that does not have enough teams.
bool notEnoughMachineTeamsForAMachine() const {
// If we want to remove the machine team with most machine teams, we use the same logic as
// notEnoughTeamsForAServer
int targetMachineTeamNumPerMachine =
SERVER_KNOBS->TR_FLAG_REMOVE_MT_WITH_MOST_TEAMS
? (SERVER_KNOBS->DESIRED_TEAMS_PER_SERVER * (configuration.storageTeamSize + 1)) / 2
: SERVER_KNOBS->DESIRED_TEAMS_PER_SERVER;
for (auto& m : machine_info) {
// If SERVER_KNOBS->TR_FLAG_REMOVE_MT_WITH_MOST_TEAMS is false,
// The desired machine team number is not the same with the desired server team number
// in notEnoughTeamsForAServer() below, because the machineTeamRemover() does not
// remove a machine team with the most number of machine teams.
if (m.second->machineTeams.size() < targetMachineTeamNumPerMachine && isMachineHealthy(m.second)) {
return true;
}
}
return false;
}
// Each server is expected to have targetTeamNumPerServer teams.
// Return true if there exists a server that does not have enough teams.
bool notEnoughTeamsForAServer() const {
// We build more teams than we finally want so that we can use serverTeamRemover() actor to remove the teams
// whose member belong to too many teams. This allows us to get a more balanced number of teams per server.
// We want to ensure every server has targetTeamNumPerServer teams.
// The numTeamsPerServerFactor is calculated as
// (SERVER_KNOBS->DESIRED_TEAMS_PER_SERVER + ideal_num_of_teams_per_server) / 2
// ideal_num_of_teams_per_server is (#teams * storageTeamSize) / #servers, which is
// (#servers * DESIRED_TEAMS_PER_SERVER * storageTeamSize) / #servers.
int targetTeamNumPerServer = (SERVER_KNOBS->DESIRED_TEAMS_PER_SERVER * (configuration.storageTeamSize + 1)) / 2;
ASSERT(targetTeamNumPerServer > 0);
for (auto& s : server_info) {
if (s.second->teams.size() < targetTeamNumPerServer && !server_status.get(s.first).isUnhealthy()) {
return true;
}
}
return false;
}
// Create server teams based on machine teams
// Before the number of machine teams reaches the threshold, build a machine team for each server team
// When it reaches the threshold, first try to build a server team with existing machine teams; if failed,
// build an extra machine team and record the event in trace
int addTeamsBestOf(int teamsToBuild, int desiredTeams, int maxTeams) {
ASSERT(teamsToBuild >= 0);
ASSERT_WE_THINK(machine_info.size() > 0 || server_info.size() == 0);
ASSERT_WE_THINK(SERVER_KNOBS->DESIRED_TEAMS_PER_SERVER >= 1 && configuration.storageTeamSize >= 1);
int addedMachineTeams = 0;
int addedTeams = 0;
// Exclude machine teams who have members in the wrong configuration.
// When we change configuration, we may have machine teams with storageTeamSize in the old configuration.
int healthyMachineTeamCount = getHealthyMachineTeamCount();
int totalMachineTeamCount = machineTeams.size();
int totalHealthyMachineCount = calculateHealthyMachineCount();
int desiredMachineTeams = SERVER_KNOBS->DESIRED_TEAMS_PER_SERVER * totalHealthyMachineCount;
int maxMachineTeams = SERVER_KNOBS->MAX_TEAMS_PER_SERVER * totalHealthyMachineCount;
// machineTeamsToBuild mimics how the teamsToBuild is calculated in buildTeams()
int machineTeamsToBuild = std::max(
0, std::min(desiredMachineTeams - healthyMachineTeamCount, maxMachineTeams - totalMachineTeamCount));
TraceEvent("BuildMachineTeams")
.detail("TotalHealthyMachine", totalHealthyMachineCount)
.detail("HealthyMachineTeamCount", healthyMachineTeamCount)
.detail("DesiredMachineTeams", desiredMachineTeams)
.detail("MaxMachineTeams", maxMachineTeams)
.detail("MachineTeamsToBuild", machineTeamsToBuild);
// Pre-build all machine teams until we have the desired number of machine teams
if (machineTeamsToBuild > 0 || notEnoughMachineTeamsForAMachine()) {
addedMachineTeams = addBestMachineTeams(machineTeamsToBuild);
}
while (addedTeams < teamsToBuild || notEnoughTeamsForAServer()) {
// Step 1: Create 1 best machine team
std::vector<UID> bestServerTeam;
int bestScore = std::numeric_limits<int>::max();
int maxAttempts = SERVER_KNOBS->BEST_OF_AMT; // BEST_OF_AMT = 4
bool earlyQuitBuild = false;
for (int i = 0; i < maxAttempts && i < 100; ++i) {
// Step 2: Choose 1 least used server and then choose 1 least used machine team from the server
Reference<TCServerInfo> chosenServer = findOneLeastUsedServer();
if (!chosenServer.isValid()) {
TraceEvent(SevWarn, "NoValidServer").detail("Primary", primary);
earlyQuitBuild = true;
break;
}
// Note: To avoid creating correlation of picked machine teams, we simply choose a random machine team
// instead of choosing the least used machine team.
// The correlation happens, for example, when we add two new machines, we may always choose the machine
// team with these two new machines because they are typically less used.
Reference<TCMachineTeamInfo> chosenMachineTeam = findOneRandomMachineTeam(*chosenServer);
if (!chosenMachineTeam.isValid()) {
// We may face the situation that temporarily we have no healthy machine.
TraceEvent(SevWarn, "MachineTeamNotFound")
.detail("Primary", primary)
.detail("MachineTeams", machineTeams.size());
continue; // try randomly to find another least used server
}
// From here, chosenMachineTeam must have a healthy server team
// Step 3: Randomly pick 1 server from each machine in the chosen machine team to form a server team
std::vector<UID> serverTeam;
int chosenServerCount = 0;
for (auto& machine : chosenMachineTeam->machines) {
UID serverID;
if (machine == chosenServer->machine) {
serverID = chosenServer->id;
++chosenServerCount;
} else {
std::vector<Reference<TCServerInfo>> healthyProcesses;
for (auto it : machine->serversOnMachine) {
if (!server_status.get(it->id).isUnhealthy()) {
healthyProcesses.push_back(it);
}
}
serverID = deterministicRandom()->randomChoice(healthyProcesses)->id;
}
serverTeam.push_back(serverID);
}
ASSERT(chosenServerCount == 1); // chosenServer should be used exactly once
ASSERT(serverTeam.size() == configuration.storageTeamSize);
std::sort(serverTeam.begin(), serverTeam.end());
int overlap = overlappingMembers(serverTeam);
if (overlap == serverTeam.size()) {
maxAttempts += 1;
continue;
}
// Pick the server team with smallest score in all attempts
// If we use different metric here, DD may oscillate infinitely in creating and removing teams.
// SOMEDAY: Improve the code efficiency by using reservoir algorithm
int score = SERVER_KNOBS->DD_OVERLAP_PENALTY * overlap;
for (auto& server : serverTeam) {
score += server_info[server]->teams.size();
}
TraceEvent(SevDebug, "BuildServerTeams")
.detail("Score", score)
.detail("BestScore", bestScore)
.detail("TeamSize", serverTeam.size())
.detail("StorageTeamSize", configuration.storageTeamSize);
if (score < bestScore) {
bestScore = score;
bestServerTeam = serverTeam;
}
}
if (earlyQuitBuild) {
break;
}
if (bestServerTeam.size() != configuration.storageTeamSize) {
// Not find any team and will unlikely find a team
lastBuildTeamsFailed = true;
break;
}
// Step 4: Add the server team
addTeam(bestServerTeam.begin(), bestServerTeam.end(), false);
addedTeams++;
}
healthyMachineTeamCount = getHealthyMachineTeamCount();
std::pair<uint64_t, uint64_t> minMaxTeamsOnServer = calculateMinMaxServerTeamsOnServer();
std::pair<uint64_t, uint64_t> minMaxMachineTeamsOnMachine = calculateMinMaxMachineTeamsOnMachine();
TraceEvent("TeamCollectionInfo", distributorId)
.detail("Primary", primary)
.detail("AddedTeams", addedTeams)
.detail("TeamsToBuild", teamsToBuild)
.detail("CurrentServerTeams", teams.size())
.detail("DesiredTeams", desiredTeams)
.detail("MaxTeams", maxTeams)
.detail("StorageTeamSize", configuration.storageTeamSize)
.detail("CurrentMachineTeams", machineTeams.size())
.detail("CurrentHealthyMachineTeams", healthyMachineTeamCount)
.detail("DesiredMachineTeams", desiredMachineTeams)
.detail("MaxMachineTeams", maxMachineTeams)
.detail("TotalHealthyMachines", totalHealthyMachineCount)
.detail("MinTeamsOnServer", minMaxTeamsOnServer.first)
.detail("MaxTeamsOnServer", minMaxTeamsOnServer.second)
.detail("MinMachineTeamsOnMachine", minMaxMachineTeamsOnMachine.first)
.detail("MaxMachineTeamsOnMachine", minMaxMachineTeamsOnMachine.second)
.detail("DoBuildTeams", doBuildTeams)
.trackLatest(teamCollectionInfoEventHolder->trackingKey);
return addedTeams;
}
// Check if the number of server (and machine teams) is larger than the maximum allowed number
void traceTeamCollectionInfo() const {
int totalHealthyServerCount = calculateHealthyServerCount();
int desiredServerTeams = SERVER_KNOBS->DESIRED_TEAMS_PER_SERVER * totalHealthyServerCount;
int maxServerTeams = SERVER_KNOBS->MAX_TEAMS_PER_SERVER * totalHealthyServerCount;
int totalHealthyMachineCount = calculateHealthyMachineCount();
int desiredMachineTeams = SERVER_KNOBS->DESIRED_TEAMS_PER_SERVER * totalHealthyMachineCount;
int maxMachineTeams = SERVER_KNOBS->MAX_TEAMS_PER_SERVER * totalHealthyMachineCount;
int healthyMachineTeamCount = getHealthyMachineTeamCount();
std::pair<uint64_t, uint64_t> minMaxTeamsOnServer = calculateMinMaxServerTeamsOnServer();
std::pair<uint64_t, uint64_t> minMaxMachineTeamsOnMachine = calculateMinMaxMachineTeamsOnMachine();
TraceEvent("TeamCollectionInfo", distributorId)
.detail("Primary", primary)
.detail("AddedTeams", 0)
.detail("TeamsToBuild", 0)
.detail("CurrentServerTeams", teams.size())
.detail("DesiredTeams", desiredServerTeams)
.detail("MaxTeams", maxServerTeams)
.detail("StorageTeamSize", configuration.storageTeamSize)
.detail("CurrentMachineTeams", machineTeams.size())
.detail("CurrentHealthyMachineTeams", healthyMachineTeamCount)
.detail("DesiredMachineTeams", desiredMachineTeams)
.detail("MaxMachineTeams", maxMachineTeams)
.detail("TotalHealthyMachines", totalHealthyMachineCount)
.detail("MinTeamsOnServer", minMaxTeamsOnServer.first)
.detail("MaxTeamsOnServer", minMaxTeamsOnServer.second)
.detail("MinMachineTeamsOnMachine", minMaxMachineTeamsOnMachine.first)
.detail("MaxMachineTeamsOnMachine", minMaxMachineTeamsOnMachine.second)
.detail("DoBuildTeams", doBuildTeams)
.trackLatest(teamCollectionInfoEventHolder->trackingKey);
// Advance time so that we will not have multiple TeamCollectionInfo at the same time, otherwise
// simulation test will randomly pick one TeamCollectionInfo trace, which could be the one before build teams
// wait(delay(0.01));
// Debug purpose
// if (healthyMachineTeamCount > desiredMachineTeams || machineTeams.size() > maxMachineTeams) {
// // When the number of machine teams is over the limit, print out the current team info.
// traceAllInfo(true);
// }
}
// Use the current set of known processes (from server_info) to compute an optimized set of storage server teams.
// The following are guarantees of the process:
// - Each newly-built team will meet the replication policy
// - All newly-built teams will have exactly teamSize machines
//
// buildTeams() only ever adds teams to the list of teams. Teams are only removed from the list when all data has
// been removed.
//
// buildTeams will not count teams larger than teamSize against the desired teams.
ACTOR static Future<Void> buildTeams(DDTeamCollection* self) {
state int desiredTeams;
int serverCount = 0;
int uniqueMachines = 0;
std::set<Optional<Standalone<StringRef>>> machines;
for (auto i = self->server_info.begin(); i != self->server_info.end(); ++i) {
if (!self->server_status.get(i->first).isUnhealthy()) {
++serverCount;
LocalityData& serverLocation = i->second->lastKnownInterface.locality;
machines.insert(serverLocation.zoneId());
}
}
uniqueMachines = machines.size();
TraceEvent("BuildTeams", self->distributorId)
.detail("ServerCount", self->server_info.size())
.detail("UniqueMachines", uniqueMachines)
.detail("Primary", self->primary)
.detail("StorageTeamSize", self->configuration.storageTeamSize);
// If there are too few machines to even build teams or there are too few represented datacenters, build no new
// teams
if (uniqueMachines >= self->configuration.storageTeamSize) {
desiredTeams = SERVER_KNOBS->DESIRED_TEAMS_PER_SERVER * serverCount;
int maxTeams = SERVER_KNOBS->MAX_TEAMS_PER_SERVER * serverCount;
// Exclude teams who have members in the wrong configuration, since we don't want these teams
int teamCount = 0;
int totalTeamCount = 0;
for (int i = 0; i < self->teams.size(); ++i) {
if (!self->teams[i]->isWrongConfiguration()) {
if (self->teams[i]->isHealthy()) {
teamCount++;
}
totalTeamCount++;
}
}
// teamsToBuild is calculated such that we will not build too many teams in the situation
// when all (or most of) teams become unhealthy temporarily and then healthy again
state int teamsToBuild = std::max(0, std::min(desiredTeams - teamCount, maxTeams - totalTeamCount));
TraceEvent("BuildTeamsBegin", self->distributorId)
.detail("TeamsToBuild", teamsToBuild)
.detail("DesiredTeams", desiredTeams)
.detail("MaxTeams", maxTeams)
.detail("BadServerTeams", self->badTeams.size())
.detail("UniqueMachines", uniqueMachines)
.detail("TeamSize", self->configuration.storageTeamSize)
.detail("Servers", serverCount)
.detail("CurrentTrackedServerTeams", self->teams.size())
.detail("HealthyTeamCount", teamCount)
.detail("TotalTeamCount", totalTeamCount)
.detail("MachineTeamCount", self->machineTeams.size())
.detail("MachineCount", self->machine_info.size())
.detail("DesiredTeamsPerServer", SERVER_KNOBS->DESIRED_TEAMS_PER_SERVER);
self->lastBuildTeamsFailed = false;
if (teamsToBuild > 0 || self->notEnoughTeamsForAServer()) {
state std::vector<std::vector<UID>> builtTeams;
// addTeamsBestOf() will not add more teams than needed.
// If the team number is more than the desired, the extra teams are added in the code path when
// a team is added as an initial team
int addedTeams = self->addTeamsBestOf(teamsToBuild, desiredTeams, maxTeams);
if (addedTeams <= 0 && self->teams.size() == 0) {
TraceEvent(SevWarn, "NoTeamAfterBuildTeam", self->distributorId)
.detail("ServerTeamNum", self->teams.size())
.detail("Debug", "Check information below");
// Debug: set true for traceAllInfo() to print out more information
self->traceAllInfo();
}
} else {
int totalHealthyMachineCount = self->calculateHealthyMachineCount();
int desiredMachineTeams = SERVER_KNOBS->DESIRED_TEAMS_PER_SERVER * totalHealthyMachineCount;
int maxMachineTeams = SERVER_KNOBS->MAX_TEAMS_PER_SERVER * totalHealthyMachineCount;
int healthyMachineTeamCount = self->getHealthyMachineTeamCount();
std::pair<uint64_t, uint64_t> minMaxTeamsOnServer = self->calculateMinMaxServerTeamsOnServer();
std::pair<uint64_t, uint64_t> minMaxMachineTeamsOnMachine =
self->calculateMinMaxMachineTeamsOnMachine();
TraceEvent("TeamCollectionInfo", self->distributorId)
.detail("Primary", self->primary)
.detail("AddedTeams", 0)
.detail("TeamsToBuild", teamsToBuild)
.detail("CurrentServerTeams", self->teams.size())
.detail("DesiredTeams", desiredTeams)
.detail("MaxTeams", maxTeams)
.detail("StorageTeamSize", self->configuration.storageTeamSize)
.detail("CurrentMachineTeams", self->machineTeams.size())
.detail("CurrentHealthyMachineTeams", healthyMachineTeamCount)
.detail("DesiredMachineTeams", desiredMachineTeams)
.detail("MaxMachineTeams", maxMachineTeams)
.detail("TotalHealthyMachines", totalHealthyMachineCount)
.detail("MinTeamsOnServer", minMaxTeamsOnServer.first)
.detail("MaxTeamsOnServer", minMaxTeamsOnServer.second)
.detail("MinMachineTeamsOnMachine", minMaxMachineTeamsOnMachine.first)
.detail("MaxMachineTeamsOnMachine", minMaxMachineTeamsOnMachine.second)
.detail("DoBuildTeams", self->doBuildTeams)
.trackLatest(self->teamCollectionInfoEventHolder->trackingKey);
}
} else {
self->lastBuildTeamsFailed = true;
}
self->evaluateTeamQuality();
// Building teams can cause servers to become undesired, which can make teams unhealthy.
// Let all of these changes get worked out before responding to the get team request
wait(delay(0, TaskPriority::DataDistributionLaunch));
return Void();
}
void noHealthyTeams() const {
std::set<UID> desiredServerSet;
std::string desc;
for (auto i = server_info.begin(); i != server_info.end(); ++i) {
ASSERT(i->first == i->second->id);
if (!server_status.get(i->first).isFailed) {
desiredServerSet.insert(i->first);
desc += i->first.shortString() + " (" + i->second->lastKnownInterface.toString() + "), ";
}
}
TraceEvent(SevWarn, "NoHealthyTeams", distributorId)
.detail("CurrentServerTeamCount", teams.size())
.detail("ServerCount", server_info.size())
.detail("NonFailedServerCount", desiredServerSet.size());
}
bool shouldHandleServer(const StorageServerInterface& newServer) const {
return (includedDCs.empty() ||
std::find(includedDCs.begin(), includedDCs.end(), newServer.locality.dcId()) != includedDCs.end() ||
(otherTrackedDCs.present() &&
std::find(otherTrackedDCs.get().begin(), otherTrackedDCs.get().end(), newServer.locality.dcId()) ==
otherTrackedDCs.get().end()));
}
void addServer(StorageServerInterface newServer,
ProcessClass processClass,
Promise<Void> errorOut,
Version addedVersion,
const DDEnabledState* ddEnabledState) {
if (!shouldHandleServer(newServer)) {
return;
}
if (!newServer.isTss()) {
allServers.push_back(newServer.id());
}
TraceEvent(newServer.isTss() ? "AddedTSS" : "AddedStorageServer", distributorId)
.detail("ServerID", newServer.id())
.detail("ProcessID", newServer.locality.processId())
.detail("ProcessClass", processClass.toString())
.detail("WaitFailureToken", newServer.waitFailure.getEndpoint().token)
.detail("Address", newServer.waitFailure.getEndpoint().getPrimaryAddress());
auto& r = server_and_tss_info[newServer.id()] = makeReference<TCServerInfo>(
newServer,
this,
processClass,
includedDCs.empty() ||
std::find(includedDCs.begin(), includedDCs.end(), newServer.locality.dcId()) != includedDCs.end(),
storageServerSet,
addedVersion);
if (newServer.isTss()) {
tss_info_by_pair[newServer.tssPairID.get()] = r;
if (server_info.count(newServer.tssPairID.get())) {
r->onTSSPairRemoved = server_info[newServer.tssPairID.get()]->onRemoved;
}
} else {
server_info[newServer.id()] = r;
// Establish the relation between server and machine
checkAndCreateMachine(r);
// Add storage server to pid map
ASSERT(r->lastKnownInterface.locality.processId().present());
StringRef pid = r->lastKnownInterface.locality.processId().get();
pid2server_info[pid].push_back(r);
}
r->tracker =
storageServerTracker(this, cx, r.getPtr(), errorOut, addedVersion, ddEnabledState, newServer.isTss());
if (!newServer.isTss()) {
// link and wake up tss' tracker so it knows when this server gets removed
if (tss_info_by_pair.count(newServer.id())) {
tss_info_by_pair[newServer.id()]->onTSSPairRemoved = r->onRemoved;
if (tss_info_by_pair[newServer.id()]->wakeUpTracker.canBeSet()) {
auto p = tss_info_by_pair[newServer.id()]->wakeUpTracker;
// This callback could delete tss_info_by_pair[newServer.id()], so use a copy
p.send(Void());
}
}
doBuildTeams = true; // Adding a new server triggers to build new teams
restartTeamBuilder.trigger();
}
}
bool removeTeam(Reference<TCTeamInfo> team) {
TraceEvent("RemovedServerTeam", distributorId).detail("Team", team->getDesc());
bool found = false;
for (int t = 0; t < teams.size(); t++) {
if (teams[t] == team) {
teams[t--] = teams.back();
teams.pop_back();
found = true;
break;
}
}
for (const auto& server : team->getServers()) {
for (int t = 0; t < server->teams.size(); t++) {
if (server->teams[t] == team) {
ASSERT(found);
server->teams[t--] = server->teams.back();
server->teams.pop_back();
break; // The teams on a server should never duplicate
}
}
}
// Remove the team from its machine team
bool foundInMachineTeam = false;
for (int t = 0; t < team->machineTeam->serverTeams.size(); ++t) {
if (team->machineTeam->serverTeams[t] == team) {
team->machineTeam->serverTeams[t--] = team->machineTeam->serverTeams.back();
team->machineTeam->serverTeams.pop_back();
foundInMachineTeam = true;
break; // The same team is added to the serverTeams only once
}
}
ASSERT_WE_THINK(foundInMachineTeam);
team->tracker.cancel();
if (g_network->isSimulated()) {
// Update server team information for consistency check in simulation
traceTeamCollectionInfo();
}
return found;
}
// Check if the server belongs to a machine; if not, create the machine.
// Establish the two-direction link between server and machine
Reference<TCMachineInfo> checkAndCreateMachine(Reference<TCServerInfo> server) {
ASSERT(server.isValid() && server_info.find(server->id) != server_info.end());
auto& locality = server->lastKnownInterface.locality;
Standalone<StringRef> machine_id = locality.zoneId().get(); // locality to machine_id with std::string type
Reference<TCMachineInfo> machineInfo;
if (machine_info.find(machine_id) == machine_info.end()) {
// uid is the first storage server process on the machine
TEST(true); // First storage server in process on the machine
// For each machine, store the first server's localityEntry into machineInfo for later use.
LocalityEntry localityEntry = machineLocalityMap.add(locality, &server->id);
machineInfo = makeReference<TCMachineInfo>(server, localityEntry);
machine_info.insert(std::make_pair(machine_id, machineInfo));
} else {
machineInfo = machine_info.find(machine_id)->second;
machineInfo->serversOnMachine.push_back(server);
}
server->machine = machineInfo;
return machineInfo;
}
// Check if the serverTeam belongs to a machine team; If not, create the machine team
// Note: This function may make the machine team number larger than the desired machine team number
Reference<TCMachineTeamInfo> checkAndCreateMachineTeam(Reference<TCTeamInfo> serverTeam) {
std::vector<Standalone<StringRef>> machineIDs;
for (auto& server : serverTeam->getServers()) {
Reference<TCMachineInfo> machine = server->machine;
machineIDs.push_back(machine->machineID);
}
std::sort(machineIDs.begin(), machineIDs.end());
Reference<TCMachineTeamInfo> machineTeam = findMachineTeam(machineIDs);
if (!machineTeam.isValid()) { // Create the machine team if it does not exist
machineTeam = addMachineTeam(machineIDs.begin(), machineIDs.end());
}
machineTeam->serverTeams.push_back(serverTeam);
return machineTeam;
}
// Remove the removedMachineInfo machine and any related machine team
void removeMachine(Reference<TCMachineInfo> removedMachineInfo) {
// Find machines that share teams with the removed machine
std::set<Standalone<StringRef>> machinesWithAjoiningTeams;
for (auto& machineTeam : removedMachineInfo->machineTeams) {
machinesWithAjoiningTeams.insert(machineTeam->machineIDs.begin(), machineTeam->machineIDs.end());
}
machinesWithAjoiningTeams.erase(removedMachineInfo->machineID);
// For each machine in a machine team with the removed machine,
// erase shared machine teams from the list of teams.
for (auto it = machinesWithAjoiningTeams.begin(); it != machinesWithAjoiningTeams.end(); ++it) {
auto& machineTeams = machine_info[*it]->machineTeams;
for (int t = 0; t < machineTeams.size(); t++) {
auto& machineTeam = machineTeams[t];
if (std::count(machineTeam->machineIDs.begin(),
machineTeam->machineIDs.end(),
removedMachineInfo->machineID)) {
machineTeams[t--] = machineTeams.back();
machineTeams.pop_back();
}
}
}
removedMachineInfo->machineTeams.clear();
// Remove global machine team that includes removedMachineInfo
for (int t = 0; t < machineTeams.size(); t++) {
auto& machineTeam = machineTeams[t];
if (std::count(
machineTeam->machineIDs.begin(), machineTeam->machineIDs.end(), removedMachineInfo->machineID)) {
removeMachineTeam(machineTeam);
// removeMachineTeam will swap the last team in machineTeams vector into [t];
// t-- to avoid skipping the element
t--;
}
}
// Remove removedMachineInfo from machine's global info
machine_info.erase(removedMachineInfo->machineID);
TraceEvent("MachineLocalityMapUpdate").detail("MachineUIDRemoved", removedMachineInfo->machineID.toString());
// We do not update macineLocalityMap when a machine is removed because we will do so when we use it in
// addBestMachineTeams()
// rebuildMachineLocalityMap();
}
// Invariant: Remove a machine team only when the server teams on it has been removed
// We never actively remove a machine team.
// A machine team is removed when a machine is removed,
// which is caused by the event when all servers on the machine is removed.
// NOTE: When this function is called in the loop of iterating machineTeams, make sure NOT increase the index
// in the next iteration of the loop. Otherwise, you may miss checking some elements in machineTeams
bool removeMachineTeam(Reference<TCMachineTeamInfo> targetMT) {
bool foundMachineTeam = false;
for (int i = 0; i < machineTeams.size(); i++) {
Reference<TCMachineTeamInfo> mt = machineTeams[i];
if (mt->machineIDs == targetMT->machineIDs) {
machineTeams[i--] = machineTeams.back();
machineTeams.pop_back();
foundMachineTeam = true;
break;
}
}
// Remove machine team on each machine
for (auto& machine : targetMT->machines) {
for (int i = 0; i < machine->machineTeams.size(); ++i) {
if (machine->machineTeams[i]->machineIDs == targetMT->machineIDs) {
machine->machineTeams[i--] = machine->machineTeams.back();
machine->machineTeams.pop_back();
break; // The machineTeams on a machine should never duplicate
}
}
}
return foundMachineTeam;
}
void removeTSS(UID removedServer) {
// much simpler than remove server. tss isn't in any teams, so just remove it from data structures
TraceEvent("RemovedTSS", distributorId).detail("ServerID", removedServer);
Reference<TCServerInfo> removedServerInfo = server_and_tss_info[removedServer];
tss_info_by_pair.erase(removedServerInfo->lastKnownInterface.tssPairID.get());
server_and_tss_info.erase(removedServer);
server_status.clear(removedServer);
}
void removeServer(UID removedServer) {
TraceEvent("RemovedStorageServer", distributorId).detail("ServerID", removedServer);
// ASSERT( !shardsAffectedByTeamFailure->getServersForTeam( t ) for all t in teams that contain removedServer )
Reference<TCServerInfo> removedServerInfo = server_info[removedServer];
// Step: Remove TCServerInfo from pid2server_info
ASSERT(removedServerInfo->lastKnownInterface.locality.processId().present());
StringRef pid = removedServerInfo->lastKnownInterface.locality.processId().get();
auto& info_vec = pid2server_info[pid];
for (size_t i = 0; i < info_vec.size(); ++i) {
if (info_vec[i] == removedServerInfo) {
info_vec[i--] = info_vec.back();
info_vec.pop_back();
}
}
if (info_vec.size() == 0) {
pid2server_info.erase(pid);
}
// Step: Remove server team that relate to removedServer
// Find all servers with which the removedServer shares teams
std::set<UID> serversWithAjoiningTeams;
auto& sharedTeams = removedServerInfo->teams;
for (int i = 0; i < sharedTeams.size(); ++i) {
auto& teamIds = sharedTeams[i]->getServerIDs();
serversWithAjoiningTeams.insert(teamIds.begin(), teamIds.end());
}
serversWithAjoiningTeams.erase(removedServer);
// For each server in a team with the removedServer, erase shared teams from the list of teams in that other
// server
for (auto it = serversWithAjoiningTeams.begin(); it != serversWithAjoiningTeams.end(); ++it) {
auto& serverTeams = server_info[*it]->teams;
for (int t = 0; t < serverTeams.size(); t++) {
auto& serverIds = serverTeams[t]->getServerIDs();
if (std::count(serverIds.begin(), serverIds.end(), removedServer)) {
serverTeams[t--] = serverTeams.back();
serverTeams.pop_back();
}
}
}
// Step: Remove all teams that contain removedServer
// SOMEDAY: can we avoid walking through all teams, since we have an index of teams in which removedServer
// participated
int removedCount = 0;
for (int t = 0; t < teams.size(); t++) {
if (std::count(teams[t]->getServerIDs().begin(), teams[t]->getServerIDs().end(), removedServer)) {
TraceEvent("ServerTeamRemoved")
.detail("Primary", primary)
.detail("TeamServerIDs", teams[t]->getServerIDsStr())
.detail("TeamID", teams[t]->getTeamID());
// removeTeam also needs to remove the team from the machine team info.
removeTeam(teams[t]);
t--;
removedCount++;
}
}
if (removedCount == 0) {
TraceEvent(SevInfo, "NoTeamsRemovedWhenServerRemoved")
.detail("Primary", primary)
.detail("Debug", "ThisShouldRarelyHappen_CheckInfoBelow");
}
for (int t = 0; t < badTeams.size(); t++) {
if (std::count(badTeams[t]->getServerIDs().begin(), badTeams[t]->getServerIDs().end(), removedServer)) {
badTeams[t]->tracker.cancel();
badTeams[t--] = badTeams.back();
badTeams.pop_back();
}
}
// Step: Remove machine info related to removedServer
// Remove the server from its machine
Reference<TCMachineInfo> removedMachineInfo = removedServerInfo->machine;
for (int i = 0; i < removedMachineInfo->serversOnMachine.size(); ++i) {
if (removedMachineInfo->serversOnMachine[i] == removedServerInfo) {
// Safe even when removedServerInfo is the last one
removedMachineInfo->serversOnMachine[i--] = removedMachineInfo->serversOnMachine.back();
removedMachineInfo->serversOnMachine.pop_back();
break;
}
}
// Remove machine if no server on it
// Note: Remove machine (and machine team) after server teams have been removed, because
// we remove a machine team only when the server teams on it have been removed
if (removedMachineInfo->serversOnMachine.size() == 0) {
removeMachine(removedMachineInfo);
}
// If the machine uses removedServer's locality and the machine still has servers, the the machine's
// representative server will be updated when it is used in addBestMachineTeams()
// Note that since we do not rebuildMachineLocalityMap() here, the machineLocalityMap can be stale.
// This is ok as long as we do not arbitrarily validate if machine team satisfies replication policy.
if (server_info[removedServer]->wrongStoreTypeToRemove.get()) {
if (wrongStoreTypeRemover.isReady()) {
wrongStoreTypeRemover = removeWrongStoreType(this);
addActor.send(wrongStoreTypeRemover);
}
}
// Step: Remove removedServer from server's global data
for (int s = 0; s < allServers.size(); s++) {
if (allServers[s] == removedServer) {
allServers[s--] = allServers.back();
allServers.pop_back();
}
}
server_info.erase(removedServer);
server_and_tss_info.erase(removedServer);
if (server_status.get(removedServer).initialized && server_status.get(removedServer).isUnhealthy()) {
unhealthyServers--;
}
server_status.clear(removedServer);
// FIXME: add remove support to localitySet so we do not have to recreate it
resetLocalitySet();
doBuildTeams = true;
restartTeamBuilder.trigger();
TraceEvent("DataDistributionTeamCollectionUpdate", distributorId)
.detail("ServerTeams", teams.size())
.detail("BadServerTeams", badTeams.size())
.detail("Servers", allServers.size())
.detail("Machines", machine_info.size())
.detail("MachineTeams", machineTeams.size())
.detail("DesiredTeamsPerServer", SERVER_KNOBS->DESIRED_TEAMS_PER_SERVER);
}
// Adds storage servers held on process of which the Process Id is “pid” into excludeServers which prevent
// recruiting the wiggling storage servers and let teamTracker start to move data off the affected teams;
// Return a vector of futures wait for all data is moved to other teams.
std::vector<Future<Void>> excludeStorageServersForWiggle(const Value& pid) {
std::vector<Future<Void>> moveFutures;
if (this->pid2server_info.count(pid) != 0) {
for (auto& info : this->pid2server_info[pid]) {
AddressExclusion addr(info->lastKnownInterface.address().ip, info->lastKnownInterface.address().port);
if (this->excludedServers.count(addr) &&
this->excludedServers.get(addr) != DDTeamCollection::Status::NONE) {
continue; // don't overwrite the value set by actor trackExcludedServer
}
this->wiggle_addresses.push_back(addr);
this->excludedServers.set(addr, DDTeamCollection::Status::WIGGLING);
moveFutures.push_back(info->onRemoved);
}
if (!moveFutures.empty()) {
this->restartRecruiting.trigger();
}
}
return moveFutures;
}
// Include wiggled storage servers by setting their status from `WIGGLING`
// to `NONE`. The storage recruiter will recruit them as new storage servers
void includeStorageServersForWiggle() {
bool included = false;
for (auto& address : this->wiggle_addresses) {
if (!this->excludedServers.count(address) ||
this->excludedServers.get(address) != DDTeamCollection::Status::WIGGLING) {
continue;
}
included = true;
this->excludedServers.set(address, DDTeamCollection::Status::NONE);
}
this->wiggle_addresses.clear();
if (included) {
this->restartRecruiting.trigger();
}
}
};
TCServerInfo::~TCServerInfo() {
if (collection && ssVersionTooFarBehind.get() && !lastKnownInterface.isTss()) {
collection->removeLaggingStorageServer(lastKnownInterface.locality.zoneId().get());
}
}
ACTOR Future<Void> updateServerMetrics(TCServerInfo* server) {
state StorageServerInterface ssi = server->lastKnownInterface;
state Future<ErrorOr<GetStorageMetricsReply>> metricsRequest =
ssi.getStorageMetrics.tryGetReply(GetStorageMetricsRequest(), TaskPriority::DataDistributionLaunch);
state Future<Void> resetRequest = Never();
state Future<std::pair<StorageServerInterface, ProcessClass>> interfaceChanged(server->onInterfaceChanged);
state Future<Void> serverRemoved(server->onRemoved);
loop {
choose {
when(ErrorOr<GetStorageMetricsReply> rep = wait(metricsRequest)) {
if (rep.present()) {
server->serverMetrics = rep;
if (server->updated.canBeSet()) {
server->updated.send(Void());
}
break;
}
metricsRequest = Never();
resetRequest = delay(SERVER_KNOBS->METRIC_DELAY, TaskPriority::DataDistributionLaunch);
}
when(std::pair<StorageServerInterface, ProcessClass> _ssi = wait(interfaceChanged)) {
ssi = _ssi.first;
interfaceChanged = server->onInterfaceChanged;
resetRequest = Void();
}
when(wait(serverRemoved)) { return Void(); }
when(wait(resetRequest)) { // To prevent a tight spin loop
if (IFailureMonitor::failureMonitor().getState(ssi.getStorageMetrics.getEndpoint()).isFailed()) {
resetRequest = IFailureMonitor::failureMonitor().onStateEqual(ssi.getStorageMetrics.getEndpoint(),
FailureStatus(false));
} else {
resetRequest = Never();
metricsRequest = ssi.getStorageMetrics.tryGetReply(GetStorageMetricsRequest(),
TaskPriority::DataDistributionLaunch);
}
}
}
}
if (server->serverMetrics.get().lastUpdate < now() - SERVER_KNOBS->DD_SS_STUCK_TIME_LIMIT) {
if (server->ssVersionTooFarBehind.get() == false) {
TraceEvent("StorageServerStuck", server->collection->distributorId)
.detail("ServerId", server->id.toString())
.detail("LastUpdate", server->serverMetrics.get().lastUpdate);
server->ssVersionTooFarBehind.set(true);
server->collection->addLaggingStorageServer(server->lastKnownInterface.locality.zoneId().get());
}
} else if (server->serverMetrics.get().versionLag > SERVER_KNOBS->DD_SS_FAILURE_VERSIONLAG) {
if (server->ssVersionTooFarBehind.get() == false) {
TraceEvent(SevWarn, "SSVersionDiffLarge", server->collection->distributorId)
.detail("ServerId", server->id.toString())
.detail("VersionLag", server->serverMetrics.get().versionLag);
server->ssVersionTooFarBehind.set(true);
server->collection->addLaggingStorageServer(server->lastKnownInterface.locality.zoneId().get());
}
} else if (server->serverMetrics.get().versionLag < SERVER_KNOBS->DD_SS_ALLOWED_VERSIONLAG) {
if (server->ssVersionTooFarBehind.get() == true) {
TraceEvent("SSVersionDiffNormal", server->collection->distributorId)
.detail("ServerId", server->id.toString())
.detail("VersionLag", server->serverMetrics.get().versionLag);
server->ssVersionTooFarBehind.set(false);
server->collection->removeLaggingStorageServer(server->lastKnownInterface.locality.zoneId().get());
}
}
return Void();
}
ACTOR Future<Void> updateServerMetrics(Reference<TCServerInfo> server) {
wait(updateServerMetrics(server.getPtr()));
return Void();
}
ACTOR Future<Void> waitUntilHealthy(DDTeamCollection* self, double extraDelay = 0) {
state int waitCount = 0;
loop {
while (self->zeroHealthyTeams->get() || self->processingUnhealthy->get()) {
// processingUnhealthy: true when there exists data movement
TraceEvent("WaitUntilHealthyStalled", self->distributorId)
.detail("Primary", self->primary)
.detail("ZeroHealthy", self->zeroHealthyTeams->get())
.detail("ProcessingUnhealthy", self->processingUnhealthy->get());
wait(self->zeroHealthyTeams->onChange() || self->processingUnhealthy->onChange());
waitCount = 0;
}
wait(delay(SERVER_KNOBS->DD_STALL_CHECK_DELAY,
TaskPriority::Low)); // After the team trackers wait on the initial failure reaction delay, they
// yield. We want to make sure every tracker has had the opportunity to send
// their relocations to the queue.
if (!self->zeroHealthyTeams->get() && !self->processingUnhealthy->get()) {
if (extraDelay <= 0.01 || waitCount >= 1) {
// Return healthy if we do not need extraDelay or when DD are healthy in at least two consecutive check
return Void();
} else {
wait(delay(extraDelay, TaskPriority::Low));
waitCount++;
}
}
}
}
// Take a snapshot of necessary data structures from `DDTeamCollection` and print them out with yields to avoid slow
// task on the run loop.
ACTOR Future<Void> printSnapshotTeamsInfo(Reference<DDTeamCollection> self) {
state DatabaseConfiguration configuration;
state std::map<UID, Reference<TCServerInfo>> server_info;
state std::map<UID, ServerStatus> server_status;
state std::vector<Reference<TCTeamInfo>> teams;
state std::map<Standalone<StringRef>, Reference<TCMachineInfo>> machine_info;
state std::vector<Reference<TCMachineTeamInfo>> machineTeams;
// state std::vector<std::string> internedLocalityRecordKeyNameStrings;
// state int machineLocalityMapEntryArraySize;
// state std::vector<Reference<LocalityRecord>> machineLocalityMapRecordArray;
state int traceEventsPrinted = 0;
state std::vector<const UID*> serverIDs;
state double lastPrintTime = 0;
state ReadYourWritesTransaction tr(self->cx);
loop {
try {
tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
state Future<Void> watchFuture = tr.watch(triggerDDTeamInfoPrintKey);
wait(tr.commit());
wait(self->printDetailedTeamsInfo.onTrigger() || watchFuture);
tr.reset();
if (now() - lastPrintTime < SERVER_KNOBS->DD_TEAMS_INFO_PRINT_INTERVAL) {
continue;
}
lastPrintTime = now();
traceEventsPrinted = 0;
double snapshotStart = now();
configuration = self->configuration;
server_info = self->server_info;
teams = self->teams;
// Perform deep copy so we have a consistent snapshot, even if yields are performed
for (const auto& [machineId, info] : self->machine_info) {
machine_info.emplace(machineId, info->clone());
}
machineTeams = self->machineTeams;
// internedLocalityRecordKeyNameStrings = self->machineLocalityMap._keymap->_lookuparray;
// machineLocalityMapEntryArraySize = self->machineLocalityMap.size();
// machineLocalityMapRecordArray = self->machineLocalityMap.getRecordArray();
std::vector<const UID*> _uids = self->machineLocalityMap.getObjects();
serverIDs = _uids;
auto const& keys = self->server_status.getKeys();
for (auto const& key : keys) {
server_status.emplace(key, self->server_status.get(key));
}
TraceEvent("DDPrintSnapshotTeasmInfo", self->distributorId)
.detail("SnapshotSpeed", now() - snapshotStart)
.detail("Primary", self->primary);
// Print to TraceEvents
TraceEvent("DDConfig", self->distributorId)
.detail("StorageTeamSize", configuration.storageTeamSize)
.detail("DesiredTeamsPerServer", SERVER_KNOBS->DESIRED_TEAMS_PER_SERVER)
.detail("MaxTeamsPerServer", SERVER_KNOBS->MAX_TEAMS_PER_SERVER)
.detail("Primary", self->primary);
TraceEvent("ServerInfo", self->distributorId)
.detail("Size", server_info.size())
.detail("Primary", self->primary);
state int i;
state std::map<UID, Reference<TCServerInfo>>::iterator server = server_info.begin();
for (i = 0; i < server_info.size(); i++) {
TraceEvent("ServerInfo", self->distributorId)
.detail("ServerInfoIndex", i)
.detail("ServerID", server->first.toString())
.detail("ServerTeamOwned", server->second->teams.size())
.detail("MachineID", server->second->machine->machineID.contents().toString())
.detail("Primary", self->primary);
server++;
if (++traceEventsPrinted % SERVER_KNOBS->DD_TEAMS_INFO_PRINT_YIELD_COUNT == 0) {
wait(yield());
}
}
server = server_info.begin();
for (i = 0; i < server_info.size(); i++) {
const UID& uid = server->first;
TraceEvent("ServerStatus", self->distributorId)
.detail("ServerUID", uid)
.detail("Healthy", !get(server_status, uid).isUnhealthy())
.detail("MachineIsValid", server_info[uid]->machine.isValid())
.detail("MachineTeamSize",
server_info[uid]->machine.isValid() ? server_info[uid]->machine->machineTeams.size() : -1)
.detail("Primary", self->primary);
server++;
if (++traceEventsPrinted % SERVER_KNOBS->DD_TEAMS_INFO_PRINT_YIELD_COUNT == 0) {
wait(yield());
}
}
TraceEvent("ServerTeamInfo", self->distributorId)
.detail("Size", teams.size())
.detail("Primary", self->primary);
for (i = 0; i < teams.size(); i++) {
const auto& team = teams[i];
TraceEvent("ServerTeamInfo", self->distributorId)
.detail("TeamIndex", i)
.detail("Healthy", team->isHealthy())
.detail("TeamSize", team->size())
.detail("MemberIDs", team->getServerIDsStr())
.detail("Primary", self->primary);
if (++traceEventsPrinted % SERVER_KNOBS->DD_TEAMS_INFO_PRINT_YIELD_COUNT == 0) {
wait(yield());
}
}
TraceEvent("MachineInfo", self->distributorId)
.detail("Size", machine_info.size())
.detail("Primary", self->primary);
state std::map<Standalone<StringRef>, Reference<TCMachineInfo>>::iterator machine = machine_info.begin();
state bool isMachineHealthy = false;
for (i = 0; i < machine_info.size(); i++) {
Reference<TCMachineInfo> _machine = machine->second;
if (!_machine.isValid() || machine_info.find(_machine->machineID) == machine_info.end() ||
_machine->serversOnMachine.empty()) {
isMachineHealthy = false;
}
// Healthy machine has at least one healthy server
for (auto& server : _machine->serversOnMachine) {
if (!get(server_status, server->id).isUnhealthy()) {
isMachineHealthy = true;
}
}
isMachineHealthy = false;
TraceEvent("MachineInfo", self->distributorId)
.detail("MachineInfoIndex", i)
.detail("Healthy", isMachineHealthy)
.detail("MachineID", machine->first.contents().toString())
.detail("MachineTeamOwned", machine->second->machineTeams.size())
.detail("ServerNumOnMachine", machine->second->serversOnMachine.size())
.detail("ServersID", machine->second->getServersIDStr())
.detail("Primary", self->primary);
machine++;
if (++traceEventsPrinted % SERVER_KNOBS->DD_TEAMS_INFO_PRINT_YIELD_COUNT == 0) {
wait(yield());
}
}
TraceEvent("MachineTeamInfo", self->distributorId)
.detail("Size", machineTeams.size())
.detail("Primary", self->primary);
for (i = 0; i < machineTeams.size(); i++) {
const auto& team = machineTeams[i];
TraceEvent("MachineTeamInfo", self->distributorId)
.detail("TeamIndex", i)
.detail("MachineIDs", team->getMachineIDsStr())
.detail("ServerTeams", team->serverTeams.size())
.detail("Primary", self->primary);
if (++traceEventsPrinted % SERVER_KNOBS->DD_TEAMS_INFO_PRINT_YIELD_COUNT == 0) {
wait(yield());
}
}
// TODO: re-enable the following logging or remove them.
// TraceEvent("LocalityRecordKeyName", self->distributorId)
// .detail("Size", internedLocalityRecordKeyNameStrings.size())
// .detail("Primary", self->primary);
// for (i = 0; i < internedLocalityRecordKeyNameStrings.size(); i++) {
// TraceEvent("LocalityRecordKeyIndexName", self->distributorId)
// .detail("KeyIndex", i)
// .detail("KeyName", internedLocalityRecordKeyNameStrings[i])
// .detail("Primary", self->primary);
// if (++traceEventsPrinted % SERVER_KNOBS->DD_TEAMS_INFO_PRINT_YIELD_COUNT == 0) {
// wait(yield());
// }
// }
// TraceEvent("MachineLocalityMap", self->distributorId)
// .detail("Size", machineLocalityMapEntryArraySize)
// .detail("Primary", self->primary);
// for (i = 0; i < serverIDs.size(); i++) {
// const auto& serverID = serverIDs[i];
// Reference<LocalityRecord> record = machineLocalityMapRecordArray[i];
// if (record.isValid()) {
// TraceEvent("MachineLocalityMap", self->distributorId)
// .detail("LocalityIndex", i)
// .detail("UID", serverID->toString())
// .detail("LocalityRecord", record->toString())
// .detail("Primary", self->primary);
// } else {
// TraceEvent("MachineLocalityMap", self->distributorId)
// .detail("LocalityIndex", i)
// .detail("UID", serverID->toString())
// .detail("LocalityRecord", "[NotFound]")
// .detail("Primary", self->primary);
// }
// if (++traceEventsPrinted % SERVER_KNOBS->DD_TEAMS_INFO_PRINT_YIELD_COUNT == 0) {
// wait(yield());
// }
// }
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
ACTOR Future<Void> removeBadTeams(DDTeamCollection* self) {
wait(self->initialFailureReactionDelay);
wait(waitUntilHealthy(self));
wait(self->addSubsetComplete.getFuture());
TraceEvent("DDRemovingBadServerTeams", self->distributorId).detail("Primary", self->primary);
for (auto it : self->badTeams) {
it->tracker.cancel();
}
self->badTeams.clear();
return Void();
}
bool isCorrectDC(DDTeamCollection* self, TCServerInfo* server) {
return (self->includedDCs.empty() ||
std::find(self->includedDCs.begin(), self->includedDCs.end(), server->lastKnownInterface.locality.dcId()) !=
self->includedDCs.end());
}
ACTOR Future<Void> removeWrongStoreType(DDTeamCollection* self) {
// Wait for storage servers to initialize its storeType
wait(delay(SERVER_KNOBS->DD_REMOVE_STORE_ENGINE_DELAY));
state Future<Void> fisServerRemoved = Never();
TraceEvent("WrongStoreTypeRemoverStart", self->distributorId).detail("Servers", self->server_info.size());
loop {
// Removing a server here when DD is not healthy may lead to rare failure scenarios, for example,
// the server with wrong storeType is shutting down while this actor marks it as to-be-removed.
// In addition, removing servers cause extra data movement, which should be done while a cluster is healthy
wait(waitUntilHealthy(self));
bool foundSSToRemove = false;
for (auto& server : self->server_info) {
if (!server.second->isCorrectStoreType(self->configuration.storageServerStoreType)) {
// Server may be removed due to failure while the wrongStoreTypeToRemove is sent to the
// storageServerTracker. This race may cause the server to be removed before react to
// wrongStoreTypeToRemove
if (self->configuration.storageMigrationType == StorageMigrationType::AGGRESSIVE) {
// if the Storage Migration type is aggressive, let DD remove SS with wrong storage type
server.second->wrongStoreTypeToRemove.set(true);
}
// Otherwise, wait Perpetual Wiggler to wiggle the SS with wrong storage type
foundSSToRemove = true;
TraceEvent("WrongStoreTypeRemover", self->distributorId)
.detail("Server", server.first)
.detail("StoreType", server.second->storeType)
.detail("ConfiguredStoreType", self->configuration.storageServerStoreType);
break;
}
}
if (!foundSSToRemove) {
break;
}
}
return Void();
}
ACTOR Future<Void> machineTeamRemover(DDTeamCollection* self) {
state int numMachineTeamRemoved = 0;
loop {
// In case the machineTeamRemover cause problems in production, we can disable it
if (SERVER_KNOBS->TR_FLAG_DISABLE_MACHINE_TEAM_REMOVER) {
return Void(); // Directly return Void()
}
// To avoid removing machine teams too fast, which is unlikely happen though
wait(delay(SERVER_KNOBS->TR_REMOVE_MACHINE_TEAM_DELAY, TaskPriority::DataDistribution));
wait(waitUntilHealthy(self, SERVER_KNOBS->TR_REMOVE_SERVER_TEAM_EXTRA_DELAY));
// Wait for the badTeamRemover() to avoid the potential race between adding the bad team (add the team tracker)
// and remove bad team (cancel the team tracker).
wait(self->badTeamRemover);
state int healthyMachineCount = self->calculateHealthyMachineCount();
// Check if all machines are healthy, if not, we wait for 1 second and loop back.
// Eventually, all machines will become healthy.
if (healthyMachineCount != self->machine_info.size()) {
continue;
}
// From this point, all machine teams and server teams should be healthy, because we wait above
// until processingUnhealthy is done, and all machines are healthy
// Sanity check all machine teams are healthy
// int currentHealthyMTCount = self->getHealthyMachineTeamCount();
// if (currentHealthyMTCount != self->machineTeams.size()) {
// TraceEvent(SevError, "InvalidAssumption")
// .detail("HealthyMachineCount", healthyMachineCount)
// .detail("Machines", self->machine_info.size())
// .detail("CurrentHealthyMTCount", currentHealthyMTCount)
// .detail("MachineTeams", self->machineTeams.size());
// self->traceAllInfo(true);
// }
// In most cases, all machine teams should be healthy teams at this point.
int desiredMachineTeams = SERVER_KNOBS->DESIRED_TEAMS_PER_SERVER * healthyMachineCount;
int totalMTCount = self->machineTeams.size();
// Pick the machine team to remove. After release-6.2 version,
// we remove the machine team with most machine teams, the same logic as serverTeamRemover
std::pair<Reference<TCMachineTeamInfo>, int> foundMTInfo = SERVER_KNOBS->TR_FLAG_REMOVE_MT_WITH_MOST_TEAMS
? self->getMachineTeamWithMostMachineTeams()
: self->getMachineTeamWithLeastProcessTeams();
if (totalMTCount > desiredMachineTeams && foundMTInfo.first.isValid()) {
Reference<TCMachineTeamInfo> mt = foundMTInfo.first;
int minNumProcessTeams = foundMTInfo.second;
ASSERT(mt.isValid());
// Pick one process team, and mark it as a bad team
// Remove the machine by removing its process team one by one
Reference<TCTeamInfo> team;
int teamIndex = 0;
for (teamIndex = 0; teamIndex < mt->serverTeams.size(); ++teamIndex) {
team = mt->serverTeams[teamIndex];
ASSERT(team->machineTeam->machineIDs == mt->machineIDs); // Sanity check
// Check if a server will have 0 team after the team is removed
for (auto& s : team->getServers()) {
if (s->teams.size() == 0) {
TraceEvent(SevError, "MachineTeamRemoverTooAggressive", self->distributorId)
.detail("Server", s->id)
.detail("ServerTeam", team->getDesc());
self->traceAllInfo(true);
}
}
// The team will be marked as a bad team
bool foundTeam = self->removeTeam(team);
ASSERT(foundTeam == true);
// removeTeam() has side effect of swapping the last element to the current pos
// in the serverTeams vector in the machine team.
--teamIndex;
self->addTeam(team->getServers(), true, true);
TEST(true); // Removed machine team
}
self->doBuildTeams = true;
if (self->badTeamRemover.isReady()) {
self->badTeamRemover = removeBadTeams(self);
self->addActor.send(self->badTeamRemover);
}
TraceEvent("MachineTeamRemover", self->distributorId)
.detail("MachineTeamIDToRemove", mt->id.shortString())
.detail("MachineTeamToRemove", mt->getMachineIDsStr())
.detail("NumProcessTeamsOnTheMachineTeam", minNumProcessTeams)
.detail("CurrentMachineTeams", self->machineTeams.size())
.detail("DesiredMachineTeams", desiredMachineTeams);
// Remove the machine team
bool foundRemovedMachineTeam = self->removeMachineTeam(mt);
// When we remove the last server team on a machine team in removeTeam(), we also remove the machine team
// This is needed for removeTeam() functoin.
// So here the removeMachineTeam() should not find the machine team
ASSERT(foundRemovedMachineTeam);
numMachineTeamRemoved++;
} else {
if (numMachineTeamRemoved > 0) {
// Only trace the information when we remove a machine team
TraceEvent("MachineTeamRemoverDone", self->distributorId)
.detail("HealthyMachines", healthyMachineCount)
// .detail("CurrentHealthyMachineTeams", currentHealthyMTCount)
.detail("CurrentMachineTeams", self->machineTeams.size())
.detail("DesiredMachineTeams", desiredMachineTeams)
.detail("NumMachineTeamsRemoved", numMachineTeamRemoved);
self->traceTeamCollectionInfo();
numMachineTeamRemoved = 0; // Reset the counter to avoid keep printing the message
}
}
}
}
// Remove the server team whose members have the most number of process teams
// until the total number of server teams is no larger than the desired number
ACTOR Future<Void> serverTeamRemover(DDTeamCollection* self) {
state int numServerTeamRemoved = 0;
loop {
// In case the serverTeamRemover cause problems in production, we can disable it
if (SERVER_KNOBS->TR_FLAG_DISABLE_SERVER_TEAM_REMOVER) {
return Void(); // Directly return Void()
}
double removeServerTeamDelay = SERVER_KNOBS->TR_REMOVE_SERVER_TEAM_DELAY;
if (g_network->isSimulated()) {
// Speed up the team remover in simulation; otherwise,
// it may time out because we need to remove hundreds of teams
removeServerTeamDelay = removeServerTeamDelay / 100;
}
// To avoid removing server teams too fast, which is unlikely happen though
wait(delay(removeServerTeamDelay, TaskPriority::DataDistribution));
wait(waitUntilHealthy(self, SERVER_KNOBS->TR_REMOVE_SERVER_TEAM_EXTRA_DELAY));
// Wait for the badTeamRemover() to avoid the potential race between
// adding the bad team (add the team tracker) and remove bad team (cancel the team tracker).
wait(self->badTeamRemover);
// From this point, all server teams should be healthy, because we wait above
// until processingUnhealthy is done, and all machines are healthy
int desiredServerTeams = SERVER_KNOBS->DESIRED_TEAMS_PER_SERVER * self->server_info.size();
int totalSTCount = self->teams.size();
// Pick the server team whose members are on the most number of server teams, and mark it undesired
std::pair<Reference<TCTeamInfo>, int> foundSTInfo = self->getServerTeamWithMostProcessTeams();
if (totalSTCount > desiredServerTeams && foundSTInfo.first.isValid()) {
ASSERT(foundSTInfo.first.isValid());
Reference<TCTeamInfo> st = foundSTInfo.first;
int maxNumProcessTeams = foundSTInfo.second;
ASSERT(st.isValid());
// The team will be marked as a bad team
bool foundTeam = self->removeTeam(st);
ASSERT(foundTeam == true);
self->addTeam(st->getServers(), true, true);
TEST(true); // Marked team as a bad team
self->doBuildTeams = true;
if (self->badTeamRemover.isReady()) {
self->badTeamRemover = removeBadTeams(self);
self->addActor.send(self->badTeamRemover);
}
TraceEvent("ServerTeamRemover", self->distributorId)
.detail("ServerTeamToRemove", st->getServerIDsStr())
.detail("ServerTeamID", st->getTeamID())
.detail("NumProcessTeamsOnTheServerTeam", maxNumProcessTeams)
.detail("CurrentServerTeams", self->teams.size())
.detail("DesiredServerTeams", desiredServerTeams);
numServerTeamRemoved++;
} else {
if (numServerTeamRemoved > 0) {
// Only trace the information when we remove a machine team
TraceEvent("ServerTeamRemoverDone", self->distributorId)
.detail("CurrentServerTeams", self->teams.size())
.detail("DesiredServerTeams", desiredServerTeams)
.detail("NumServerTeamRemoved", numServerTeamRemoved);
self->traceTeamCollectionInfo();
numServerTeamRemoved = 0; // Reset the counter to avoid keep printing the message
}
}
}
}
ACTOR Future<Void> zeroServerLeftLogger_impl(DDTeamCollection* self, Reference<TCTeamInfo> team) {
wait(delay(SERVER_KNOBS->DD_TEAM_ZERO_SERVER_LEFT_LOG_DELAY));
state std::vector<KeyRange> shards = self->shardsAffectedByTeamFailure->getShardsFor(
ShardsAffectedByTeamFailure::Team(team->getServerIDs(), self->primary));
state std::vector<Future<StorageMetrics>> sizes;
sizes.reserve(shards.size());
for (auto const& shard : shards) {
sizes.emplace_back(brokenPromiseToNever(self->getShardMetrics.getReply(GetMetricsRequest(shard))));
TraceEvent(SevWarnAlways, "DDShardLost", self->distributorId)
.detail("ServerTeamID", team->getTeamID())
.detail("ShardBegin", shard.begin)
.detail("ShardEnd", shard.end);
}
wait(waitForAll(sizes));
int64_t bytesLost = 0;
for (auto const& size : sizes) {
bytesLost += size.get().bytes;
}
TraceEvent(SevWarnAlways, "DDZeroServerLeftInTeam", self->distributorId)
.detail("Team", team->getDesc())
.detail("TotalBytesLost", bytesLost);
return Void();
}
bool teamContainsFailedServer(DDTeamCollection* self, Reference<TCTeamInfo> team) {
auto ssis = team->getLastKnownServerInterfaces();
for (const auto& ssi : ssis) {
AddressExclusion addr(ssi.address().ip, ssi.address().port);
AddressExclusion ipaddr(ssi.address().ip);
if (self->excludedServers.get(addr) == DDTeamCollection::Status::FAILED ||
self->excludedServers.get(ipaddr) == DDTeamCollection::Status::FAILED) {
return true;
}
if (ssi.secondaryAddress().present()) {
AddressExclusion saddr(ssi.secondaryAddress().get().ip, ssi.secondaryAddress().get().port);
AddressExclusion sipaddr(ssi.secondaryAddress().get().ip);
if (self->excludedServers.get(saddr) == DDTeamCollection::Status::FAILED ||
self->excludedServers.get(sipaddr) == DDTeamCollection::Status::FAILED) {
return true;
}
}
}
return false;
}
// Track a team and issue RelocateShards when the level of degradation changes
// A badTeam can be unhealthy or just a redundantTeam removed by machineTeamRemover() or serverTeamRemover()
ACTOR Future<Void> teamTracker(DDTeamCollection* self, Reference<TCTeamInfo> team, bool badTeam, bool redundantTeam) {
state int lastServersLeft = team->size();
state bool lastAnyUndesired = false;
state bool lastAnyWigglingServer = false;
state bool logTeamEvents =
g_network->isSimulated() || !badTeam || team->size() <= self->configuration.storageTeamSize;
state bool lastReady = false;
state bool lastHealthy;
state bool lastOptimal;
state bool lastWrongConfiguration = team->isWrongConfiguration();
state bool lastZeroHealthy = self->zeroHealthyTeams->get();
state bool firstCheck = true;
state Future<Void> zeroServerLeftLogger;
if (logTeamEvents) {
TraceEvent("ServerTeamTrackerStarting", self->distributorId)
.detail("Reason", "Initial wait complete (sc)")
.detail("ServerTeam", team->getDesc());
}
self->priority_teams[team->getPriority()]++;
try {
loop {
if (logTeamEvents) {
TraceEvent("ServerTeamHealthChangeDetected", self->distributorId)
.detail("ServerTeam", team->getDesc())
.detail("Primary", self->primary)
.detail("IsReady", self->initialFailureReactionDelay.isReady());
self->traceTeamCollectionInfo();
}
// Check if the number of degraded machines has changed
state std::vector<Future<Void>> change;
bool anyUndesired = false;
bool anyWrongConfiguration = false;
bool anyWigglingServer = false;
int serversLeft = 0, serverUndesired = 0, serverWrongConf = 0, serverWiggling = 0;
for (const UID& uid : team->getServerIDs()) {
change.push_back(self->server_status.onChange(uid));
auto& status = self->server_status.get(uid);
if (!status.isFailed) {
serversLeft++;
}
if (status.isUndesired) {
anyUndesired = true;
serverUndesired++;
}
if (status.isWrongConfiguration) {
anyWrongConfiguration = true;
serverWrongConf++;
}
if (status.isWiggling) {
anyWigglingServer = true;
serverWiggling++;
}
}
if (serversLeft == 0) {
logTeamEvents = true;
}
// Failed server should not trigger DD if SS failures are set to be ignored
if (!badTeam && self->healthyZone.get().present() &&
(self->healthyZone.get().get() == ignoreSSFailuresZoneString)) {
ASSERT_WE_THINK(serversLeft == self->configuration.storageTeamSize);
}
if (!self->initialFailureReactionDelay.isReady()) {
change.push_back(self->initialFailureReactionDelay);
}
change.push_back(self->zeroHealthyTeams->onChange());
bool healthy = !badTeam && !anyUndesired && serversLeft == self->configuration.storageTeamSize;
team->setHealthy(healthy); // Unhealthy teams won't be chosen by bestTeam
bool optimal = team->isOptimal() && healthy;
bool containsFailed = teamContainsFailedServer(self, team);
bool recheck = !healthy && (lastReady != self->initialFailureReactionDelay.isReady() ||
(lastZeroHealthy && !self->zeroHealthyTeams->get()) || containsFailed);
// TraceEvent("TeamHealthChangeDetected", self->distributorId)
// .detail("Team", team->getDesc())
// .detail("ServersLeft", serversLeft)
// .detail("LastServersLeft", lastServersLeft)
// .detail("AnyUndesired", anyUndesired)
// .detail("LastAnyUndesired", lastAnyUndesired)
// .detail("AnyWrongConfiguration", anyWrongConfiguration)
// .detail("LastWrongConfiguration", lastWrongConfiguration)
// .detail("Recheck", recheck)
// .detail("BadTeam", badTeam)
// .detail("LastZeroHealthy", lastZeroHealthy)
// .detail("ZeroHealthyTeam", self->zeroHealthyTeams->get());
lastReady = self->initialFailureReactionDelay.isReady();
lastZeroHealthy = self->zeroHealthyTeams->get();
if (firstCheck) {
firstCheck = false;
if (healthy) {
self->healthyTeamCount++;
self->zeroHealthyTeams->set(false);
}
lastHealthy = healthy;
if (optimal) {
self->optimalTeamCount++;
self->zeroOptimalTeams.set(false);
}
lastOptimal = optimal;
}
if (serversLeft != lastServersLeft || anyUndesired != lastAnyUndesired ||
anyWrongConfiguration != lastWrongConfiguration || anyWigglingServer != lastAnyWigglingServer ||
recheck) { // NOTE: do not check wrongSize
if (logTeamEvents) {
TraceEvent("ServerTeamHealthChanged", self->distributorId)
.detail("ServerTeam", team->getDesc())
.detail("ServersLeft", serversLeft)
.detail("LastServersLeft", lastServersLeft)
.detail("ContainsUndesiredServer", anyUndesired)
.detail("ContainsWigglingServer", anyWigglingServer)
.detail("HealthyTeamsCount", self->healthyTeamCount)
.detail("IsWrongConfiguration", anyWrongConfiguration);
}
team->setWrongConfiguration(anyWrongConfiguration);
if (optimal != lastOptimal) {
lastOptimal = optimal;
self->optimalTeamCount += optimal ? 1 : -1;
ASSERT(self->optimalTeamCount >= 0);
self->zeroOptimalTeams.set(self->optimalTeamCount == 0);
}
if (lastHealthy != healthy) {
lastHealthy = healthy;
// Update healthy team count when the team healthy changes
self->healthyTeamCount += healthy ? 1 : -1;
ASSERT(self->healthyTeamCount >= 0);
self->zeroHealthyTeams->set(self->healthyTeamCount == 0);
if (self->healthyTeamCount == 0) {
TraceEvent(SevWarn, "ZeroServerTeamsHealthySignalling", self->distributorId)
.detail("SignallingTeam", team->getDesc())
.detail("Primary", self->primary);
}
if (logTeamEvents) {
TraceEvent("ServerTeamHealthDifference", self->distributorId)
.detail("ServerTeam", team->getDesc())
.detail("LastOptimal", lastOptimal)
.detail("LastHealthy", lastHealthy)
.detail("Optimal", optimal)
.detail("OptimalTeamCount", self->optimalTeamCount);
}
}
lastServersLeft = serversLeft;
lastAnyUndesired = anyUndesired;
lastWrongConfiguration = anyWrongConfiguration;
lastAnyWigglingServer = anyWigglingServer;
state int lastPriority = team->getPriority();
if (team->size() == 0) {
team->setPriority(SERVER_KNOBS->PRIORITY_POPULATE_REGION);
} else if (serversLeft < self->configuration.storageTeamSize) {
if (serversLeft == 0)
team->setPriority(SERVER_KNOBS->PRIORITY_TEAM_0_LEFT);
else if (serversLeft == 1)
team->setPriority(SERVER_KNOBS->PRIORITY_TEAM_1_LEFT);
else if (serversLeft == 2)
team->setPriority(SERVER_KNOBS->PRIORITY_TEAM_2_LEFT);
else
team->setPriority(SERVER_KNOBS->PRIORITY_TEAM_UNHEALTHY);
} else if (!badTeam && anyWigglingServer && serverWiggling == serverWrongConf &&
serverWiggling == serverUndesired) {
// the wrong configured and undesired server is the wiggling server
team->setPriority(SERVER_KNOBS->PRIORITY_PERPETUAL_STORAGE_WIGGLE);
} else if (badTeam || anyWrongConfiguration) {
if (redundantTeam) {
team->setPriority(SERVER_KNOBS->PRIORITY_TEAM_REDUNDANT);
} else {
team->setPriority(SERVER_KNOBS->PRIORITY_TEAM_UNHEALTHY);
}
} else if (anyUndesired) {
team->setPriority(SERVER_KNOBS->PRIORITY_TEAM_CONTAINS_UNDESIRED_SERVER);
} else {
team->setPriority(SERVER_KNOBS->PRIORITY_TEAM_HEALTHY);
}
if (lastPriority != team->getPriority()) {
self->priority_teams[lastPriority]--;
self->priority_teams[team->getPriority()]++;
if (lastPriority == SERVER_KNOBS->PRIORITY_TEAM_0_LEFT &&
team->getPriority() < SERVER_KNOBS->PRIORITY_TEAM_0_LEFT) {
zeroServerLeftLogger = Void();
}
if (logTeamEvents) {
int dataLoss = team->getPriority() == SERVER_KNOBS->PRIORITY_TEAM_0_LEFT;
Severity severity = dataLoss ? SevWarnAlways : SevInfo;
TraceEvent(severity, "ServerTeamPriorityChange", self->distributorId)
.detail("Priority", team->getPriority())
.detail("Info", team->getDesc())
.detail("ZeroHealthyServerTeams", self->zeroHealthyTeams->get())
.detail("Hint",
severity == SevWarnAlways ? "No replicas remain of some data"
: "The priority of this team changed");
if (team->getPriority() == SERVER_KNOBS->PRIORITY_TEAM_0_LEFT) {
// 0 servers left in this team, data might be lost.
zeroServerLeftLogger = zeroServerLeftLogger_impl(self, team);
}
}
}
lastZeroHealthy =
self->zeroHealthyTeams->get(); // set this again in case it changed from this teams health changing
if ((self->initialFailureReactionDelay.isReady() && !self->zeroHealthyTeams->get()) || containsFailed) {
std::vector<KeyRange> shards = self->shardsAffectedByTeamFailure->getShardsFor(
ShardsAffectedByTeamFailure::Team(team->getServerIDs(), self->primary));
for (int i = 0; i < shards.size(); i++) {
// Make it high priority to move keys off failed server or else RelocateShards may never be
// addressed
int maxPriority = containsFailed ? SERVER_KNOBS->PRIORITY_TEAM_FAILED : team->getPriority();
// The shard split/merge and DD rebooting may make a shard mapped to multiple teams,
// so we need to recalculate the shard's priority
if (maxPriority < SERVER_KNOBS->PRIORITY_TEAM_FAILED) {
std::pair<std::vector<ShardsAffectedByTeamFailure::Team>,
std::vector<ShardsAffectedByTeamFailure::Team>>
teams = self->shardsAffectedByTeamFailure->getTeamsFor(shards[i]);
for (int j = 0; j < teams.first.size() + teams.second.size(); j++) {
// t is the team in primary DC or the remote DC
auto& t =
j < teams.first.size() ? teams.first[j] : teams.second[j - teams.first.size()];
if (!t.servers.size()) {
maxPriority = std::max(maxPriority, SERVER_KNOBS->PRIORITY_POPULATE_REGION);
break;
}
auto tc = self->teamCollections[t.primary ? 0 : 1];
if (tc == nullptr) {
// teamTracker only works when all teamCollections are valid.
// Always check if all teamCollections are valid, and throw error if any
// teamCollection has been destructed, because the teamTracker can be triggered
// after a DDTeamCollection was destroyed and before the other DDTeamCollection is
// destroyed. Do not throw actor_cancelled() because flow treat it differently.
throw dd_cancelled();
}
ASSERT(tc->primary == t.primary);
// tc->traceAllInfo();
if (tc->server_info.count(t.servers[0])) {
auto& info = tc->server_info[t.servers[0]];
bool found = false;
for (int k = 0; k < info->teams.size(); k++) {
if (info->teams[k]->getServerIDs() == t.servers) {
maxPriority = std::max(maxPriority, info->teams[k]->getPriority());
found = true;
break;
}
}
// If we cannot find the team, it could be a bad team so assume unhealthy priority
if (!found) {
// If the input team (in function parameters) is a redundant team, found will be
// false We want to differentiate the redundant_team from unhealthy_team in
// terms of relocate priority
maxPriority =
std::max<int>(maxPriority,
redundantTeam ? SERVER_KNOBS->PRIORITY_TEAM_REDUNDANT
: SERVER_KNOBS->PRIORITY_TEAM_UNHEALTHY);
}
} else {
TEST(true); // A removed server is still associated with a team in
// ShardsAffectedByTeamFailure
}
}
}
RelocateShard rs;
rs.keys = shards[i];
rs.priority = maxPriority;
self->output.send(rs);
TraceEvent("SendRelocateToDDQueue", self->distributorId)
.suppressFor(1.0)
.detail("ServerPrimary", self->primary)
.detail("ServerTeam", team->getDesc())
.detail("KeyBegin", rs.keys.begin)
.detail("KeyEnd", rs.keys.end)
.detail("Priority", rs.priority)
.detail("ServerTeamFailedMachines", team->size() - serversLeft)
.detail("ServerTeamOKMachines", serversLeft);
}
} else {
if (logTeamEvents) {
TraceEvent("ServerTeamHealthNotReady", self->distributorId)
.detail("HealthyServerTeamCount", self->healthyTeamCount)
.detail("ServerTeamID", team->getTeamID());
}
}
}
// Wait for any of the machines to change status
wait(quorum(change, 1));
wait(yield());
}
} catch (Error& e) {
if (logTeamEvents) {
TraceEvent("TeamTrackerStopping", self->distributorId)
.detail("ServerPrimary", self->primary)
.detail("Team", team->getDesc())
.detail("Priority", team->getPriority());
}
self->priority_teams[team->getPriority()]--;
if (team->isHealthy()) {
self->healthyTeamCount--;
ASSERT(self->healthyTeamCount >= 0);
if (self->healthyTeamCount == 0) {
TraceEvent(SevWarn, "ZeroTeamsHealthySignalling", self->distributorId)
.detail("ServerPrimary", self->primary)
.detail("SignallingServerTeam", team->getDesc());
self->zeroHealthyTeams->set(true);
}
}
if (lastOptimal) {
self->optimalTeamCount--;
ASSERT(self->optimalTeamCount >= 0);
self->zeroOptimalTeams.set(self->optimalTeamCount == 0);
}
throw;
}
}
ACTOR Future<Void> trackExcludedServers(DDTeamCollection* self) {
// Fetch the list of excluded servers
state ReadYourWritesTransaction tr(self->cx);
loop {
try {
tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
state Future<RangeResult> fresultsExclude = tr.getRange(excludedServersKeys, CLIENT_KNOBS->TOO_MANY);
state Future<RangeResult> fresultsFailed = tr.getRange(failedServersKeys, CLIENT_KNOBS->TOO_MANY);
state Future<RangeResult> flocalitiesExclude = tr.getRange(excludedLocalityKeys, CLIENT_KNOBS->TOO_MANY);
state Future<RangeResult> flocalitiesFailed = tr.getRange(failedLocalityKeys, CLIENT_KNOBS->TOO_MANY);
state Future<std::vector<ProcessData>> fworkers = getWorkers(self->cx);
wait(success(fresultsExclude) && success(fresultsFailed) && success(flocalitiesExclude) &&
success(flocalitiesFailed));
state RangeResult excludedResults = fresultsExclude.get();
ASSERT(!excludedResults.more && excludedResults.size() < CLIENT_KNOBS->TOO_MANY);
state RangeResult failedResults = fresultsFailed.get();
ASSERT(!failedResults.more && failedResults.size() < CLIENT_KNOBS->TOO_MANY);
state RangeResult excludedLocalityResults = flocalitiesExclude.get();
ASSERT(!excludedLocalityResults.more && excludedLocalityResults.size() < CLIENT_KNOBS->TOO_MANY);
state RangeResult failedLocalityResults = flocalitiesFailed.get();
ASSERT(!failedLocalityResults.more && failedLocalityResults.size() < CLIENT_KNOBS->TOO_MANY);
state std::set<AddressExclusion> excluded;
state std::set<AddressExclusion> failed;
for (const auto& r : excludedResults) {
AddressExclusion addr = decodeExcludedServersKey(r.key);
if (addr.isValid()) {
excluded.insert(addr);
}
}
for (const auto& r : failedResults) {
AddressExclusion addr = decodeFailedServersKey(r.key);
if (addr.isValid()) {
failed.insert(addr);
}
}
wait(success(fworkers));
std::vector<ProcessData> workers = fworkers.get();
for (const auto& r : excludedLocalityResults) {
std::string locality = decodeExcludedLocalityKey(r.key);
std::set<AddressExclusion> localityExcludedAddresses = getAddressesByLocality(workers, locality);
excluded.insert(localityExcludedAddresses.begin(), localityExcludedAddresses.end());
}
for (const auto& r : failedLocalityResults) {
std::string locality = decodeFailedLocalityKey(r.key);
std::set<AddressExclusion> localityFailedAddresses = getAddressesByLocality(workers, locality);
failed.insert(localityFailedAddresses.begin(), localityFailedAddresses.end());
}
// Reset and reassign self->excludedServers based on excluded, but we only
// want to trigger entries that are different
// Do not retrigger and double-overwrite failed or wiggling servers
auto old = self->excludedServers.getKeys();
for (const auto& o : old) {
if (!excluded.count(o) && !failed.count(o) &&
!(self->excludedServers.count(o) &&
self->excludedServers.get(o) == DDTeamCollection::Status::WIGGLING)) {
self->excludedServers.set(o, DDTeamCollection::Status::NONE);
}
}
for (const auto& n : excluded) {
if (!failed.count(n)) {
self->excludedServers.set(n, DDTeamCollection::Status::EXCLUDED);
}
}
for (const auto& f : failed) {
self->excludedServers.set(f, DDTeamCollection::Status::FAILED);
}
TraceEvent("DDExcludedServersChanged", self->distributorId)
.detail("AddressesExcluded", excludedResults.size())
.detail("AddressesFailed", failedResults.size())
.detail("LocalitiesExcluded", excludedLocalityResults.size())
.detail("LocalitiesFailed", failedLocalityResults.size());
self->restartRecruiting.trigger();
state Future<Void> watchFuture = tr.watch(excludedServersVersionKey) || tr.watch(failedServersVersionKey) ||
tr.watch(excludedLocalityVersionKey) || tr.watch(failedLocalityVersionKey);
wait(tr.commit());
wait(watchFuture);
tr.reset();
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
ACTOR Future<std::vector<std::pair<StorageServerInterface, ProcessClass>>> getServerListAndProcessClasses(
Transaction* tr) {
state Future<std::vector<ProcessData>> workers = getWorkers(tr);
state Future<RangeResult> serverList = tr->getRange(serverListKeys, CLIENT_KNOBS->TOO_MANY);
wait(success(workers) && success(serverList));
ASSERT(!serverList.get().more && serverList.get().size() < CLIENT_KNOBS->TOO_MANY);
std::map<Optional<Standalone<StringRef>>, ProcessData> id_data;
for (int i = 0; i < workers.get().size(); i++)
id_data[workers.get()[i].locality.processId()] = workers.get()[i];
std::vector<std::pair<StorageServerInterface, ProcessClass>> results;
for (int i = 0; i < serverList.get().size(); i++) {
auto ssi = decodeServerListValue(serverList.get()[i].value);
results.emplace_back(ssi, id_data[ssi.locality.processId()].processClass);
}
return results;
}
// Create a transaction reading the value of `wigglingStorageServerKey` and update it to the next Process ID according
// to a sorted PID set maintained by the data distributor. If now no storage server exists, the new Process ID is 0.
ACTOR Future<Void> updateNextWigglingStoragePID(DDTeamCollection* teamCollection) {
state ReadYourWritesTransaction tr(teamCollection->cx);
state Value writeValue = ""_sr;
state const Key writeKey =
wigglingStorageServerKey.withSuffix(teamCollection->primary ? "/primary"_sr : "/remote"_sr);
loop {
try {
tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
Optional<Value> locality = wait(tr.get(perpetualStorageWiggleLocalityKey));
if (teamCollection->pid2server_info.empty()) {
writeValue = ""_sr;
} else if (locality.present() && locality.get().toString().compare("0")) {
// if perpetual_storage_wiggle_locality has value and not 0(disabled).
state std::string localityKeyValue = locality.get().toString();
ASSERT(isValidPerpetualStorageWiggleLocality(localityKeyValue));
// get key and value from perpetual_storage_wiggle_locality.
int split = localityKeyValue.find(':');
state std::string localityKey = localityKeyValue.substr(0, split);
state std::string localityValue = localityKeyValue.substr(split + 1);
state Value prevValue;
state int serverInfoSize = teamCollection->pid2server_info.size();
Optional<Value> value = wait(tr.get(writeKey));
if (value.present()) {
prevValue = value.get();
} else {
// if value not present, check for locality match of the first entry in pid2server_info.
auto& info_vec = teamCollection->pid2server_info.begin()->second;
if (info_vec.size() && info_vec[0]->lastKnownInterface.locality.get(localityKey) == localityValue) {
writeValue = teamCollection->pid2server_info.begin()->first; // first entry locality matched.
} else {
prevValue = teamCollection->pid2server_info.begin()->first;
serverInfoSize--;
}
}
// If first entry of pid2server_info, did not match the locality.
if (!(writeValue.compare(LiteralStringRef("")))) {
auto nextIt = teamCollection->pid2server_info.upper_bound(prevValue);
while (true) {
if (nextIt == teamCollection->pid2server_info.end()) {
nextIt = teamCollection->pid2server_info.begin();
}
if (nextIt->second.size() &&
nextIt->second[0]->lastKnownInterface.locality.get(localityKey) == localityValue) {
writeValue = nextIt->first; // locality matched
break;
}
serverInfoSize--;
if (!serverInfoSize) {
// None of the entries in pid2server_info matched the given locality.
writeValue = LiteralStringRef("");
TraceEvent("PerpetualNextWigglingStoragePIDNotFound", teamCollection->distributorId)
.detail("WriteValue", "No process matched the given perpetualStorageWiggleLocality")
.detail("PerpetualStorageWiggleLocality", localityKeyValue);
break;
}
nextIt++;
}
}
} else {
Optional<Value> value = wait(tr.get(writeKey));
Value pid = teamCollection->pid2server_info.begin()->first;
if (value.present()) {
auto nextIt = teamCollection->pid2server_info.upper_bound(value.get());
if (nextIt == teamCollection->pid2server_info.end()) {
writeValue = pid;
} else {
writeValue = nextIt->first;
}
} else {
writeValue = pid;
}
}
tr.set(writeKey, writeValue);
wait(tr.commit());
break;
} catch (Error& e) {
wait(tr.onError(e));
}
}
TraceEvent(SevDebug, "PerpetualNextWigglingStoragePID", teamCollection->distributorId)
.detail("Primary", teamCollection->primary)
.detail("WriteValue", writeValue);
return Void();
}
// Iterate over each storage process to do storage wiggle. After initializing the first Process ID, it waits a signal
// from `perpetualStorageWiggler` indicating the wiggling of current process is finished. Then it writes the next
// Process ID to a system key: `wigglingStorageServerKey` to show the next process to wiggle.
ACTOR Future<Void> perpetualStorageWiggleIterator(AsyncVar<bool>* stopSignal,
FutureStream<Void> finishStorageWiggleSignal,
DDTeamCollection* teamCollection) {
loop {
choose {
when(wait(stopSignal->onChange())) {}
when(waitNext(finishStorageWiggleSignal)) {
state bool takeRest = true; // delay to avoid delete and update ServerList too frequently
while (takeRest) {
wait(delayJittered(SERVER_KNOBS->PERPETUAL_WIGGLE_DELAY));
// there must not have other teams to place wiggled data
takeRest = teamCollection->server_info.size() <= teamCollection->configuration.storageTeamSize ||
teamCollection->machine_info.size() < teamCollection->configuration.storageTeamSize;
teamCollection->doBuildTeams = true;
if (takeRest &&
teamCollection->configuration.storageMigrationType == StorageMigrationType::GRADUAL) {
TraceEvent(SevWarn, "PerpetualWiggleSleep", teamCollection->distributorId)
.suppressFor(SERVER_KNOBS->PERPETUAL_WIGGLE_DELAY * 4)
.detail("ServerSize", teamCollection->server_info.size())
.detail("MachineSize", teamCollection->machine_info.size())
.detail("StorageTeamSize", teamCollection->configuration.storageTeamSize);
}
}
wait(updateNextWigglingStoragePID(teamCollection));
}
}
if (stopSignal->get()) {
break;
}
}
return Void();
}
// Watch the value change of `wigglingStorageServerKey`.
// Return the watch future and the current value of `wigglingStorageServerKey`.
ACTOR Future<std::pair<Future<Void>, Value>> watchPerpetualStoragePIDChange(DDTeamCollection* self) {
state ReadYourWritesTransaction tr(self->cx);
state Future<Void> watchFuture;
state Value ret;
state const Key readKey = wigglingStorageServerKey.withSuffix(self->primary ? "/primary"_sr : "/remote"_sr);
loop {
try {
tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
Optional<Value> value = wait(tr.get(readKey));
if (value.present()) {
ret = value.get();
}
watchFuture = tr.watch(readKey);
wait(tr.commit());
break;
} catch (Error& e) {
wait(tr.onError(e));
}
}
return std::make_pair(watchFuture, ret);
}
// periodically check whether the cluster is healthy if we continue perpetual wiggle
ACTOR Future<Void> clusterHealthCheckForPerpetualWiggle(DDTeamCollection* self, int* extraTeamCount) {
state int pausePenalty = 1;
loop {
Promise<int> countp;
self->getUnhealthyRelocationCount.send(countp);
int count = wait(countp.getFuture());
// pause wiggle when
// a. DDQueue is busy with unhealthy relocation request
// b. healthy teams are not enough
// c. the overall disk space is not enough
if (count >= SERVER_KNOBS->DD_STORAGE_WIGGLE_PAUSE_THRESHOLD || self->healthyTeamCount <= *extraTeamCount ||
self->bestTeamKeepStuckCount > SERVER_KNOBS->DD_STORAGE_WIGGLE_STUCK_THRESHOLD) {
// if we pause wiggle not because the reason a, increase extraTeamCount. This helps avoid oscillation
// between pause and non-pause status.
if ((self->healthyTeamCount <= *extraTeamCount ||
self->bestTeamKeepStuckCount > SERVER_KNOBS->DD_STORAGE_WIGGLE_PAUSE_THRESHOLD) &&
!self->pauseWiggle->get()) {
*extraTeamCount = std::min(*extraTeamCount + pausePenalty, (int)self->teams.size());
pausePenalty = std::min(pausePenalty * 2, (int)self->teams.size());
}
self->pauseWiggle->set(true);
} else {
self->pauseWiggle->set(false);
}
wait(delay(SERVER_KNOBS->CHECK_TEAM_DELAY, TaskPriority::DataDistributionLow));
}
}
// Watches the value (pid) change of \xff/storageWigglePID, and adds storage servers held on process of which the
// Process Id is “pid” into excludeServers which prevent recruiting the wiggling storage servers and let teamTracker
// start to move data off the affected teams. The wiggling process of current storage servers will be paused if the
// cluster is unhealthy and restarted once the cluster is healthy again.
ACTOR Future<Void> perpetualStorageWiggler(AsyncVar<bool>* stopSignal,
PromiseStream<Void> finishStorageWiggleSignal,
DDTeamCollection* self) {
state Future<Void> watchFuture = Never();
state Future<Void> moveFinishFuture = Never();
state int extraTeamCount = 0;
state Future<Void> ddQueueCheck = clusterHealthCheckForPerpetualWiggle(self, &extraTeamCount);
state int movingCount = 0;
state std::pair<Future<Void>, Value> res = wait(watchPerpetualStoragePIDChange(self));
ASSERT(!self->wigglingPid.present()); // only single process wiggle is allowed
self->wigglingPid = Optional<Key>(res.second);
loop {
if (self->wigglingPid.present()) {
StringRef pid = self->wigglingPid.get();
if (self->pauseWiggle->get()) {
TEST(true); // paused because cluster is unhealthy
moveFinishFuture = Never();
self->includeStorageServersForWiggle();
self->doBuildTeams = true;
TraceEvent(self->configuration.storageMigrationType == StorageMigrationType::AGGRESSIVE ? SevInfo
: SevWarn,
"PerpetualStorageWigglePause",
self->distributorId)
.detail("Primary", self->primary)
.detail("ProcessId", pid)
.detail("BestTeamKeepStuckCount", self->bestTeamKeepStuckCount)
.detail("ExtraHealthyTeamCount", extraTeamCount)
.detail("HealthyTeamCount", self->healthyTeamCount)
.detail("StorageCount", movingCount);
} else {
TEST(true); // start wiggling
auto fv = self->excludeStorageServersForWiggle(pid);
movingCount = fv.size();
moveFinishFuture = waitForAll(fv);
TraceEvent("PerpetualStorageWiggleStart", self->distributorId)
.detail("Primary", self->primary)
.detail("ProcessId", pid)
.detail("ExtraHealthyTeamCount", extraTeamCount)
.detail("HealthyTeamCount", self->healthyTeamCount)
.detail("StorageCount", movingCount);
}
}
choose {
when(wait(watchFuture)) {
ASSERT(!self->wigglingPid.present()); // the previous wiggle must be finished
watchFuture = Never();
// read new pid and set the next watch Future
wait(store(res, watchPerpetualStoragePIDChange(self)));
self->wigglingPid = Optional<Key>(res.second);
// random delay
wait(delayJittered(5.0, TaskPriority::DataDistributionLow));
}
when(wait(moveFinishFuture)) {
ASSERT(self->wigglingPid.present());
StringRef pid = self->wigglingPid.get();
TEST(pid != LiteralStringRef("")); // finish wiggling this process
moveFinishFuture = Never();
self->includeStorageServersForWiggle();
TraceEvent("PerpetualStorageWiggleFinish", self->distributorId)
.detail("Primary", self->primary)
.detail("ProcessId", pid.toString())
.detail("StorageCount", movingCount);
self->wigglingPid.reset();
watchFuture = res.first;
finishStorageWiggleSignal.send(Void());
extraTeamCount = std::max(0, extraTeamCount - 1);
}
when(wait(ddQueueCheck || self->pauseWiggle->onChange() || stopSignal->onChange())) {}
}
if (stopSignal->get()) {
break;
}
}
if (self->wigglingPid.present()) {
self->includeStorageServersForWiggle();
TraceEvent("PerpetualStorageWiggleExitingPause", self->distributorId)
.detail("Primary", self->primary)
.detail("ProcessId", self->wigglingPid.get());
self->wigglingPid.reset();
}
return Void();
}
// This coroutine sets a watch to monitor the value change of `perpetualStorageWiggleKey` which is controlled by command
// `configure perpetual_storage_wiggle=$value` if the value is 1, this actor start 2 actors,
// `perpetualStorageWiggleIterator` and `perpetualStorageWiggler`. Otherwise, it sends stop signal to them.
ACTOR Future<Void> monitorPerpetualStorageWiggle(DDTeamCollection* teamCollection) {
state int speed = 0;
state AsyncVar<bool> stopWiggleSignal(true);
state PromiseStream<Void> finishStorageWiggleSignal;
state SignalableActorCollection collection;
teamCollection->pauseWiggle = makeReference<AsyncVar<bool>>(true);
loop {
state ReadYourWritesTransaction tr(teamCollection->cx);
loop {
try {
tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
Optional<Standalone<StringRef>> value = wait(tr.get(perpetualStorageWiggleKey));
if (value.present()) {
speed = std::stoi(value.get().toString());
}
state Future<Void> watchFuture = tr.watch(perpetualStorageWiggleKey);
wait(tr.commit());
ASSERT(speed == 1 || speed == 0);
if (speed == 1 && stopWiggleSignal.get()) { // avoid duplicated start
stopWiggleSignal.set(false);
collection.add(perpetualStorageWiggleIterator(
&stopWiggleSignal, finishStorageWiggleSignal.getFuture(), teamCollection));
collection.add(
perpetualStorageWiggler(&stopWiggleSignal, finishStorageWiggleSignal, teamCollection));
TraceEvent("PerpetualStorageWiggleOpen", teamCollection->distributorId)
.detail("Primary", teamCollection->primary);
} else if (speed == 0) {
if (!stopWiggleSignal.get()) {
stopWiggleSignal.set(true);
wait(collection.signalAndReset());
teamCollection->pauseWiggle->set(true);
}
TraceEvent("PerpetualStorageWiggleClose", teamCollection->distributorId)
.detail("Primary", teamCollection->primary);
}
wait(watchFuture);
break;
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
}
// The serverList system keyspace keeps the StorageServerInterface for each serverID. Storage server's storeType
// and serverID are decided by the server's filename. By parsing storage server file's filename on each disk, process on
// each machine creates the TCServer with the correct serverID and StorageServerInterface.
ACTOR Future<Void> waitServerListChange(DDTeamCollection* self,
FutureStream<Void> serverRemoved,
const DDEnabledState* ddEnabledState) {
state Future<Void> checkSignal = delay(SERVER_KNOBS->SERVER_LIST_DELAY, TaskPriority::DataDistributionLaunch);
state Future<std::vector<std::pair<StorageServerInterface, ProcessClass>>> serverListAndProcessClasses = Never();
state bool isFetchingResults = false;
state Transaction tr(self->cx);
loop {
try {
choose {
when(wait(checkSignal)) {
checkSignal = Never();
isFetchingResults = true;
serverListAndProcessClasses = getServerListAndProcessClasses(&tr);
}
when(std::vector<std::pair<StorageServerInterface, ProcessClass>> results =
wait(serverListAndProcessClasses)) {
serverListAndProcessClasses = Never();
isFetchingResults = false;
for (int i = 0; i < results.size(); i++) {
UID serverId = results[i].first.id();
StorageServerInterface const& ssi = results[i].first;
ProcessClass const& processClass = results[i].second;
if (!self->shouldHandleServer(ssi)) {
continue;
} else if (self->server_and_tss_info.count(serverId)) {
auto& serverInfo = self->server_and_tss_info[serverId];
if (ssi.getValue.getEndpoint() != serverInfo->lastKnownInterface.getValue.getEndpoint() ||
processClass != serverInfo->lastKnownClass.classType()) {
Promise<std::pair<StorageServerInterface, ProcessClass>> currentInterfaceChanged =
serverInfo->interfaceChanged;
serverInfo->interfaceChanged =
Promise<std::pair<StorageServerInterface, ProcessClass>>();
serverInfo->onInterfaceChanged =
Future<std::pair<StorageServerInterface, ProcessClass>>(
serverInfo->interfaceChanged.getFuture());
currentInterfaceChanged.send(std::make_pair(ssi, processClass));
}
} else if (!self->recruitingIds.count(ssi.id())) {
self->addServer(ssi,
processClass,
self->serverTrackerErrorOut,
tr.getReadVersion().get(),
ddEnabledState);
if (!ssi.isTss()) {
self->doBuildTeams = true;
}
}
}
tr = Transaction(self->cx);
checkSignal = delay(SERVER_KNOBS->SERVER_LIST_DELAY, TaskPriority::DataDistributionLaunch);
}
when(waitNext(serverRemoved)) {
if (isFetchingResults) {
tr = Transaction(self->cx);
serverListAndProcessClasses = getServerListAndProcessClasses(&tr);
}
}
}
} catch (Error& e) {
wait(tr.onError(e));
serverListAndProcessClasses = Never();
isFetchingResults = false;
checkSignal = Void();
}
}
}
ACTOR Future<Void> waitHealthyZoneChange(DDTeamCollection* self) {
state ReadYourWritesTransaction tr(self->cx);
loop {
try {
tr.setOption(FDBTransactionOptions::READ_SYSTEM_KEYS);
tr.setOption(FDBTransactionOptions::LOCK_AWARE);
Optional<Value> val = wait(tr.get(healthyZoneKey));
state Future<Void> healthyZoneTimeout = Never();
if (val.present()) {
auto p = decodeHealthyZoneValue(val.get());
if (p.first == ignoreSSFailuresZoneString) {
// healthyZone is now overloaded for DD diabling purpose, which does not timeout
TraceEvent("DataDistributionDisabledForStorageServerFailuresStart", self->distributorId).log();
healthyZoneTimeout = Never();
} else if (p.second > tr.getReadVersion().get()) {
double timeoutSeconds =
(p.second - tr.getReadVersion().get()) / (double)SERVER_KNOBS->VERSIONS_PER_SECOND;
healthyZoneTimeout = delay(timeoutSeconds, TaskPriority::DataDistribution);
if (self->healthyZone.get() != p.first) {
TraceEvent("MaintenanceZoneStart", self->distributorId)
.detail("ZoneID", printable(p.first))
.detail("EndVersion", p.second)
.detail("Duration", timeoutSeconds);
self->healthyZone.set(p.first);
}
} else if (self->healthyZone.get().present()) {
// maintenance hits timeout
TraceEvent("MaintenanceZoneEndTimeout", self->distributorId).log();
self->healthyZone.set(Optional<Key>());
}
} else if (self->healthyZone.get().present()) {
// `healthyZone` has been cleared
if (self->healthyZone.get().get() == ignoreSSFailuresZoneString) {
TraceEvent("DataDistributionDisabledForStorageServerFailuresEnd", self->distributorId).log();
} else {
TraceEvent("MaintenanceZoneEndManualClear", self->distributorId).log();
}
self->healthyZone.set(Optional<Key>());
}
state Future<Void> watchFuture = tr.watch(healthyZoneKey);
wait(tr.commit());
wait(watchFuture || healthyZoneTimeout);
tr.reset();
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
ACTOR Future<Void> serverMetricsPolling(TCServerInfo* server) {
state double lastUpdate = now();
loop {
wait(updateServerMetrics(server));
wait(delayUntil(lastUpdate + SERVER_KNOBS->STORAGE_METRICS_POLLING_DELAY +
SERVER_KNOBS->STORAGE_METRICS_RANDOM_DELAY * deterministicRandom()->random01(),
TaskPriority::DataDistributionLaunch));
lastUpdate = now();
}
}
// Set the server's storeType; Error is catched by the caller
ACTOR Future<Void> keyValueStoreTypeTracker(DDTeamCollection* self, TCServerInfo* server) {
// Update server's storeType, especially when it was created
state KeyValueStoreType type =
wait(brokenPromiseToNever(server->lastKnownInterface.getKeyValueStoreType.getReplyWithTaskID<KeyValueStoreType>(
TaskPriority::DataDistribution)));
server->storeType = type;
if (type != self->configuration.storageServerStoreType) {
if (self->wrongStoreTypeRemover.isReady()) {
self->wrongStoreTypeRemover = removeWrongStoreType(self);
self->addActor.send(self->wrongStoreTypeRemover);
}
}
return Never();
}
ACTOR Future<Void> waitForAllDataRemoved(Database cx, UID serverID, Version addedVersion, DDTeamCollection* teams) {
state Reference<ReadYourWritesTransaction> tr = makeReference<ReadYourWritesTransaction>(cx);
loop {
try {
tr->setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE);
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
Version ver = wait(tr->getReadVersion());
// we cannot remove a server immediately after adding it, because a perfectly timed master recovery could
// cause us to not store the mutations sent to the short lived storage server.
if (ver > addedVersion + SERVER_KNOBS->MAX_READ_TRANSACTION_LIFE_VERSIONS) {
bool canRemove = wait(canRemoveStorageServer(tr, serverID));
// TraceEvent("WaitForAllDataRemoved")
// .detail("Server", serverID)
// .detail("CanRemove", canRemove)
// .detail("Shards", teams->shardsAffectedByTeamFailure->getNumberOfShards(serverID));
ASSERT(teams->shardsAffectedByTeamFailure->getNumberOfShards(serverID) >= 0);
if (canRemove && teams->shardsAffectedByTeamFailure->getNumberOfShards(serverID) == 0) {
return Void();
}
}
// Wait for any change to the serverKeys for this server
wait(delay(SERVER_KNOBS->ALL_DATA_REMOVED_DELAY, TaskPriority::DataDistribution));
tr->reset();
} catch (Error& e) {
wait(tr->onError(e));
}
}
}
ACTOR Future<Void> storageServerFailureTracker(DDTeamCollection* self,
TCServerInfo* server,
Database cx,
ServerStatus* status,
Version addedVersion) {
state StorageServerInterface interf = server->lastKnownInterface;
state int targetTeamNumPerServer =
(SERVER_KNOBS->DESIRED_TEAMS_PER_SERVER * (self->configuration.storageTeamSize + 1)) / 2;
loop {
state bool inHealthyZone = false; // healthChanged actor will be Never() if this flag is true
if (self->healthyZone.get().present()) {
if (interf.locality.zoneId() == self->healthyZone.get()) {
status->isFailed = false;
inHealthyZone = true;
} else if (self->healthyZone.get().get() == ignoreSSFailuresZoneString) {
// Ignore all SS failures
status->isFailed = false;
inHealthyZone = true;
TraceEvent("SSFailureTracker", self->distributorId)
.suppressFor(1.0)
.detail("IgnoredFailure", "BeforeChooseWhen")
.detail("ServerID", interf.id())
.detail("Status", status->toString());
}
}
if (!interf.isTss()) {
if (self->server_status.get(interf.id()).initialized) {
bool unhealthy = self->server_status.get(interf.id()).isUnhealthy();
if (unhealthy && !status->isUnhealthy()) {
self->unhealthyServers--;
}
if (!unhealthy && status->isUnhealthy()) {
self->unhealthyServers++;
}
} else if (status->isUnhealthy()) {
self->unhealthyServers++;
}
}
self->server_status.set(interf.id(), *status);
if (status->isFailed) {
self->restartRecruiting.trigger();
}
Future<Void> healthChanged = Never();
if (status->isFailed) {
ASSERT(!inHealthyZone);
healthChanged =
IFailureMonitor::failureMonitor().onStateEqual(interf.waitFailure.getEndpoint(), FailureStatus(false));
} else if (!inHealthyZone) {
healthChanged = waitFailureClientStrict(interf.waitFailure,
SERVER_KNOBS->DATA_DISTRIBUTION_FAILURE_REACTION_TIME,
TaskPriority::DataDistribution);
}
choose {
when(wait(healthChanged)) {
status->isFailed = !status->isFailed;
if (!status->isFailed && !server->lastKnownInterface.isTss() &&
(server->teams.size() < targetTeamNumPerServer || self->lastBuildTeamsFailed)) {
self->doBuildTeams = true;
}
if (status->isFailed && self->healthyZone.get().present()) {
if (self->healthyZone.get().get() == ignoreSSFailuresZoneString) {
// Ignore the failed storage server
TraceEvent("SSFailureTracker", self->distributorId)
.detail("IgnoredFailure", "InsideChooseWhen")
.detail("ServerID", interf.id())
.detail("Status", status->toString());
status->isFailed = false;
} else if (self->clearHealthyZoneFuture.isReady()) {
self->clearHealthyZoneFuture = clearHealthyZone(self->cx);
TraceEvent("MaintenanceZoneCleared", self->distributorId).log();
self->healthyZone.set(Optional<Key>());
}
}
// TraceEvent("StatusMapChange", self->distributorId)
// .detail("ServerID", interf.id())
// .detail("Status", status->toString())
// .detail("Available",
// IFailureMonitor::failureMonitor().getState(interf.waitFailure.getEndpoint()).isAvailable());
}
when(wait(status->isUnhealthy() ? waitForAllDataRemoved(cx, interf.id(), addedVersion, self) : Never())) {
break;
}
when(wait(self->healthyZone.onChange())) {}
}
}
return Void(); // Don't ignore failures
}
// Check the status of a storage server.
// Apply all requirements to the server and mark it as excluded if it fails to satisfies these requirements
ACTOR Future<Void> storageServerTracker(
DDTeamCollection* self,
Database cx,
TCServerInfo* server, // This actor is owned by this TCServerInfo, point to server_info[id]
Promise<Void> errorOut,
Version addedVersion,
const DDEnabledState* ddEnabledState,
bool isTss) {
state Future<Void> failureTracker;
state ServerStatus status(false, false, false, server->lastKnownInterface.locality);
state bool lastIsUnhealthy = false;
state Future<Void> metricsTracker = serverMetricsPolling(server);
state Future<std::pair<StorageServerInterface, ProcessClass>> interfaceChanged = server->onInterfaceChanged;
state Future<Void> storeTypeTracker = (isTss) ? Never() : keyValueStoreTypeTracker(self, server);
state bool hasWrongDC = !isCorrectDC(self, server);
state bool hasInvalidLocality =
!self->isValidLocality(self->configuration.storagePolicy, server->lastKnownInterface.locality);
state int targetTeamNumPerServer =
(SERVER_KNOBS->DESIRED_TEAMS_PER_SERVER * (self->configuration.storageTeamSize + 1)) / 2;
try {
loop {
status.isUndesired = !self->disableFailingLaggingServers.get() && server->ssVersionTooFarBehind.get();
status.isWrongConfiguration = false;
status.isWiggling = false;
hasWrongDC = !isCorrectDC(self, server);
hasInvalidLocality =
!self->isValidLocality(self->configuration.storagePolicy, server->lastKnownInterface.locality);
// If there is any other server on this exact NetworkAddress, this server is undesired and will eventually
// be eliminated. This samAddress checking must be redo whenever the server's state (e.g., storeType,
// dcLocation, interface) is changed.
state std::vector<Future<Void>> otherChanges;
std::vector<Promise<Void>> wakeUpTrackers;
for (const auto& i : self->server_and_tss_info) {
if (i.second.getPtr() != server &&
i.second->lastKnownInterface.address() == server->lastKnownInterface.address()) {
auto& statusInfo = self->server_status.get(i.first);
TraceEvent("SameAddress", self->distributorId)
.detail("Failed", statusInfo.isFailed)
.detail("Undesired", statusInfo.isUndesired)
.detail("Server", server->id)
.detail("OtherServer", i.second->id)
.detail("Address", server->lastKnownInterface.address())
.detail("NumShards", self->shardsAffectedByTeamFailure->getNumberOfShards(server->id))
.detail("OtherNumShards", self->shardsAffectedByTeamFailure->getNumberOfShards(i.second->id))
.detail("OtherHealthy", !self->server_status.get(i.second->id).isUnhealthy());
// wait for the server's ip to be changed
otherChanges.push_back(self->server_status.onChange(i.second->id));
if (!self->server_status.get(i.second->id).isUnhealthy()) {
if (self->shardsAffectedByTeamFailure->getNumberOfShards(i.second->id) >=
self->shardsAffectedByTeamFailure->getNumberOfShards(server->id)) {
TraceEvent(SevWarn, "UndesiredStorageServer", self->distributorId)
.detail("Server", server->id)
.detail("Address", server->lastKnownInterface.address())
.detail("OtherServer", i.second->id)
.detail("NumShards", self->shardsAffectedByTeamFailure->getNumberOfShards(server->id))
.detail("OtherNumShards",
self->shardsAffectedByTeamFailure->getNumberOfShards(i.second->id));
status.isUndesired = true;
} else
wakeUpTrackers.push_back(i.second->wakeUpTracker);
}
}
}
for (auto& p : wakeUpTrackers) {
if (!p.isSet())
p.send(Void());
}
if (server->lastKnownClass.machineClassFitness(ProcessClass::Storage) > ProcessClass::UnsetFit) {
// NOTE: Should not use self->healthyTeamCount > 0 in if statement, which will cause status bouncing
// between healthy and unhealthy and result in OOM (See PR#2228).
if (self->optimalTeamCount > 0) {
TraceEvent(SevWarn, "UndesiredStorageServer", self->distributorId)
.detail("Server", server->id)
.detail("OptimalTeamCount", self->optimalTeamCount)
.detail("Fitness", server->lastKnownClass.machineClassFitness(ProcessClass::Storage));
status.isUndesired = true;
}
otherChanges.push_back(self->zeroOptimalTeams.onChange());
}
// If this storage server has the wrong key-value store type, then mark it undesired so it will be replaced
// with a server having the correct type
if (hasWrongDC || hasInvalidLocality) {
TraceEvent(SevWarn, "UndesiredDCOrLocality", self->distributorId)
.detail("Server", server->id)
.detail("WrongDC", hasWrongDC)
.detail("InvalidLocality", hasInvalidLocality);
status.isUndesired = true;
status.isWrongConfiguration = true;
}
if (server->wrongStoreTypeToRemove.get()) {
TraceEvent(SevWarn, "WrongStoreTypeToRemove", self->distributorId)
.detail("Server", server->id)
.detail("StoreType", "?");
status.isUndesired = true;
status.isWrongConfiguration = true;
}
// An invalid wiggle server should set itself the right status. Otherwise, it cannot be re-included by
// wiggler.
auto invalidWiggleServer =
[](const AddressExclusion& addr, const DDTeamCollection* tc, const TCServerInfo* server) {
return server->lastKnownInterface.locality.processId() != tc->wigglingPid;
};
// If the storage server is in the excluded servers list, it is undesired
NetworkAddress a = server->lastKnownInterface.address();
AddressExclusion worstAddr(a.ip, a.port);
DDTeamCollection::Status worstStatus = self->excludedServers.get(worstAddr);
if (worstStatus == DDTeamCollection::Status::WIGGLING && invalidWiggleServer(worstAddr, self, server)) {
TraceEvent(SevInfo, "InvalidWiggleServer", self->distributorId)
.detail("Address", worstAddr.toString())
.detail("ProcessId", server->lastKnownInterface.locality.processId())
.detail("ValidWigglingId", self->wigglingPid.present());
self->excludedServers.set(worstAddr, DDTeamCollection::Status::NONE);
worstStatus = DDTeamCollection::Status::NONE;
}
otherChanges.push_back(self->excludedServers.onChange(worstAddr));
for (int i = 0; i < 3; i++) {
if (i > 0 && !server->lastKnownInterface.secondaryAddress().present()) {
break;
}
AddressExclusion testAddr;
if (i == 0)
testAddr = AddressExclusion(a.ip);
else if (i == 1)
testAddr = AddressExclusion(server->lastKnownInterface.secondaryAddress().get().ip,
server->lastKnownInterface.secondaryAddress().get().port);
else if (i == 2)
testAddr = AddressExclusion(server->lastKnownInterface.secondaryAddress().get().ip);
DDTeamCollection::Status testStatus = self->excludedServers.get(testAddr);
if (testStatus == DDTeamCollection::Status::WIGGLING && invalidWiggleServer(testAddr, self, server)) {
TraceEvent(SevInfo, "InvalidWiggleServer", self->distributorId)
.detail("Address", testAddr.toString())
.detail("ProcessId", server->lastKnownInterface.locality.processId())
.detail("ValidWigglingId", self->wigglingPid.present());
self->excludedServers.set(testAddr, DDTeamCollection::Status::NONE);
testStatus = DDTeamCollection::Status::NONE;
}
if (testStatus > worstStatus) {
worstStatus = testStatus;
worstAddr = testAddr;
}
otherChanges.push_back(self->excludedServers.onChange(testAddr));
}
if (worstStatus != DDTeamCollection::Status::NONE) {
TraceEvent(SevWarn, "UndesiredStorageServer", self->distributorId)
.detail("Server", server->id)
.detail("Excluded", worstAddr.toString());
status.isUndesired = true;
status.isWrongConfiguration = true;
if (worstStatus == DDTeamCollection::Status::WIGGLING && !isTss) {
status.isWiggling = true;
TraceEvent("PerpetualWigglingStorageServer", self->distributorId)
.detail("Primary", self->primary)
.detail("Server", server->id)
.detail("ProcessId", server->lastKnownInterface.locality.processId())
.detail("Address", worstAddr.toString());
} else if (worstStatus == DDTeamCollection::Status::FAILED && !isTss) {
TraceEvent(SevWarn, "FailedServerRemoveKeys", self->distributorId)
.detail("Server", server->id)
.detail("Excluded", worstAddr.toString());
wait(delay(0.0)); // Do not throw an error while still inside trackExcludedServers
while (!ddEnabledState->isDDEnabled()) {
wait(delay(1.0));
}
if (self->removeFailedServer.canBeSet()) {
self->removeFailedServer.send(server->id);
}
throw movekeys_conflict();
}
}
failureTracker = storageServerFailureTracker(self, server, cx, &status, addedVersion);
// We need to recruit new storage servers if the key value store type has changed
if (hasWrongDC || hasInvalidLocality || server->wrongStoreTypeToRemove.get()) {
self->restartRecruiting.trigger();
}
if (lastIsUnhealthy && !status.isUnhealthy() && !isTss &&
(server->teams.size() < targetTeamNumPerServer || self->lastBuildTeamsFailed)) {
self->doBuildTeams = true;
self->restartTeamBuilder.trigger(); // This does not trigger building teams if there exist healthy teams
}
lastIsUnhealthy = status.isUnhealthy();
state bool recordTeamCollectionInfo = false;
choose {
when(wait(failureTracker || server->onTSSPairRemoved || server->killTss.getFuture())) {
// The server is failed AND all data has been removed from it, so permanently remove it.
TraceEvent("StatusMapChange", self->distributorId)
.detail("ServerID", server->id)
.detail("Status", "Removing");
if (server->updated.canBeSet()) {
server->updated.send(Void());
}
// Remove server from FF/serverList
wait(removeStorageServer(
cx, server->id, server->lastKnownInterface.tssPairID, self->lock, ddEnabledState));
TraceEvent("StatusMapChange", self->distributorId)
.detail("ServerID", server->id)
.detail("Status", "Removed");
// Sets removeSignal (alerting dataDistributionTeamCollection to remove the storage server from its
// own data structures)
server->removed.send(Void());
if (isTss) {
self->removedTSS.send(server->id);
} else {
self->removedServers.send(server->id);
}
return Void();
}
when(std::pair<StorageServerInterface, ProcessClass> newInterface = wait(interfaceChanged)) {
bool restartRecruiting = newInterface.first.waitFailure.getEndpoint().getPrimaryAddress() !=
server->lastKnownInterface.waitFailure.getEndpoint().getPrimaryAddress();
bool localityChanged = server->lastKnownInterface.locality != newInterface.first.locality;
bool machineLocalityChanged = server->lastKnownInterface.locality.zoneId().get() !=
newInterface.first.locality.zoneId().get();
bool processIdChanged = server->lastKnownInterface.locality.processId().get() !=
newInterface.first.locality.processId().get();
TraceEvent("StorageServerInterfaceChanged", self->distributorId)
.detail("ServerID", server->id)
.detail("NewWaitFailureToken", newInterface.first.waitFailure.getEndpoint().token)
.detail("OldWaitFailureToken", server->lastKnownInterface.waitFailure.getEndpoint().token)
.detail("LocalityChanged", localityChanged)
.detail("ProcessIdChanged", processIdChanged)
.detail("MachineLocalityChanged", machineLocalityChanged);
server->lastKnownInterface = newInterface.first;
server->lastKnownClass = newInterface.second;
if (localityChanged && !isTss) {
TEST(true); // Server locality changed
// The locality change of a server will affect machine teams related to the server if
// the server's machine locality is changed
if (machineLocalityChanged) {
// First handle the impact on the machine of the server on the old locality
Reference<TCMachineInfo> machine = server->machine;
ASSERT(machine->serversOnMachine.size() >= 1);
if (machine->serversOnMachine.size() == 1) {
// When server is the last server on the machine,
// remove the machine and the related machine team
self->removeMachine(machine);
server->machine = Reference<TCMachineInfo>();
} else {
// we remove the server from the machine, and
// update locality entry for the machine and the global machineLocalityMap
int serverIndex = -1;
for (int i = 0; i < machine->serversOnMachine.size(); ++i) {
if (machine->serversOnMachine[i].getPtr() == server) {
// NOTE: now the machine's locality is wrong. Need update it whenever uses it.
serverIndex = i;
machine->serversOnMachine[i] = machine->serversOnMachine.back();
machine->serversOnMachine.pop_back();
break; // Invariant: server only appear on the machine once
}
}
ASSERT(serverIndex != -1);
// NOTE: we do not update the machine's locality map even when
// its representative server is changed.
}
// Second handle the impact on the destination machine where the server's new locality is;
// If the destination machine is new, create one; otherwise, add server to an existing one
// Update server's machine reference to the destination machine
Reference<TCMachineInfo> destMachine =
self->checkAndCreateMachine(self->server_info[server->id]);
ASSERT(destMachine.isValid());
}
// update pid2server_info if the process id has changed
if (processIdChanged) {
self->pid2server_info[newInterface.first.locality.processId().get()].push_back(
self->server_info[server->id]);
// delete the old one
auto& old_infos =
self->pid2server_info[server->lastKnownInterface.locality.processId().get()];
for (int i = 0; i < old_infos.size(); ++i) {
if (old_infos[i].getPtr() == server) {
std::swap(old_infos[i--], old_infos.back());
old_infos.pop_back();
}
}
}
// Ensure the server's server team belong to a machine team, and
// Get the newBadTeams due to the locality change
std::vector<Reference<TCTeamInfo>> newBadTeams;
for (auto& serverTeam : server->teams) {
if (!self->satisfiesPolicy(serverTeam->getServers())) {
newBadTeams.push_back(serverTeam);
continue;
}
if (machineLocalityChanged) {
Reference<TCMachineTeamInfo> machineTeam = self->checkAndCreateMachineTeam(serverTeam);
ASSERT(machineTeam.isValid());
serverTeam->machineTeam = machineTeam;
}
}
server->inDesiredDC =
(self->includedDCs.empty() ||
std::find(self->includedDCs.begin(),
self->includedDCs.end(),
server->lastKnownInterface.locality.dcId()) != self->includedDCs.end());
self->resetLocalitySet();
bool addedNewBadTeam = false;
for (auto it : newBadTeams) {
if (self->removeTeam(it)) {
self->addTeam(it->getServers(), true);
addedNewBadTeam = true;
}
}
if (addedNewBadTeam && self->badTeamRemover.isReady()) {
TEST(true); // Server locality change created bad teams
self->doBuildTeams = true;
self->badTeamRemover = removeBadTeams(self);
self->addActor.send(self->badTeamRemover);
// The team number changes, so we need to update the team number info
// self->traceTeamCollectionInfo();
recordTeamCollectionInfo = true;
}
// The locality change of the server will invalid the server's old teams,
// so we need to rebuild teams for the server
self->doBuildTeams = true;
}
interfaceChanged = server->onInterfaceChanged;
// Old failureTracker for the old interface will be actorCancelled since the handler of the old
// actor now points to the new failure monitor actor.
status = ServerStatus(
status.isFailed, status.isUndesired, status.isWiggling, server->lastKnownInterface.locality);
// self->traceTeamCollectionInfo();
recordTeamCollectionInfo = true;
// Restart the storeTracker for the new interface. This will cancel the previous
// keyValueStoreTypeTracker
storeTypeTracker = (isTss) ? Never() : keyValueStoreTypeTracker(self, server);
hasWrongDC = !isCorrectDC(self, server);
hasInvalidLocality =
!self->isValidLocality(self->configuration.storagePolicy, server->lastKnownInterface.locality);
self->restartTeamBuilder.trigger();
if (restartRecruiting)
self->restartRecruiting.trigger();
}
when(wait(otherChanges.empty() ? Never() : quorum(otherChanges, 1))) {
TraceEvent("SameAddressChangedStatus", self->distributorId).detail("ServerID", server->id);
}
when(wait(server->wrongStoreTypeToRemove.onChange())) {
TraceEvent("UndesiredStorageServerTriggered", self->distributorId)
.detail("Server", server->id)
.detail("StoreType", server->storeType)
.detail("ConfigStoreType", self->configuration.storageServerStoreType)
.detail("WrongStoreTypeRemoved", server->wrongStoreTypeToRemove.get());
}
when(wait(server->wakeUpTracker.getFuture())) { server->wakeUpTracker = Promise<Void>(); }
when(wait(storeTypeTracker)) {}
when(wait(server->ssVersionTooFarBehind.onChange())) {}
when(wait(self->disableFailingLaggingServers.onChange())) {}
}
if (recordTeamCollectionInfo) {
self->traceTeamCollectionInfo();
}
}
} catch (Error& e) {
state Error err = e;
TraceEvent("StorageServerTrackerCancelled", self->distributorId)
.suppressFor(1.0)
.detail("Primary", self->primary)
.detail("Server", server->id)
.error(e, /*includeCancelled*/ true);
if (e.code() != error_code_actor_cancelled && errorOut.canBeSet()) {
errorOut.sendError(e);
wait(delay(0)); // Check for cancellation, since errorOut.sendError(e) could delete self
}
throw err;
}
}
// Monitor whether or not storage servers are being recruited. If so, then a database cannot be considered quiet
ACTOR Future<Void> monitorStorageServerRecruitment(DDTeamCollection* self) {
state bool recruiting = false;
state bool lastIsTss = false;
TraceEvent("StorageServerRecruitment", self->distributorId)
.detail("State", "Idle")
.trackLatest(self->storageServerRecruitmentEventHolder->trackingKey);
loop {
if (!recruiting) {
while (self->recruitingStream.get() == 0) {
wait(self->recruitingStream.onChange());
}
TraceEvent("StorageServerRecruitment", self->distributorId)
.detail("State", "Recruiting")
.detail("IsTSS", self->isTssRecruiting ? "True" : "False")
.trackLatest(self->storageServerRecruitmentEventHolder->trackingKey);
recruiting = true;
lastIsTss = self->isTssRecruiting;
} else {
loop {
choose {
when(wait(self->recruitingStream.onChange())) {
if (lastIsTss != self->isTssRecruiting) {
TraceEvent("StorageServerRecruitment", self->distributorId)
.detail("State", "Recruiting")
.detail("IsTSS", self->isTssRecruiting ? "True" : "False")
.trackLatest(self->storageServerRecruitmentEventHolder->trackingKey);
lastIsTss = self->isTssRecruiting;
}
}
when(wait(self->recruitingStream.get() == 0
? delay(SERVER_KNOBS->RECRUITMENT_IDLE_DELAY, TaskPriority::DataDistribution)
: Future<Void>(Never()))) {
break;
}
}
}
TraceEvent("StorageServerRecruitment", self->distributorId)
.detail("State", "Idle")
.trackLatest(self->storageServerRecruitmentEventHolder->trackingKey);
recruiting = false;
}
}
}
ACTOR Future<Void> checkAndRemoveInvalidLocalityAddr(DDTeamCollection* self) {
state double start = now();
state bool hasCorrectedLocality = false;
loop {
try {
wait(delay(SERVER_KNOBS->DD_CHECK_INVALID_LOCALITY_DELAY, TaskPriority::DataDistribution));
// Because worker's processId can be changed when its locality is changed, we cannot watch on the old
// processId; This actor is inactive most time, so iterating all workers incurs little performance overhead.
state std::vector<ProcessData> workers = wait(getWorkers(self->cx));
state std::set<AddressExclusion> existingAddrs;
for (int i = 0; i < workers.size(); i++) {
const ProcessData& workerData = workers[i];
AddressExclusion addr(workerData.address.ip, workerData.address.port);
existingAddrs.insert(addr);
if (self->invalidLocalityAddr.count(addr) &&
self->isValidLocality(self->configuration.storagePolicy, workerData.locality)) {
// The locality info on the addr has been corrected
self->invalidLocalityAddr.erase(addr);
hasCorrectedLocality = true;
TraceEvent("InvalidLocalityCorrected").detail("Addr", addr.toString());
}
}
wait(yield(TaskPriority::DataDistribution));
// In case system operator permanently excludes workers on the address with invalid locality
for (auto addr = self->invalidLocalityAddr.begin(); addr != self->invalidLocalityAddr.end();) {
if (!existingAddrs.count(*addr)) {
// The address no longer has a worker
addr = self->invalidLocalityAddr.erase(addr);
hasCorrectedLocality = true;
TraceEvent("InvalidLocalityNoLongerExists").detail("Addr", addr->toString());
} else {
++addr;
}
}
if (hasCorrectedLocality) {
// Recruit on address who locality has been corrected
self->restartRecruiting.trigger();
hasCorrectedLocality = false;
}
if (self->invalidLocalityAddr.empty()) {
break;
}
if (now() - start > 300) { // Report warning if invalid locality is not corrected within 300 seconds
// The incorrect locality info has not been properly corrected in a reasonable time
TraceEvent(SevWarn, "PersistentInvalidLocality").detail("Addresses", self->invalidLocalityAddr.size());
start = now();
}
} catch (Error& e) {
TraceEvent("CheckAndRemoveInvalidLocalityAddrRetry", self->distributorId).detail("Error", e.what());
}
}
return Void();
}
int numExistingSSOnAddr(DDTeamCollection* self, const AddressExclusion& addr) {
int numExistingSS = 0;
for (auto& server : self->server_and_tss_info) {
const NetworkAddress& netAddr = server.second->lastKnownInterface.stableAddress();
AddressExclusion usedAddr(netAddr.ip, netAddr.port);
if (usedAddr == addr) {
++numExistingSS;
}
}
return numExistingSS;
}
// All state that represents an ongoing tss pair recruitment
struct TSSPairState : ReferenceCounted<TSSPairState>, NonCopyable {
Promise<Optional<std::pair<UID, Version>>>
ssPairInfo; // if set, for ss to pass its id to tss pair once it is successfully recruited
Promise<bool> tssPairDone; // if set, for tss to pass ss that it was successfully recruited
Promise<Void> complete;
Optional<Key> dcId; // dc
Optional<Key> dataHallId; // data hall
bool active;
TSSPairState() : active(false) {}
TSSPairState(const LocalityData& locality)
: dcId(locality.dcId()), dataHallId(locality.dataHallId()), active(true) {}
bool inDataZone(const LocalityData& locality) {
return locality.dcId() == dcId && locality.dataHallId() == dataHallId;
}
void cancel() {
// only cancel if both haven't been set, otherwise one half of pair could think it was successful but the other
// half would think it failed
if (active && ssPairInfo.canBeSet() && tssPairDone.canBeSet()) {
ssPairInfo.send(Optional<std::pair<UID, Version>>());
// callback of ssPairInfo could have cancelled tssPairDone already, so double check before cancelling
if (tssPairDone.canBeSet()) {
tssPairDone.send(false);
}
if (complete.canBeSet()) {
complete.send(Void());
}
}
}
bool tssRecruitSuccess() {
if (active && tssPairDone.canBeSet()) {
tssPairDone.send(true);
return true;
}
return false;
}
bool tssRecruitFailed() {
if (active && tssPairDone.canBeSet()) {
tssPairDone.send(false);
return true;
}
return false;
}
bool ssRecruitSuccess(std::pair<UID, Version> ssInfo) {
if (active && ssPairInfo.canBeSet()) {
ssPairInfo.send(Optional<std::pair<UID, Version>>(ssInfo));
return true;
}
return false;
}
bool ssRecruitFailed() {
if (active && ssPairInfo.canBeSet()) {
ssPairInfo.send(Optional<std::pair<UID, Version>>());
return true;
}
return false;
}
bool markComplete() {
if (active && complete.canBeSet()) {
complete.send(Void());
return true;
}
return false;
}
Future<Optional<std::pair<UID, Version>>> waitOnSS() { return ssPairInfo.getFuture(); }
Future<bool> waitOnTSS() { return tssPairDone.getFuture(); }
Future<Void> waitComplete() { return complete.getFuture(); }
};
ACTOR Future<Void> initializeStorage(DDTeamCollection* self,
RecruitStorageReply candidateWorker,
const DDEnabledState* ddEnabledState,
bool recruitTss,
Reference<TSSPairState> tssState) {
// SOMEDAY: Cluster controller waits for availability, retry quickly if a server's Locality changes
self->recruitingStream.set(self->recruitingStream.get() + 1);
const NetworkAddress& netAddr = candidateWorker.worker.stableAddress();
AddressExclusion workerAddr(netAddr.ip, netAddr.port);
if (numExistingSSOnAddr(self, workerAddr) <= 2 &&
self->recruitingLocalities.find(candidateWorker.worker.stableAddress()) == self->recruitingLocalities.end()) {
// Only allow at most 2 storage servers on an address, because
// too many storage server on the same address (i.e., process) can cause OOM.
// Ask the candidateWorker to initialize a SS only if the worker does not have a pending request
state UID interfaceId = deterministicRandom()->randomUniqueID();
state InitializeStorageRequest isr;
isr.storeType =
recruitTss ? self->configuration.testingStorageServerStoreType : self->configuration.storageServerStoreType;
isr.seedTag = invalidTag;
isr.reqId = deterministicRandom()->randomUniqueID();
isr.interfaceId = interfaceId;
self->recruitingIds.insert(interfaceId);
self->recruitingLocalities.insert(candidateWorker.worker.stableAddress());
// if tss, wait for pair ss to finish and add its id to isr. If pair fails, don't recruit tss
state bool doRecruit = true;
if (recruitTss) {
TraceEvent("TSS_Recruit", self->distributorId)
.detail("TSSID", interfaceId)
.detail("Stage", "TSSWaitingPair")
.detail("Addr", candidateWorker.worker.address())
.detail("Locality", candidateWorker.worker.locality.toString());
Optional<std::pair<UID, Version>> ssPairInfoResult = wait(tssState->waitOnSS());
if (ssPairInfoResult.present()) {
isr.tssPairIDAndVersion = ssPairInfoResult.get();
TraceEvent("TSS_Recruit", self->distributorId)
.detail("SSID", ssPairInfoResult.get().first)
.detail("TSSID", interfaceId)
.detail("Stage", "TSSWaitingPair")
.detail("Addr", candidateWorker.worker.address())
.detail("Version", ssPairInfoResult.get().second)
.detail("Locality", candidateWorker.worker.locality.toString());
} else {
doRecruit = false;
TraceEvent(SevWarnAlways, "TSS_RecruitError", self->distributorId)
.detail("TSSID", interfaceId)
.detail("Reason", "SS recruitment failed for some reason")
.detail("Addr", candidateWorker.worker.address())
.detail("Locality", candidateWorker.worker.locality.toString());
}
}
TraceEvent("DDRecruiting")
.detail("Primary", self->primary)
.detail("State", "Sending request to worker")
.detail("WorkerID", candidateWorker.worker.id())
.detail("WorkerLocality", candidateWorker.worker.locality.toString())
.detail("Interf", interfaceId)
.detail("Addr", candidateWorker.worker.address())
.detail("TSS", recruitTss ? "true" : "false")
.detail("RecruitingStream", self->recruitingStream.get());
Future<ErrorOr<InitializeStorageReply>> fRecruit =
doRecruit ? candidateWorker.worker.storage.tryGetReply(isr, TaskPriority::DataDistribution)
: Future<ErrorOr<InitializeStorageReply>>(ErrorOr<InitializeStorageReply>(recruitment_failed()));
state ErrorOr<InitializeStorageReply> newServer = wait(fRecruit);
if (doRecruit && newServer.isError()) {
TraceEvent(SevWarn, "DDRecruitmentError").error(newServer.getError());
if (!newServer.isError(error_code_recruitment_failed) &&
!newServer.isError(error_code_request_maybe_delivered)) {
tssState->markComplete();
throw newServer.getError();
}
wait(delay(SERVER_KNOBS->STORAGE_RECRUITMENT_DELAY, TaskPriority::DataDistribution));
}
if (!recruitTss && newServer.present() &&
tssState->ssRecruitSuccess(std::pair(interfaceId, newServer.get().addedVersion))) {
// SS has a tss pair. send it this id, but try to wait for add server until tss is recruited
TraceEvent("TSS_Recruit", self->distributorId)
.detail("SSID", interfaceId)
.detail("Stage", "SSSignaling")
.detail("Addr", candidateWorker.worker.address())
.detail("Locality", candidateWorker.worker.locality.toString());
// wait for timeout, but eventually move on if no TSS pair recruited
Optional<bool> tssSuccessful = wait(timeout(tssState->waitOnTSS(), SERVER_KNOBS->TSS_RECRUITMENT_TIMEOUT));
if (tssSuccessful.present() && tssSuccessful.get()) {
TraceEvent("TSS_Recruit", self->distributorId)
.detail("SSID", interfaceId)
.detail("Stage", "SSGotPair")
.detail("Addr", candidateWorker.worker.address())
.detail("Locality", candidateWorker.worker.locality.toString());
} else {
TraceEvent(SevWarn, "TSS_RecruitError", self->distributorId)
.detail("SSID", interfaceId)
.detail("Reason",
tssSuccessful.present() ? "TSS recruitment failed for some reason"
: "TSS recruitment timed out")
.detail("Addr", candidateWorker.worker.address())
.detail("Locality", candidateWorker.worker.locality.toString());
}
}
self->recruitingIds.erase(interfaceId);
self->recruitingLocalities.erase(candidateWorker.worker.stableAddress());
TraceEvent("DDRecruiting")
.detail("Primary", self->primary)
.detail("State", "Finished request")
.detail("WorkerID", candidateWorker.worker.id())
.detail("WorkerLocality", candidateWorker.worker.locality.toString())
.detail("Interf", interfaceId)
.detail("Addr", candidateWorker.worker.address())
.detail("RecruitingStream", self->recruitingStream.get());
if (newServer.present()) {
UID id = newServer.get().interf.id();
if (!self->server_and_tss_info.count(id)) {
if (!recruitTss || tssState->tssRecruitSuccess()) {
self->addServer(newServer.get().interf,
candidateWorker.processClass,
self->serverTrackerErrorOut,
newServer.get().addedVersion,
ddEnabledState);
// signal all done after adding tss to tracking info
tssState->markComplete();
}
} else {
TraceEvent(SevWarn, "DDRecruitmentError")
.detail("Reason", "Server ID already recruited")
.detail("ServerID", id);
}
if (!recruitTss) {
self->doBuildTeams = true;
}
}
}
// SS and/or TSS recruitment failed at this point, update tssState
if (recruitTss && tssState->tssRecruitFailed()) {
tssState->markComplete();
TEST(true); // TSS recruitment failed for some reason
}
if (!recruitTss && tssState->ssRecruitFailed()) {
TEST(true); // SS with pair TSS recruitment failed for some reason
}
self->recruitingStream.set(self->recruitingStream.get() - 1);
self->restartRecruiting.trigger();
return Void();
}
ACTOR Future<Void> storageRecruiter(DDTeamCollection* self,
Reference<IAsyncListener<RequestStream<RecruitStorageRequest>>> recruitStorage,
const DDEnabledState* ddEnabledState) {
state Future<RecruitStorageReply> fCandidateWorker;
state RecruitStorageRequest lastRequest;
state bool hasHealthyTeam;
state std::map<AddressExclusion, int> numSSPerAddr;
// tss-specific recruitment state
state int32_t targetTSSInDC = 0;
state int32_t tssToRecruit = 0;
state int inProgressTSSCount = 0;
state PromiseStream<Future<Void>> addTSSInProgress;
state Future<Void> inProgressTSS =
actorCollection(addTSSInProgress.getFuture(), &inProgressTSSCount, nullptr, nullptr, nullptr);
state Reference<TSSPairState> tssState = makeReference<TSSPairState>();
state Future<Void> checkTss = self->initialFailureReactionDelay;
state bool pendingTSSCheck = false;
TraceEvent(SevDebug, "TSS_RecruitUpdated", self->distributorId).detail("Count", tssToRecruit);
loop {
try {
// Divide TSS evenly in each DC if there are multiple
// TODO would it be better to put all of them in primary DC?
targetTSSInDC = self->configuration.desiredTSSCount;
if (self->configuration.usableRegions > 1) {
targetTSSInDC /= self->configuration.usableRegions;
if (self->primary) {
// put extras in primary DC if it's uneven
targetTSSInDC += (self->configuration.desiredTSSCount % self->configuration.usableRegions);
}
}
int newTssToRecruit = targetTSSInDC - self->tss_info_by_pair.size() - inProgressTSSCount;
// FIXME: Should log this if the recruit count stays the same but the other numbers update?
if (newTssToRecruit != tssToRecruit) {
TraceEvent("TSS_RecruitUpdated", self->distributorId)
.detail("Desired", targetTSSInDC)
.detail("Existing", self->tss_info_by_pair.size())
.detail("InProgress", inProgressTSSCount)
.detail("NotStarted", newTssToRecruit);
tssToRecruit = newTssToRecruit;
// if we need to get rid of some TSS processes, signal to either cancel recruitment or kill existing TSS
// processes
if (!pendingTSSCheck && (tssToRecruit < 0 || self->zeroHealthyTeams->get()) &&
(self->isTssRecruiting || (self->zeroHealthyTeams->get() && self->tss_info_by_pair.size() > 0))) {
checkTss = self->initialFailureReactionDelay;
}
}
numSSPerAddr.clear();
hasHealthyTeam = (self->healthyTeamCount != 0);
RecruitStorageRequest rsr;
std::set<AddressExclusion> exclusions;
for (auto s = self->server_and_tss_info.begin(); s != self->server_and_tss_info.end(); ++s) {
auto serverStatus = self->server_status.get(s->second->lastKnownInterface.id());
if (serverStatus.excludeOnRecruit()) {
TraceEvent(SevDebug, "DDRecruitExcl1")
.detail("Primary", self->primary)
.detail("Excluding", s->second->lastKnownInterface.address());
auto addr = s->second->lastKnownInterface.stableAddress();
AddressExclusion addrExcl(addr.ip, addr.port);
exclusions.insert(addrExcl);
numSSPerAddr[addrExcl]++; // increase from 0
}
}
for (auto addr : self->recruitingLocalities) {
exclusions.insert(AddressExclusion(addr.ip, addr.port));
}
auto excl = self->excludedServers.getKeys();
for (const auto& s : excl) {
if (self->excludedServers.get(s) != DDTeamCollection::Status::NONE) {
TraceEvent(SevDebug, "DDRecruitExcl2")
.detail("Primary", self->primary)
.detail("Excluding", s.toString());
exclusions.insert(s);
}
}
// Exclude workers that have invalid locality
for (auto& addr : self->invalidLocalityAddr) {
TraceEvent(SevDebug, "DDRecruitExclInvalidAddr").detail("Excluding", addr.toString());
exclusions.insert(addr);
}
rsr.criticalRecruitment = !hasHealthyTeam;
for (auto it : exclusions) {
rsr.excludeAddresses.push_back(it);
}
rsr.includeDCs = self->includedDCs;
TraceEvent(rsr.criticalRecruitment ? SevWarn : SevInfo, "DDRecruiting")
.detail("Primary", self->primary)
.detail("State", "Sending request to CC")
.detail("Exclusions", rsr.excludeAddresses.size())
.detail("Critical", rsr.criticalRecruitment)
.detail("IncludedDCsSize", rsr.includeDCs.size());
if (rsr.criticalRecruitment) {
TraceEvent(SevWarn, "DDRecruitingEmergency", self->distributorId).detail("Primary", self->primary);
}
if (!fCandidateWorker.isValid() || fCandidateWorker.isReady() ||
rsr.excludeAddresses != lastRequest.excludeAddresses ||
rsr.criticalRecruitment != lastRequest.criticalRecruitment) {
lastRequest = rsr;
fCandidateWorker =
brokenPromiseToNever(recruitStorage->get().getReply(rsr, TaskPriority::DataDistribution));
}
choose {
when(RecruitStorageReply candidateWorker = wait(fCandidateWorker)) {
AddressExclusion candidateSSAddr(candidateWorker.worker.stableAddress().ip,
candidateWorker.worker.stableAddress().port);
int numExistingSS = numSSPerAddr[candidateSSAddr];
if (numExistingSS >= 2) {
TraceEvent(SevWarnAlways, "StorageRecruiterTooManySSOnSameAddr", self->distributorId)
.detail("Primary", self->primary)
.detail("Addr", candidateSSAddr.toString())
.detail("NumExistingSS", numExistingSS);
}
if (hasHealthyTeam && !tssState->active && tssToRecruit > 0) {
TraceEvent("TSS_Recruit", self->distributorId)
.detail("Stage", "HoldTSS")
.detail("Addr", candidateSSAddr.toString())
.detail("Locality", candidateWorker.worker.locality.toString());
TEST(true); // Starting TSS recruitment
self->isTssRecruiting = true;
tssState = makeReference<TSSPairState>(candidateWorker.worker.locality);
addTSSInProgress.send(tssState->waitComplete());
self->addActor.send(initializeStorage(self, candidateWorker, ddEnabledState, true, tssState));
checkTss = self->initialFailureReactionDelay;
} else {
if (tssState->active && tssState->inDataZone(candidateWorker.worker.locality)) {
TEST(true); // TSS recruits pair in same dc/datahall
self->isTssRecruiting = false;
TraceEvent("TSS_Recruit", self->distributorId)
.detail("Stage", "PairSS")
.detail("Addr", candidateSSAddr.toString())
.detail("Locality", candidateWorker.worker.locality.toString());
self->addActor.send(
initializeStorage(self, candidateWorker, ddEnabledState, false, tssState));
// successfully started recruitment of pair, reset tss recruitment state
tssState = makeReference<TSSPairState>();
} else {
TEST(tssState->active); // TSS recruitment skipped potential pair because it's in a
// different dc/datahall
self->addActor.send(initializeStorage(
self, candidateWorker, ddEnabledState, false, makeReference<TSSPairState>()));
}
}
}
when(wait(recruitStorage->onChange())) { fCandidateWorker = Future<RecruitStorageReply>(); }
when(wait(self->zeroHealthyTeams->onChange())) {
if (!pendingTSSCheck && self->zeroHealthyTeams->get() &&
(self->isTssRecruiting || self->tss_info_by_pair.size() > 0)) {
checkTss = self->initialFailureReactionDelay;
}
}
when(wait(checkTss)) {
bool cancelTss = self->isTssRecruiting && (tssToRecruit < 0 || self->zeroHealthyTeams->get());
// Can't kill more tss' than we have. Kill 1 if zero healthy teams, otherwise kill enough to get
// back to the desired amount
int tssToKill = std::min((int)self->tss_info_by_pair.size(),
std::max(-tssToRecruit, self->zeroHealthyTeams->get() ? 1 : 0));
if (cancelTss) {
TEST(tssToRecruit < 0); // tss recruitment cancelled due to too many TSS
TEST(self->zeroHealthyTeams->get()); // tss recruitment cancelled due zero healthy teams
TraceEvent(SevWarn, "TSS_RecruitCancelled", self->distributorId)
.detail("Reason", tssToRecruit <= 0 ? "TooMany" : "ZeroHealthyTeams");
tssState->cancel();
tssState = makeReference<TSSPairState>();
self->isTssRecruiting = false;
pendingTSSCheck = true;
checkTss = delay(SERVER_KNOBS->TSS_DD_CHECK_INTERVAL);
} else if (tssToKill > 0) {
auto itr = self->tss_info_by_pair.begin();
for (int i = 0; i < tssToKill; i++, itr++) {
UID tssId = itr->second->id;
StorageServerInterface tssi = itr->second->lastKnownInterface;
if (self->shouldHandleServer(tssi) && self->server_and_tss_info.count(tssId)) {
Promise<Void> killPromise = itr->second->killTss;
if (killPromise.canBeSet()) {
TEST(tssToRecruit < 0); // Killing TSS due to too many TSS
TEST(self->zeroHealthyTeams->get()); // Killing TSS due zero healthy teams
TraceEvent(SevWarn, "TSS_DDKill", self->distributorId)
.detail("TSSID", tssId)
.detail("Reason",
self->zeroHealthyTeams->get() ? "ZeroHealthyTeams" : "TooMany");
killPromise.send(Void());
}
}
}
// If we're killing a TSS because of zero healthy teams, wait a bit to give the replacing SS a
// change to join teams and stuff before killing another TSS
pendingTSSCheck = true;
checkTss = delay(SERVER_KNOBS->TSS_DD_CHECK_INTERVAL);
} else if (self->isTssRecruiting) {
// check again later in case we need to cancel recruitment
pendingTSSCheck = true;
checkTss = delay(SERVER_KNOBS->TSS_DD_CHECK_INTERVAL);
// FIXME: better way to do this than timer?
} else {
pendingTSSCheck = false;
checkTss = Never();
}
}
when(wait(self->restartRecruiting.onTrigger())) {}
}
wait(delay(FLOW_KNOBS->PREVENT_FAST_SPIN_DELAY, TaskPriority::DataDistribution));
} catch (Error& e) {
if (e.code() != error_code_timed_out) {
throw;
}
TEST(true); // Storage recruitment timed out
}
}
}
ACTOR Future<Void> updateReplicasKey(DDTeamCollection* self, Optional<Key> dcId) {
std::vector<Future<Void>> serverUpdates;
for (auto& it : self->server_info) {
serverUpdates.push_back(it.second->updated.getFuture());
}
wait(self->initialFailureReactionDelay && waitForAll(serverUpdates));
wait(waitUntilHealthy(self));
TraceEvent("DDUpdatingReplicas", self->distributorId)
.detail("Primary", self->primary)
.detail("DcId", dcId)
.detail("Replicas", self->configuration.storageTeamSize);
state Transaction tr(self->cx);
loop {
try {
Optional<Value> val = wait(tr.get(datacenterReplicasKeyFor(dcId)));
state int oldReplicas = val.present() ? decodeDatacenterReplicasValue(val.get()) : 0;
if (oldReplicas == self->configuration.storageTeamSize) {
TraceEvent("DDUpdatedAlready", self->distributorId)
.detail("Primary", self->primary)
.detail("DcId", dcId)
.detail("Replicas", self->configuration.storageTeamSize);
return Void();
}
if (oldReplicas < self->configuration.storageTeamSize) {
tr.set(rebootWhenDurableKey, StringRef());
}
tr.set(datacenterReplicasKeyFor(dcId), datacenterReplicasValue(self->configuration.storageTeamSize));
wait(tr.commit());
TraceEvent("DDUpdatedReplicas", self->distributorId)
.detail("Primary", self->primary)
.detail("DcId", dcId)
.detail("Replicas", self->configuration.storageTeamSize)
.detail("OldReplicas", oldReplicas);
return Void();
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
ACTOR Future<Void> serverGetTeamRequests(TeamCollectionInterface tci, DDTeamCollection* self) {
loop {
GetTeamRequest req = waitNext(tci.getTeam.getFuture());
self->addActor.send(self->getTeam(self, req));
}
}
ACTOR Future<Void> remoteRecovered(Reference<AsyncVar<ServerDBInfo> const> db) {
TraceEvent("DDTrackerStarting").log();
while (db->get().recoveryState < RecoveryState::ALL_LOGS_RECRUITED) {
TraceEvent("DDTrackerStarting").detail("RecoveryState", (int)db->get().recoveryState);
wait(db->onChange());
}
return Void();
}
ACTOR Future<Void> monitorHealthyTeams(DDTeamCollection* self) {
TraceEvent("DDMonitorHealthyTeamsStart").detail("ZeroHealthyTeams", self->zeroHealthyTeams->get());
loop choose {
when(wait(self->zeroHealthyTeams->get()
? delay(SERVER_KNOBS->DD_ZERO_HEALTHY_TEAM_DELAY, TaskPriority::DataDistribution)
: Never())) {
self->doBuildTeams = true;
wait(DDTeamCollection::checkBuildTeams(self));
}
when(wait(self->zeroHealthyTeams->onChange())) {}
}
}
// Keep track of servers and teams -- serves requests for getRandomTeam
ACTOR Future<Void> dataDistributionTeamCollection(
Reference<DDTeamCollection> teamCollection,
Reference<InitialDataDistribution> initData,
TeamCollectionInterface tci,
Reference<IAsyncListener<RequestStream<RecruitStorageRequest>>> recruitStorage,
DDEnabledState const* ddEnabledState) {
state DDTeamCollection* self = teamCollection.getPtr();
state Future<Void> loggingTrigger = Void();
state PromiseStream<Void> serverRemoved;
state Future<Void> error = actorCollection(self->addActor.getFuture());
try {
wait(DDTeamCollection::init(self, initData, ddEnabledState));
initData = Reference<InitialDataDistribution>();
self->addActor.send(serverGetTeamRequests(tci, self));
TraceEvent("DDTeamCollectionBegin", self->distributorId).detail("Primary", self->primary);
wait(self->readyToStart || error);
TraceEvent("DDTeamCollectionReadyToStart", self->distributorId).detail("Primary", self->primary);
// removeBadTeams() does not always run. We may need to restart the actor when needed.
// So we need the badTeamRemover variable to check if the actor is ready.
if (self->badTeamRemover.isReady()) {
self->badTeamRemover = removeBadTeams(self);
self->addActor.send(self->badTeamRemover);
}
self->addActor.send(machineTeamRemover(self));
self->addActor.send(serverTeamRemover(self));
if (self->wrongStoreTypeRemover.isReady()) {
self->wrongStoreTypeRemover = removeWrongStoreType(self);
self->addActor.send(self->wrongStoreTypeRemover);
}
self->traceTeamCollectionInfo();
if (self->includedDCs.size()) {
// start this actor before any potential recruitments can happen
self->addActor.send(updateReplicasKey(self, self->includedDCs[0]));
}
// The following actors (e.g. storageRecruiter) do not need to be assigned to a variable because
// they are always running.
self->addActor.send(storageRecruiter(self, recruitStorage, ddEnabledState));
self->addActor.send(monitorStorageServerRecruitment(self));
self->addActor.send(waitServerListChange(self, serverRemoved.getFuture(), ddEnabledState));
self->addActor.send(trackExcludedServers(self));
self->addActor.send(monitorHealthyTeams(self));
self->addActor.send(waitHealthyZoneChange(self));
self->addActor.send(monitorPerpetualStorageWiggle(self));
// SOMEDAY: Monitor FF/serverList for (new) servers that aren't in allServers and add or remove them
loop choose {
when(UID removedServer = waitNext(self->removedServers.getFuture())) {
TEST(true); // Storage server removed from database
self->removeServer(removedServer);
serverRemoved.send(Void());
self->restartRecruiting.trigger();
}
when(UID removedTSS = waitNext(self->removedTSS.getFuture())) {
TEST(true); // TSS removed from database
self->removeTSS(removedTSS);
serverRemoved.send(Void());
self->restartRecruiting.trigger();
}
when(wait(self->zeroHealthyTeams->onChange())) {
if (self->zeroHealthyTeams->get()) {
self->restartRecruiting.trigger();
self->noHealthyTeams();
}
}
when(wait(loggingTrigger)) {
int highestPriority = 0;
for (auto it : self->priority_teams) {
if (it.second > 0) {
highestPriority = std::max(highestPriority, it.first);
}
}
TraceEvent("TotalDataInFlight", self->distributorId)
.detail("Primary", self->primary)
.detail("TotalBytes", self->getDebugTotalDataInFlight())
.detail("UnhealthyServers", self->unhealthyServers)
.detail("ServerCount", self->server_info.size())
.detail("StorageTeamSize", self->configuration.storageTeamSize)
.detail("HighestPriority", highestPriority)
.trackLatest(
self->primary
? "TotalDataInFlight"
: "TotalDataInFlightRemote"); // This trace event's trackLatest lifetime is controlled by
// DataDistributorData::totalDataInFlightEventHolder or
// DataDistributorData::totalDataInFlightRemoteEventHolder.
// The track latest key we use here must match the key used in
// the holder.
loggingTrigger = delay(SERVER_KNOBS->DATA_DISTRIBUTION_LOGGING_INTERVAL, TaskPriority::FlushTrace);
}
when(wait(self->serverTrackerErrorOut.getFuture())) {} // Propagate errors from storageServerTracker
when(wait(error)) {}
}
} catch (Error& e) {
if (e.code() != error_code_movekeys_conflict)
TraceEvent(SevError, "DataDistributionTeamCollectionError", self->distributorId).error(e);
throw e;
}
}
ACTOR Future<Void> waitForDataDistributionEnabled(Database cx, const DDEnabledState* ddEnabledState) {
state Transaction tr(cx);
loop {
wait(delay(SERVER_KNOBS->DD_ENABLED_CHECK_DELAY, TaskPriority::DataDistribution));
try {
Optional<Value> mode = wait(tr.get(dataDistributionModeKey));
if (!mode.present() && ddEnabledState->isDDEnabled()) {
TraceEvent("WaitForDDEnabledSucceeded").log();
return Void();
}
if (mode.present()) {
BinaryReader rd(mode.get(), Unversioned());
int m;
rd >> m;
TraceEvent(SevDebug, "WaitForDDEnabled")
.detail("Mode", m)
.detail("IsDDEnabled", ddEnabledState->isDDEnabled());
if (m && ddEnabledState->isDDEnabled()) {
TraceEvent("WaitForDDEnabledSucceeded").log();
return Void();
}
}
tr.reset();
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
ACTOR Future<bool> isDataDistributionEnabled(Database cx, const DDEnabledState* ddEnabledState) {
state Transaction tr(cx);
loop {
try {
Optional<Value> mode = wait(tr.get(dataDistributionModeKey));
if (!mode.present() && ddEnabledState->isDDEnabled())
return true;
if (mode.present()) {
BinaryReader rd(mode.get(), Unversioned());
int m;
rd >> m;
if (m && ddEnabledState->isDDEnabled()) {
TraceEvent(SevDebug, "IsDDEnabledSucceeded")
.detail("Mode", m)
.detail("IsDDEnabled", ddEnabledState->isDDEnabled());
return true;
}
}
// SOMEDAY: Write a wrapper in MoveKeys.actor.h
Optional<Value> readVal = wait(tr.get(moveKeysLockOwnerKey));
UID currentOwner =
readVal.present() ? BinaryReader::fromStringRef<UID>(readVal.get(), Unversioned()) : UID();
if (ddEnabledState->isDDEnabled() && (currentOwner != dataDistributionModeLock)) {
TraceEvent(SevDebug, "IsDDEnabledSucceeded")
.detail("CurrentOwner", currentOwner)
.detail("DDModeLock", dataDistributionModeLock)
.detail("IsDDEnabled", ddEnabledState->isDDEnabled());
return true;
}
TraceEvent(SevDebug, "IsDDEnabledFailed")
.detail("CurrentOwner", currentOwner)
.detail("DDModeLock", dataDistributionModeLock)
.detail("IsDDEnabled", ddEnabledState->isDDEnabled());
return false;
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
// Ensures that the serverKeys key space is properly coalesced
// This method is only used for testing and is not implemented in a manner that is safe for large databases
ACTOR Future<Void> debugCheckCoalescing(Database cx) {
state Transaction tr(cx);
loop {
try {
state RangeResult serverList = wait(tr.getRange(serverListKeys, CLIENT_KNOBS->TOO_MANY));
ASSERT(!serverList.more && serverList.size() < CLIENT_KNOBS->TOO_MANY);
state int i;
for (i = 0; i < serverList.size(); i++) {
state UID id = decodeServerListValue(serverList[i].value).id();
RangeResult ranges = wait(krmGetRanges(&tr, serverKeysPrefixFor(id), allKeys));
ASSERT(ranges.end()[-1].key == allKeys.end);
for (int j = 0; j < ranges.size() - 2; j++)
if (ranges[j].value == ranges[j + 1].value)
TraceEvent(SevError, "UncoalescedValues", id)
.detail("Key1", ranges[j].key)
.detail("Key2", ranges[j + 1].key)
.detail("Value", ranges[j].value);
}
TraceEvent("DoneCheckingCoalescing").log();
return Void();
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
static std::set<int> const& normalDDQueueErrors() {
static std::set<int> s;
if (s.empty()) {
s.insert(error_code_movekeys_conflict);
s.insert(error_code_broken_promise);
}
return s;
}
ACTOR Future<Void> pollMoveKeysLock(Database cx, MoveKeysLock lock, const DDEnabledState* ddEnabledState) {
loop {
wait(delay(SERVER_KNOBS->MOVEKEYS_LOCK_POLLING_DELAY));
state Transaction tr(cx);
loop {
try {
wait(checkMoveKeysLockReadOnly(&tr, lock, ddEnabledState));
break;
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
}
struct DataDistributorData : NonCopyable, ReferenceCounted<DataDistributorData> {
Reference<AsyncVar<ServerDBInfo> const> dbInfo;
UID ddId;
PromiseStream<Future<Void>> addActor;
DDTeamCollection* teamCollection;
Reference<EventCacheHolder> initialDDEventHolder;
Reference<EventCacheHolder> movingDataEventHolder;
Reference<EventCacheHolder> totalDataInFlightEventHolder;
Reference<EventCacheHolder> totalDataInFlightRemoteEventHolder;
DataDistributorData(Reference<AsyncVar<ServerDBInfo> const> const& db, UID id)
: dbInfo(db), ddId(id), teamCollection(nullptr),
initialDDEventHolder(makeReference<EventCacheHolder>("InitialDD")),
movingDataEventHolder(makeReference<EventCacheHolder>("MovingData")),
totalDataInFlightEventHolder(makeReference<EventCacheHolder>("TotalDataInFlight")),
totalDataInFlightRemoteEventHolder(makeReference<EventCacheHolder>("TotalDataInFlightRemote")) {}
};
ACTOR Future<Void> monitorBatchLimitedTime(Reference<AsyncVar<ServerDBInfo> const> db, double* lastLimited) {
loop {
wait(delay(SERVER_KNOBS->METRIC_UPDATE_RATE));
state Reference<GrvProxyInfo> grvProxies(new GrvProxyInfo(db->get().client.grvProxies, false));
choose {
when(wait(db->onChange())) {}
when(GetHealthMetricsReply reply =
wait(grvProxies->size() ? basicLoadBalance(grvProxies,
&GrvProxyInterface::getHealthMetrics,
GetHealthMetricsRequest(false))
: Never())) {
if (reply.healthMetrics.batchLimited) {
*lastLimited = now();
}
}
}
}
}
// Runs the data distribution algorithm for FDB, including the DD Queue, DD tracker, and DD team collection
ACTOR Future<Void> dataDistribution(Reference<DataDistributorData> self,
PromiseStream<GetMetricsListRequest> getShardMetricsList,
const DDEnabledState* ddEnabledState) {
state double lastLimited = 0;
self->addActor.send(monitorBatchLimitedTime(self->dbInfo, &lastLimited));
state Database cx = openDBOnServer(self->dbInfo, TaskPriority::DataDistributionLaunch, LockAware::True);
cx->locationCacheSize = SERVER_KNOBS->DD_LOCATION_CACHE_SIZE;
// cx->setOption( FDBDatabaseOptions::LOCATION_CACHE_SIZE, StringRef((uint8_t*)
// &SERVER_KNOBS->DD_LOCATION_CACHE_SIZE, 8) ); ASSERT( cx->locationCacheSize ==
// SERVER_KNOBS->DD_LOCATION_CACHE_SIZE
// );
// wait(debugCheckCoalescing(cx));
state std::vector<Optional<Key>> primaryDcId;
state std::vector<Optional<Key>> remoteDcIds;
state DatabaseConfiguration configuration;
state Reference<InitialDataDistribution> initData;
state MoveKeysLock lock;
state Reference<DDTeamCollection> primaryTeamCollection;
state Reference<DDTeamCollection> remoteTeamCollection;
state bool trackerCancelled;
loop {
trackerCancelled = false;
// Stored outside of data distribution tracker to avoid slow tasks
// when tracker is cancelled
state KeyRangeMap<ShardTrackedData> shards;
state Promise<UID> removeFailedServer;
try {
loop {
TraceEvent("DDInitTakingMoveKeysLock", self->ddId).log();
MoveKeysLock lock_ = wait(takeMoveKeysLock(cx, self->ddId));
lock = lock_;
TraceEvent("DDInitTookMoveKeysLock", self->ddId).log();
DatabaseConfiguration configuration_ = wait(getDatabaseConfiguration(cx));
configuration = configuration_;
primaryDcId.clear();
remoteDcIds.clear();
const std::vector<RegionInfo>& regions = configuration.regions;
if (configuration.regions.size() > 0) {
primaryDcId.push_back(regions[0].dcId);
}
if (configuration.regions.size() > 1) {
remoteDcIds.push_back(regions[1].dcId);
}
TraceEvent("DDInitGotConfiguration", self->ddId).detail("Conf", configuration.toString());
state Transaction tr(cx);
loop {
try {
tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr.setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE);
RangeResult replicaKeys = wait(tr.getRange(datacenterReplicasKeys, CLIENT_KNOBS->TOO_MANY));
for (auto& kv : replicaKeys) {
auto dcId = decodeDatacenterReplicasKey(kv.key);
auto replicas = decodeDatacenterReplicasValue(kv.value);
if ((primaryDcId.size() && primaryDcId[0] == dcId) ||
(remoteDcIds.size() && remoteDcIds[0] == dcId && configuration.usableRegions > 1)) {
if (replicas > configuration.storageTeamSize) {
tr.set(kv.key, datacenterReplicasValue(configuration.storageTeamSize));
}
} else {
tr.clear(kv.key);
}
}
wait(tr.commit());
break;
} catch (Error& e) {
wait(tr.onError(e));
}
}
TraceEvent("DDInitUpdatedReplicaKeys", self->ddId).log();
Reference<InitialDataDistribution> initData_ = wait(getInitialDataDistribution(
cx,
self->ddId,
lock,
configuration.usableRegions > 1 ? remoteDcIds : std::vector<Optional<Key>>(),
ddEnabledState));
initData = initData_;
if (initData->shards.size() > 1) {
TraceEvent("DDInitGotInitialDD", self->ddId)
.detail("B", initData->shards.end()[-2].key)
.detail("E", initData->shards.end()[-1].key)
.detail("Src", describe(initData->shards.end()[-2].primarySrc))
.detail("Dest", describe(initData->shards.end()[-2].primaryDest))
.trackLatest(self->initialDDEventHolder->trackingKey);
} else {
TraceEvent("DDInitGotInitialDD", self->ddId)
.detail("B", "")
.detail("E", "")
.detail("Src", "[no items]")
.detail("Dest", "[no items]")
.trackLatest(self->initialDDEventHolder->trackingKey);
}
if (initData->mode && ddEnabledState->isDDEnabled()) {
// mode may be set true by system operator using fdbcli and isDDEnabled() set to true
break;
}
TraceEvent("DataDistributionDisabled", self->ddId).log();
TraceEvent("MovingData", self->ddId)
.detail("InFlight", 0)
.detail("InQueue", 0)
.detail("AverageShardSize", -1)
.detail("UnhealthyRelocations", 0)
.detail("HighestPriority", 0)
.detail("BytesWritten", 0)
.detail("PriorityRecoverMove", 0)
.detail("PriorityRebalanceUnderutilizedTeam", 0)
.detail("PriorityRebalannceOverutilizedTeam", 0)
.detail("PriorityTeamHealthy", 0)
.detail("PriorityTeamContainsUndesiredServer", 0)
.detail("PriorityTeamRedundant", 0)
.detail("PriorityMergeShard", 0)
.detail("PriorityTeamUnhealthy", 0)
.detail("PriorityTeam2Left", 0)
.detail("PriorityTeam1Left", 0)
.detail("PriorityTeam0Left", 0)
.detail("PrioritySplitShard", 0)
.trackLatest(self->movingDataEventHolder->trackingKey);
TraceEvent("TotalDataInFlight", self->ddId)
.detail("Primary", true)
.detail("TotalBytes", 0)
.detail("UnhealthyServers", 0)
.detail("HighestPriority", 0)
.trackLatest(self->totalDataInFlightEventHolder->trackingKey);
TraceEvent("TotalDataInFlight", self->ddId)
.detail("Primary", false)
.detail("TotalBytes", 0)
.detail("UnhealthyServers", 0)
.detail("HighestPriority", configuration.usableRegions > 1 ? 0 : -1)
.trackLatest(self->totalDataInFlightRemoteEventHolder->trackingKey);
wait(waitForDataDistributionEnabled(cx, ddEnabledState));
TraceEvent("DataDistributionEnabled").log();
}
// When/If this assertion fails, Evan owes Ben a pat on the back for his foresight
ASSERT(configuration.storageTeamSize > 0);
state PromiseStream<RelocateShard> output;
state PromiseStream<RelocateShard> input;
state PromiseStream<Promise<int64_t>> getAverageShardBytes;
state PromiseStream<Promise<int>> getUnhealthyRelocationCount;
state PromiseStream<GetMetricsRequest> getShardMetrics;
state Reference<AsyncVar<bool>> processingUnhealthy(new AsyncVar<bool>(false));
state Promise<Void> readyToStart;
state Reference<ShardsAffectedByTeamFailure> shardsAffectedByTeamFailure(new ShardsAffectedByTeamFailure);
state int shard = 0;
for (; shard < initData->shards.size() - 1; shard++) {
KeyRangeRef keys = KeyRangeRef(initData->shards[shard].key, initData->shards[shard + 1].key);
shardsAffectedByTeamFailure->defineShard(keys);
std::vector<ShardsAffectedByTeamFailure::Team> teams;
teams.push_back(ShardsAffectedByTeamFailure::Team(initData->shards[shard].primarySrc, true));
if (configuration.usableRegions > 1) {
teams.push_back(ShardsAffectedByTeamFailure::Team(initData->shards[shard].remoteSrc, false));
}
if (g_network->isSimulated()) {
TraceEvent("DDInitShard")
.detail("Keys", keys)
.detail("PrimarySrc", describe(initData->shards[shard].primarySrc))
.detail("RemoteSrc", describe(initData->shards[shard].remoteSrc))
.detail("PrimaryDest", describe(initData->shards[shard].primaryDest))
.detail("RemoteDest", describe(initData->shards[shard].remoteDest));
}
shardsAffectedByTeamFailure->moveShard(keys, teams);
if (initData->shards[shard].hasDest) {
// This shard is already in flight. Ideally we should use dest in ShardsAffectedByTeamFailure and
// generate a dataDistributionRelocator directly in DataDistributionQueue to track it, but it's
// easier to just (with low priority) schedule it for movement.
bool unhealthy = initData->shards[shard].primarySrc.size() != configuration.storageTeamSize;
if (!unhealthy && configuration.usableRegions > 1) {
unhealthy = initData->shards[shard].remoteSrc.size() != configuration.storageTeamSize;
}
output.send(RelocateShard(
keys, unhealthy ? SERVER_KNOBS->PRIORITY_TEAM_UNHEALTHY : SERVER_KNOBS->PRIORITY_RECOVER_MOVE));
}
wait(yield(TaskPriority::DataDistribution));
}
std::vector<TeamCollectionInterface> tcis;
Reference<AsyncVar<bool>> anyZeroHealthyTeams;
std::vector<Reference<AsyncVar<bool>>> zeroHealthyTeams;
tcis.push_back(TeamCollectionInterface());
zeroHealthyTeams.push_back(makeReference<AsyncVar<bool>>(true));
int storageTeamSize = configuration.storageTeamSize;
std::vector<Future<Void>> actors;
if (configuration.usableRegions > 1) {
tcis.push_back(TeamCollectionInterface());
storageTeamSize = 2 * configuration.storageTeamSize;
zeroHealthyTeams.push_back(makeReference<AsyncVar<bool>>(true));
anyZeroHealthyTeams = makeReference<AsyncVar<bool>>(true);
actors.push_back(anyTrue(zeroHealthyTeams, anyZeroHealthyTeams));
} else {
anyZeroHealthyTeams = zeroHealthyTeams[0];
}
actors.push_back(pollMoveKeysLock(cx, lock, ddEnabledState));
actors.push_back(reportErrorsExcept(dataDistributionTracker(initData,
cx,
output,
shardsAffectedByTeamFailure,
getShardMetrics,
getShardMetricsList,
getAverageShardBytes.getFuture(),
readyToStart,
anyZeroHealthyTeams,
self->ddId,
&shards,
&trackerCancelled),
"DDTracker",
self->ddId,
&normalDDQueueErrors()));
actors.push_back(reportErrorsExcept(dataDistributionQueue(cx,
output,
input.getFuture(),
getShardMetrics,
processingUnhealthy,
tcis,
shardsAffectedByTeamFailure,
lock,
getAverageShardBytes,
getUnhealthyRelocationCount,
self->ddId,
storageTeamSize,
configuration.storageTeamSize,
&lastLimited,
ddEnabledState),
"DDQueue",
self->ddId,
&normalDDQueueErrors()));
std::vector<DDTeamCollection*> teamCollectionsPtrs;
primaryTeamCollection = makeReference<DDTeamCollection>(
cx,
self->ddId,
lock,
output,
shardsAffectedByTeamFailure,
configuration,
primaryDcId,
configuration.usableRegions > 1 ? remoteDcIds : std::vector<Optional<Key>>(),
readyToStart.getFuture(),
zeroHealthyTeams[0],
IsPrimary::True,
processingUnhealthy,
getShardMetrics,
removeFailedServer,
getUnhealthyRelocationCount);
teamCollectionsPtrs.push_back(primaryTeamCollection.getPtr());
auto recruitStorage = IAsyncListener<RequestStream<RecruitStorageRequest>>::create(
self->dbInfo, [](auto const& info) { return info.clusterInterface.recruitStorage; });
if (configuration.usableRegions > 1) {
remoteTeamCollection =
makeReference<DDTeamCollection>(cx,
self->ddId,
lock,
output,
shardsAffectedByTeamFailure,
configuration,
remoteDcIds,
Optional<std::vector<Optional<Key>>>(),
readyToStart.getFuture() && remoteRecovered(self->dbInfo),
zeroHealthyTeams[1],
IsPrimary::False,
processingUnhealthy,
getShardMetrics,
removeFailedServer,
getUnhealthyRelocationCount);
teamCollectionsPtrs.push_back(remoteTeamCollection.getPtr());
remoteTeamCollection->teamCollections = teamCollectionsPtrs;
actors.push_back(
reportErrorsExcept(dataDistributionTeamCollection(
remoteTeamCollection, initData, tcis[1], recruitStorage, ddEnabledState),
"DDTeamCollectionSecondary",
self->ddId,
&normalDDQueueErrors()));
actors.push_back(printSnapshotTeamsInfo(remoteTeamCollection));
}
primaryTeamCollection->teamCollections = teamCollectionsPtrs;
self->teamCollection = primaryTeamCollection.getPtr();
actors.push_back(
reportErrorsExcept(dataDistributionTeamCollection(
primaryTeamCollection, initData, tcis[0], recruitStorage, ddEnabledState),
"DDTeamCollectionPrimary",
self->ddId,
&normalDDQueueErrors()));
actors.push_back(printSnapshotTeamsInfo(primaryTeamCollection));
actors.push_back(yieldPromiseStream(output.getFuture(), input));
wait(waitForAll(actors));
return Void();
} catch (Error& e) {
trackerCancelled = true;
state Error err = e;
TraceEvent("DataDistributorDestroyTeamCollections").error(e);
state std::vector<UID> teamForDroppedRange;
if (removeFailedServer.getFuture().isReady() && !removeFailedServer.getFuture().isError()) {
// Choose a random healthy team to host the to-be-dropped range.
const UID serverID = removeFailedServer.getFuture().get();
std::vector<UID> pTeam = primaryTeamCollection->getRandomHealthyTeam(serverID);
teamForDroppedRange.insert(teamForDroppedRange.end(), pTeam.begin(), pTeam.end());
if (configuration.usableRegions > 1) {
std::vector<UID> rTeam = remoteTeamCollection->getRandomHealthyTeam(serverID);
teamForDroppedRange.insert(teamForDroppedRange.end(), rTeam.begin(), rTeam.end());
}
}
self->teamCollection = nullptr;
primaryTeamCollection = Reference<DDTeamCollection>();
remoteTeamCollection = Reference<DDTeamCollection>();
wait(shards.clearAsync());
TraceEvent("DataDistributorTeamCollectionsDestroyed").error(err);
if (removeFailedServer.getFuture().isReady() && !removeFailedServer.getFuture().isError()) {
TraceEvent("RemoveFailedServer", removeFailedServer.getFuture().get()).error(err);
wait(removeKeysFromFailedServer(
cx, removeFailedServer.getFuture().get(), teamForDroppedRange, lock, ddEnabledState));
Optional<UID> tssPairID;
wait(removeStorageServer(cx, removeFailedServer.getFuture().get(), tssPairID, lock, ddEnabledState));
} else {
if (err.code() != error_code_movekeys_conflict) {
throw err;
}
bool ddEnabled = wait(isDataDistributionEnabled(cx, ddEnabledState));
TraceEvent("DataDistributionMoveKeysConflict").detail("DataDistributionEnabled", ddEnabled).error(err);
if (ddEnabled) {
throw err;
}
}
}
}
}
static std::set<int> const& normalDataDistributorErrors() {
static std::set<int> s;
if (s.empty()) {
s.insert(error_code_worker_removed);
s.insert(error_code_broken_promise);
s.insert(error_code_actor_cancelled);
s.insert(error_code_please_reboot);
s.insert(error_code_movekeys_conflict);
}
return s;
}
ACTOR Future<Void> ddSnapCreateCore(DistributorSnapRequest snapReq, Reference<AsyncVar<ServerDBInfo> const> db) {
state Database cx = openDBOnServer(db, TaskPriority::DefaultDelay, LockAware::True);
state ReadYourWritesTransaction tr(cx);
loop {
try {
tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr.setOption(FDBTransactionOptions::LOCK_AWARE);
TraceEvent("SnapDataDistributor_WriteFlagAttempt")
.detail("SnapPayload", snapReq.snapPayload)
.detail("SnapUID", snapReq.snapUID);
tr.set(writeRecoveryKey, writeRecoveryKeyTrue);
wait(tr.commit());
break;
} catch (Error& e) {
TraceEvent("SnapDataDistributor_WriteFlagError").error(e);
wait(tr.onError(e));
}
}
TraceEvent("SnapDataDistributor_SnapReqEnter")
.detail("SnapPayload", snapReq.snapPayload)
.detail("SnapUID", snapReq.snapUID);
try {
// disable tlog pop on local tlog nodes
state std::vector<TLogInterface> tlogs = db->get().logSystemConfig.allLocalLogs(false);
std::vector<Future<Void>> disablePops;
disablePops.reserve(tlogs.size());
for (const auto& tlog : tlogs) {
disablePops.push_back(transformErrors(
throwErrorOr(tlog.disablePopRequest.tryGetReply(TLogDisablePopRequest(snapReq.snapUID))),
snap_disable_tlog_pop_failed()));
}
wait(waitForAll(disablePops));
TraceEvent("SnapDataDistributor_AfterDisableTLogPop")
.detail("SnapPayload", snapReq.snapPayload)
.detail("SnapUID", snapReq.snapUID);
// snap local storage nodes
std::vector<WorkerInterface> storageWorkers =
wait(transformErrors(getStorageWorkers(cx, db, true /* localOnly */), snap_storage_failed()));
TraceEvent("SnapDataDistributor_GotStorageWorkers")
.detail("SnapPayload", snapReq.snapPayload)
.detail("SnapUID", snapReq.snapUID);
std::vector<Future<Void>> storageSnapReqs;
storageSnapReqs.reserve(storageWorkers.size());
for (const auto& worker : storageWorkers) {
storageSnapReqs.push_back(
transformErrors(throwErrorOr(worker.workerSnapReq.tryGetReply(WorkerSnapRequest(
snapReq.snapPayload, snapReq.snapUID, LiteralStringRef("storage")))),
snap_storage_failed()));
}
wait(waitForAll(storageSnapReqs));
TraceEvent("SnapDataDistributor_AfterSnapStorage")
.detail("SnapPayload", snapReq.snapPayload)
.detail("SnapUID", snapReq.snapUID);
// snap local tlog nodes
std::vector<Future<Void>> tLogSnapReqs;
tLogSnapReqs.reserve(tlogs.size());
for (const auto& tlog : tlogs) {
tLogSnapReqs.push_back(
transformErrors(throwErrorOr(tlog.snapRequest.tryGetReply(
TLogSnapRequest(snapReq.snapPayload, snapReq.snapUID, LiteralStringRef("tlog")))),
snap_tlog_failed()));
}
wait(waitForAll(tLogSnapReqs));
TraceEvent("SnapDataDistributor_AfterTLogStorage")
.detail("SnapPayload", snapReq.snapPayload)
.detail("SnapUID", snapReq.snapUID);
// enable tlog pop on local tlog nodes
std::vector<Future<Void>> enablePops;
enablePops.reserve(tlogs.size());
for (const auto& tlog : tlogs) {
enablePops.push_back(
transformErrors(throwErrorOr(tlog.enablePopRequest.tryGetReply(TLogEnablePopRequest(snapReq.snapUID))),
snap_enable_tlog_pop_failed()));
}
wait(waitForAll(enablePops));
TraceEvent("SnapDataDistributor_AfterEnableTLogPops")
.detail("SnapPayload", snapReq.snapPayload)
.detail("SnapUID", snapReq.snapUID);
// snap the coordinators
std::vector<WorkerInterface> coordWorkers = wait(getCoordWorkers(cx, db));
TraceEvent("SnapDataDistributor_GotCoordWorkers")
.detail("SnapPayload", snapReq.snapPayload)
.detail("SnapUID", snapReq.snapUID);
std::vector<Future<Void>> coordSnapReqs;
coordSnapReqs.reserve(coordWorkers.size());
for (const auto& worker : coordWorkers) {
coordSnapReqs.push_back(
transformErrors(throwErrorOr(worker.workerSnapReq.tryGetReply(WorkerSnapRequest(
snapReq.snapPayload, snapReq.snapUID, LiteralStringRef("coord")))),
snap_coord_failed()));
}
wait(waitForAll(coordSnapReqs));
TraceEvent("SnapDataDistributor_AfterSnapCoords")
.detail("SnapPayload", snapReq.snapPayload)
.detail("SnapUID", snapReq.snapUID);
tr.reset();
loop {
try {
tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr.setOption(FDBTransactionOptions::LOCK_AWARE);
TraceEvent("SnapDataDistributor_ClearFlagAttempt")
.detail("SnapPayload", snapReq.snapPayload)
.detail("SnapUID", snapReq.snapUID);
tr.clear(writeRecoveryKey);
wait(tr.commit());
break;
} catch (Error& e) {
TraceEvent("SnapDataDistributor_ClearFlagError").error(e);
wait(tr.onError(e));
}
}
} catch (Error& err) {
state Error e = err;
TraceEvent("SnapDataDistributor_SnapReqExit")
.detail("SnapPayload", snapReq.snapPayload)
.detail("SnapUID", snapReq.snapUID)
.error(e, true /*includeCancelled */);
if (e.code() == error_code_snap_storage_failed || e.code() == error_code_snap_tlog_failed ||
e.code() == error_code_operation_cancelled || e.code() == error_code_snap_disable_tlog_pop_failed) {
// enable tlog pop on local tlog nodes
std::vector<TLogInterface> tlogs = db->get().logSystemConfig.allLocalLogs(false);
try {
std::vector<Future<Void>> enablePops;
enablePops.reserve(tlogs.size());
for (const auto& tlog : tlogs) {
enablePops.push_back(transformErrors(
throwErrorOr(tlog.enablePopRequest.tryGetReply(TLogEnablePopRequest(snapReq.snapUID))),
snap_enable_tlog_pop_failed()));
}
wait(waitForAll(enablePops));
} catch (Error& error) {
TraceEvent(SevDebug, "IgnoreEnableTLogPopFailure").log();
}
}
throw e;
}
return Void();
}
ACTOR Future<Void> ddSnapCreate(DistributorSnapRequest snapReq,
Reference<AsyncVar<ServerDBInfo> const> db,
DDEnabledState* ddEnabledState) {
state Future<Void> dbInfoChange = db->onChange();
if (!ddEnabledState->setDDEnabled(false, snapReq.snapUID)) {
// disable DD before doing snapCreate, if previous snap req has already disabled DD then this operation fails
// here
TraceEvent("SnapDDSetDDEnabledFailedInMemoryCheck").log();
snapReq.reply.sendError(operation_failed());
return Void();
}
double delayTime = g_network->isSimulated() ? 70.0 : SERVER_KNOBS->SNAP_CREATE_MAX_TIMEOUT;
try {
choose {
when(wait(dbInfoChange)) {
TraceEvent("SnapDDCreateDBInfoChanged")
.detail("SnapPayload", snapReq.snapPayload)
.detail("SnapUID", snapReq.snapUID);
snapReq.reply.sendError(snap_with_recovery_unsupported());
}
when(wait(ddSnapCreateCore(snapReq, db))) {
TraceEvent("SnapDDCreateSuccess")
.detail("SnapPayload", snapReq.snapPayload)
.detail("SnapUID", snapReq.snapUID);
snapReq.reply.send(Void());
}
when(wait(delay(delayTime))) {
TraceEvent("SnapDDCreateTimedOut")
.detail("SnapPayload", snapReq.snapPayload)
.detail("SnapUID", snapReq.snapUID);
snapReq.reply.sendError(timed_out());
}
}
} catch (Error& e) {
TraceEvent("SnapDDCreateError")
.detail("SnapPayload", snapReq.snapPayload)
.detail("SnapUID", snapReq.snapUID)
.error(e, true /*includeCancelled */);
if (e.code() != error_code_operation_cancelled) {
snapReq.reply.sendError(e);
} else {
// enable DD should always succeed
bool success = ddEnabledState->setDDEnabled(true, snapReq.snapUID);
ASSERT(success);
throw e;
}
}
// enable DD should always succeed
bool success = ddEnabledState->setDDEnabled(true, snapReq.snapUID);
ASSERT(success);
return Void();
}
// Find size of set intersection of excludeServerIDs and serverIDs on each team and see if the leftover team is valid
bool _exclusionSafetyCheck(std::vector<UID>& excludeServerIDs, DDTeamCollection* teamCollection) {
std::sort(excludeServerIDs.begin(), excludeServerIDs.end());
for (const auto& team : teamCollection->teams) {
std::vector<UID> teamServerIDs = team->getServerIDs();
std::sort(teamServerIDs.begin(), teamServerIDs.end());
TraceEvent(SevDebug, "DDExclusionSafetyCheck", teamCollection->distributorId)
.detail("Excluding", describe(excludeServerIDs))
.detail("Existing", team->getDesc());
// Find size of set intersection of both vectors and see if the leftover team is valid
std::vector<UID> intersectSet(teamServerIDs.size());
auto it = std::set_intersection(excludeServerIDs.begin(),
excludeServerIDs.end(),
teamServerIDs.begin(),
teamServerIDs.end(),
intersectSet.begin());
intersectSet.resize(it - intersectSet.begin());
if (teamServerIDs.size() - intersectSet.size() < SERVER_KNOBS->DD_EXCLUDE_MIN_REPLICAS) {
return false;
}
}
return true;
}
ACTOR Future<Void> ddExclusionSafetyCheck(DistributorExclusionSafetyCheckRequest req,
Reference<DataDistributorData> self,
Database cx) {
TraceEvent("DDExclusionSafetyCheckBegin", self->ddId).log();
std::vector<StorageServerInterface> ssis = wait(getStorageServers(cx));
DistributorExclusionSafetyCheckReply reply(true);
if (!self->teamCollection) {
TraceEvent("DDExclusionSafetyCheckTeamCollectionInvalid", self->ddId).log();
reply.safe = false;
req.reply.send(reply);
return Void();
}
// If there is only 1 team, unsafe to mark failed: team building can get stuck due to lack of servers left
if (self->teamCollection->teams.size() <= 1) {
TraceEvent("DDExclusionSafetyCheckNotEnoughTeams", self->ddId).log();
reply.safe = false;
req.reply.send(reply);
return Void();
}
std::vector<UID> excludeServerIDs;
// Go through storage server interfaces and translate Address -> server ID (UID)
for (const AddressExclusion& excl : req.exclusions) {
for (const auto& ssi : ssis) {
if (excl.excludes(ssi.address()) ||
(ssi.secondaryAddress().present() && excl.excludes(ssi.secondaryAddress().get()))) {
excludeServerIDs.push_back(ssi.id());
}
}
}
reply.safe = _exclusionSafetyCheck(excludeServerIDs, self->teamCollection);
TraceEvent("DDExclusionSafetyCheckFinish", self->ddId).log();
req.reply.send(reply);
return Void();
}
ACTOR Future<Void> waitFailCacheServer(Database* db, StorageServerInterface ssi) {
state Transaction tr(*db);
state Key key = storageCacheServerKey(ssi.id());
wait(waitFailureClient(ssi.waitFailure));
loop {
tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
try {
tr.addReadConflictRange(storageCacheServerKeys);
tr.clear(key);
wait(tr.commit());
break;
} catch (Error& e) {
wait(tr.onError(e));
}
}
return Void();
}
ACTOR Future<Void> cacheServerWatcher(Database* db) {
state Transaction tr(*db);
state ActorCollection actors(false);
state std::set<UID> knownCaches;
loop {
tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
try {
RangeResult range = wait(tr.getRange(storageCacheServerKeys, CLIENT_KNOBS->TOO_MANY));
ASSERT(!range.more);
std::set<UID> caches;
for (auto& kv : range) {
UID id;
BinaryReader reader{ kv.key.removePrefix(storageCacheServersPrefix), Unversioned() };
reader >> id;
caches.insert(id);
if (knownCaches.find(id) == knownCaches.end()) {
StorageServerInterface ssi;
BinaryReader reader{ kv.value, IncludeVersion() };
reader >> ssi;
actors.add(waitFailCacheServer(db, ssi));
}
}
knownCaches = std::move(caches);
tr.reset();
wait(delay(5.0) || actors.getResult());
ASSERT(!actors.getResult().isReady());
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
static int64_t getMedianShardSize(VectorRef<DDMetricsRef> metricVec) {
std::nth_element(metricVec.begin(),
metricVec.begin() + metricVec.size() / 2,
metricVec.end(),
[](const DDMetricsRef& d1, const DDMetricsRef& d2) { return d1.shardBytes < d2.shardBytes; });
return metricVec[metricVec.size() / 2].shardBytes;
}
ACTOR Future<Void> ddGetMetrics(GetDataDistributorMetricsRequest req,
PromiseStream<GetMetricsListRequest> getShardMetricsList) {
ErrorOr<Standalone<VectorRef<DDMetricsRef>>> result = wait(
errorOr(brokenPromiseToNever(getShardMetricsList.getReply(GetMetricsListRequest(req.keys, req.shardLimit)))));
if (result.isError()) {
req.reply.sendError(result.getError());
} else {
GetDataDistributorMetricsReply rep;
if (!req.midOnly) {
rep.storageMetricsList = result.get();
} else {
auto& metricVec = result.get();
if (metricVec.empty())
rep.midShardSize = 0;
else {
rep.midShardSize = getMedianShardSize(metricVec.contents());
}
}
req.reply.send(rep);
}
return Void();
}
ACTOR Future<Void> dataDistributor(DataDistributorInterface di, Reference<AsyncVar<ServerDBInfo> const> db) {
state Reference<DataDistributorData> self(new DataDistributorData(db, di.id()));
state Future<Void> collection = actorCollection(self->addActor.getFuture());
state PromiseStream<GetMetricsListRequest> getShardMetricsList;
state Database cx = openDBOnServer(db, TaskPriority::DefaultDelay, LockAware::True);
state ActorCollection actors(false);
state DDEnabledState ddEnabledState;
self->addActor.send(actors.getResult());
self->addActor.send(traceRole(Role::DATA_DISTRIBUTOR, di.id()));
try {
TraceEvent("DataDistributorRunning", di.id());
self->addActor.send(waitFailureServer(di.waitFailure.getFuture()));
self->addActor.send(cacheServerWatcher(&cx));
state Future<Void> distributor =
reportErrorsExcept(dataDistribution(self, getShardMetricsList, &ddEnabledState),
"DataDistribution",
di.id(),
&normalDataDistributorErrors());
loop choose {
when(wait(distributor || collection)) {
ASSERT(false);
throw internal_error();
}
when(HaltDataDistributorRequest req = waitNext(di.haltDataDistributor.getFuture())) {
req.reply.send(Void());
TraceEvent("DataDistributorHalted", di.id()).detail("ReqID", req.requesterID);
break;
}
when(GetDataDistributorMetricsRequest req = waitNext(di.dataDistributorMetrics.getFuture())) {
actors.add(ddGetMetrics(req, getShardMetricsList));
}
when(DistributorSnapRequest snapReq = waitNext(di.distributorSnapReq.getFuture())) {
actors.add(ddSnapCreate(snapReq, db, &ddEnabledState));
}
when(DistributorExclusionSafetyCheckRequest exclCheckReq =
waitNext(di.distributorExclCheckReq.getFuture())) {
actors.add(ddExclusionSafetyCheck(exclCheckReq, self, cx));
}
}
} catch (Error& err) {
if (normalDataDistributorErrors().count(err.code()) == 0) {
TraceEvent("DataDistributorError", di.id()).error(err, true);
throw err;
}
TraceEvent("DataDistributorDied", di.id()).error(err, true);
}
return Void();
}
std::unique_ptr<DDTeamCollection> testTeamCollection(int teamSize,
Reference<IReplicationPolicy> policy,
int processCount) {
Database database = DatabaseContext::create(
makeReference<AsyncVar<ClientDBInfo>>(), Never(), LocalityData(), EnableLocalityLoadBalance::False);
DatabaseConfiguration conf;
conf.storageTeamSize = teamSize;
conf.storagePolicy = policy;
auto collection =
std::unique_ptr<DDTeamCollection>(new DDTeamCollection(database,
UID(0, 0),
MoveKeysLock(),
PromiseStream<RelocateShard>(),
makeReference<ShardsAffectedByTeamFailure>(),
conf,
{},
{},
Future<Void>(Void()),
makeReference<AsyncVar<bool>>(true),
IsPrimary::True,
makeReference<AsyncVar<bool>>(false),
PromiseStream<GetMetricsRequest>(),
Promise<UID>(),
PromiseStream<Promise<int>>()));
for (int id = 1; id <= processCount; ++id) {
UID uid(id, 0);
StorageServerInterface interface;
interface.uniqueID = uid;
interface.locality.set(LiteralStringRef("machineid"), Standalone<StringRef>(std::to_string(id)));
interface.locality.set(LiteralStringRef("zoneid"), Standalone<StringRef>(std::to_string(id % 5)));
interface.locality.set(LiteralStringRef("data_hall"), Standalone<StringRef>(std::to_string(id % 3)));
collection->server_info[uid] = makeReference<TCServerInfo>(
interface, collection.get(), ProcessClass(), true, collection->storageServerSet);
collection->server_status.set(uid, ServerStatus(false, false, false, interface.locality));
collection->checkAndCreateMachine(collection->server_info[uid]);
}
return collection;
}
std::unique_ptr<DDTeamCollection> testMachineTeamCollection(int teamSize,
Reference<IReplicationPolicy> policy,
int processCount) {
Database database = DatabaseContext::create(
makeReference<AsyncVar<ClientDBInfo>>(), Never(), LocalityData(), EnableLocalityLoadBalance::False);
DatabaseConfiguration conf;
conf.storageTeamSize = teamSize;
conf.storagePolicy = policy;
auto collection =
std::unique_ptr<DDTeamCollection>(new DDTeamCollection(database,
UID(0, 0),
MoveKeysLock(),
PromiseStream<RelocateShard>(),
makeReference<ShardsAffectedByTeamFailure>(),
conf,
{},
{},
Future<Void>(Void()),
makeReference<AsyncVar<bool>>(true),
IsPrimary::True,
makeReference<AsyncVar<bool>>(false),
PromiseStream<GetMetricsRequest>(),
Promise<UID>(),
PromiseStream<Promise<int>>()));
for (int id = 1; id <= processCount; id++) {
UID uid(id, 0);
StorageServerInterface interface;
interface.uniqueID = uid;
int process_id = id;
int dc_id = process_id / 1000;
int data_hall_id = process_id / 100;
int zone_id = process_id / 10;
int machine_id = process_id / 5;
printf("testMachineTeamCollection: process_id:%d zone_id:%d machine_id:%d ip_addr:%s\n",
process_id,
zone_id,
machine_id,
interface.address().toString().c_str());
interface.locality.set(LiteralStringRef("processid"), Standalone<StringRef>(std::to_string(process_id)));
interface.locality.set(LiteralStringRef("machineid"), Standalone<StringRef>(std::to_string(machine_id)));
interface.locality.set(LiteralStringRef("zoneid"), Standalone<StringRef>(std::to_string(zone_id)));
interface.locality.set(LiteralStringRef("data_hall"), Standalone<StringRef>(std::to_string(data_hall_id)));
interface.locality.set(LiteralStringRef("dcid"), Standalone<StringRef>(std::to_string(dc_id)));
collection->server_info[uid] = makeReference<TCServerInfo>(
interface, collection.get(), ProcessClass(), true, collection->storageServerSet);
collection->server_status.set(uid, ServerStatus(false, false, false, interface.locality));
}
int totalServerIndex = collection->constructMachinesFromServers();
printf("testMachineTeamCollection: construct machines for %d servers\n", totalServerIndex);
return collection;
}
TEST_CASE("DataDistribution/AddTeamsBestOf/UseMachineID") {
wait(Future<Void>(Void()));
int teamSize = 3; // replication size
int processSize = 60;
int desiredTeams = SERVER_KNOBS->DESIRED_TEAMS_PER_SERVER * processSize;
int maxTeams = SERVER_KNOBS->MAX_TEAMS_PER_SERVER * processSize;
Reference<IReplicationPolicy> policy = Reference<IReplicationPolicy>(
new PolicyAcross(teamSize, "zoneid", Reference<IReplicationPolicy>(new PolicyOne())));
state std::unique_ptr<DDTeamCollection> collection = testMachineTeamCollection(teamSize, policy, processSize);
collection->addTeamsBestOf(30, desiredTeams, maxTeams);
ASSERT(collection->sanityCheckTeams() == true);
return Void();
}
TEST_CASE("DataDistribution/AddTeamsBestOf/NotUseMachineID") {
wait(Future<Void>(Void()));
int teamSize = 3; // replication size
int processSize = 60;
int desiredTeams = SERVER_KNOBS->DESIRED_TEAMS_PER_SERVER * processSize;
int maxTeams = SERVER_KNOBS->MAX_TEAMS_PER_SERVER * processSize;
Reference<IReplicationPolicy> policy = Reference<IReplicationPolicy>(
new PolicyAcross(teamSize, "zoneid", Reference<IReplicationPolicy>(new PolicyOne())));
state std::unique_ptr<DDTeamCollection> collection = testMachineTeamCollection(teamSize, policy, processSize);
if (collection == nullptr) {
fprintf(stderr, "collection is null\n");
return Void();
}
collection->addBestMachineTeams(30); // Create machine teams to help debug
collection->addTeamsBestOf(30, desiredTeams, maxTeams);
collection->sanityCheckTeams(); // Server team may happen to be on the same machine team, although unlikely
return Void();
}
TEST_CASE("DataDistribution/AddAllTeams/isExhaustive") {
Reference<IReplicationPolicy> policy =
Reference<IReplicationPolicy>(new PolicyAcross(3, "zoneid", Reference<IReplicationPolicy>(new PolicyOne())));
state int processSize = 10;
state int desiredTeams = SERVER_KNOBS->DESIRED_TEAMS_PER_SERVER * processSize;
state int maxTeams = SERVER_KNOBS->MAX_TEAMS_PER_SERVER * processSize;
state std::unique_ptr<DDTeamCollection> collection = testTeamCollection(3, policy, processSize);
int result = collection->addTeamsBestOf(200, desiredTeams, maxTeams);
// The maximum number of available server teams without considering machine locality is 120
// The maximum number of available server teams with machine locality constraint is 120 - 40, because
// the 40 (5*4*2) server teams whose servers come from the same machine are invalid.
ASSERT(result == 80);
return Void();
}
TEST_CASE("/DataDistribution/AddAllTeams/withLimit") {
Reference<IReplicationPolicy> policy =
Reference<IReplicationPolicy>(new PolicyAcross(3, "zoneid", Reference<IReplicationPolicy>(new PolicyOne())));
state int processSize = 10;
state int desiredTeams = SERVER_KNOBS->DESIRED_TEAMS_PER_SERVER * processSize;
state int maxTeams = SERVER_KNOBS->MAX_TEAMS_PER_SERVER * processSize;
state std::unique_ptr<DDTeamCollection> collection = testTeamCollection(3, policy, processSize);
int result = collection->addTeamsBestOf(10, desiredTeams, maxTeams);
ASSERT(result >= 10);
return Void();
}
TEST_CASE("/DataDistribution/AddTeamsBestOf/SkippingBusyServers") {
wait(Future<Void>(Void()));
Reference<IReplicationPolicy> policy =
Reference<IReplicationPolicy>(new PolicyAcross(3, "zoneid", Reference<IReplicationPolicy>(new PolicyOne())));
state int processSize = 10;
state int desiredTeams = SERVER_KNOBS->DESIRED_TEAMS_PER_SERVER * processSize;
state int maxTeams = SERVER_KNOBS->MAX_TEAMS_PER_SERVER * processSize;
state int teamSize = 3;
// state int targetTeamsPerServer = SERVER_KNOBS->DESIRED_TEAMS_PER_SERVER * (teamSize + 1) / 2;
state std::unique_ptr<DDTeamCollection> collection = testTeamCollection(teamSize, policy, processSize);
collection->addTeam(std::set<UID>({ UID(1, 0), UID(2, 0), UID(3, 0) }), true);
collection->addTeam(std::set<UID>({ UID(1, 0), UID(3, 0), UID(4, 0) }), true);
state int result = collection->addTeamsBestOf(8, desiredTeams, maxTeams);
ASSERT(result >= 8);
for (auto process = collection->server_info.begin(); process != collection->server_info.end(); process++) {
auto teamCount = process->second->teams.size();
ASSERT(teamCount >= 1);
// ASSERT(teamCount <= targetTeamsPerServer);
}
return Void();
}
// Due to the randomness in choosing the machine team and the server team from the machine team, it is possible that
// we may not find the remaining several (e.g., 1 or 2) available teams.
// It is hard to conclude what is the minimum number of teams the addTeamsBestOf() should create in this situation.
TEST_CASE("/DataDistribution/AddTeamsBestOf/NotEnoughServers") {
wait(Future<Void>(Void()));
Reference<IReplicationPolicy> policy =
Reference<IReplicationPolicy>(new PolicyAcross(3, "zoneid", Reference<IReplicationPolicy>(new PolicyOne())));
state int processSize = 5;
state int desiredTeams = SERVER_KNOBS->DESIRED_TEAMS_PER_SERVER * processSize;
state int maxTeams = SERVER_KNOBS->MAX_TEAMS_PER_SERVER * processSize;
state int teamSize = 3;
state std::unique_ptr<DDTeamCollection> collection = testTeamCollection(teamSize, policy, processSize);
collection->addTeam(std::set<UID>({ UID(1, 0), UID(2, 0), UID(3, 0) }), true);
collection->addTeam(std::set<UID>({ UID(1, 0), UID(3, 0), UID(4, 0) }), true);
collection->addBestMachineTeams(10);
int result = collection->addTeamsBestOf(10, desiredTeams, maxTeams);
if (collection->machineTeams.size() != 10 || result != 8) {
collection->traceAllInfo(true); // Debug message
}
// NOTE: Due to the pure randomness in selecting a machine for a machine team,
// we cannot guarantee that all machine teams are created.
// When we chnage the selectReplicas function to achieve such guarantee, we can enable the following ASSERT
ASSERT(collection->machineTeams.size() == 10); // Should create all machine teams
// We need to guarantee a server always have at least a team so that the server can participate in data distribution
for (auto process = collection->server_info.begin(); process != collection->server_info.end(); process++) {
auto teamCount = process->second->teams.size();
ASSERT(teamCount >= 1);
}
// If we find all available teams, result will be 8 because we prebuild 2 teams
ASSERT(result == 8);
return Void();
}