foundationdb/fdbserver/SimulatedCluster.actor.cpp

2304 lines
91 KiB
C++

/*
* SimulatedCluster.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cstdint>
#include <fstream>
#include <ostream>
#include <sstream>
#include <string_view>
#include <toml.hpp>
#include "fdbrpc/Locality.h"
#include "fdbrpc/simulator.h"
#include "fdbclient/ClusterConnectionFile.h"
#include "fdbclient/ClusterConnectionMemoryRecord.h"
#include "fdbclient/DatabaseContext.h"
#include "fdbserver/TesterInterface.actor.h"
#include "fdbserver/WorkerInterface.actor.h"
#include "fdbclient/ClusterInterface.h"
#include "fdbserver/Knobs.h"
#include "fdbserver/CoordinationInterface.h"
#include "fdbmonitor/SimpleIni.h"
#include "fdbrpc/AsyncFileNonDurable.actor.h"
#include "fdbclient/ManagementAPI.actor.h"
#include "fdbclient/NativeAPI.actor.h"
#include "fdbclient/BackupAgent.actor.h"
#include "fdbclient/versions.h"
#include "fdbclient/WellKnownEndpoints.h"
#include "flow/ProtocolVersion.h"
#include "flow/network.h"
#include "flow/TypeTraits.h"
#include "flow/FaultInjection.h"
#include "flow/actorcompiler.h" // This must be the last #include.
#undef max
#undef min
extern "C" int g_expect_full_pointermap;
extern const char* getSourceVersion();
using namespace std::literals;
// TODO: Defining these here is just asking for ODR violations.
template <>
std::string describe(bool const& val) {
return val ? "true" : "false";
}
template <>
std::string describe(int const& val) {
return format("%d", val);
}
namespace {
const int MACHINE_REBOOT_TIME = 10;
bool destructed = false;
// Configuration details specified in workload test files that change the simulation
// environment details
class TestConfig {
class ConfigBuilder {
using value_type = toml::basic_value<toml::discard_comments>;
using base_variant = std::variant<int, bool, std::string, std::vector<int>, ConfigDBType>;
using types =
variant_map<variant_concat<base_variant, variant_map<base_variant, Optional>>, std::add_pointer_t>;
std::unordered_map<std::string_view, types> confMap;
struct visitor {
const value_type& value;
visitor(const value_type& v) : value(v) {}
void operator()(int* val) const { *val = value.as_integer(); }
void operator()(Optional<int>* val) const { *val = value.as_integer(); }
void operator()(bool* val) const { *val = value.as_boolean(); }
void operator()(Optional<bool>* val) const { *val = value.as_boolean(); }
void operator()(std::string* val) const { *val = value.as_string(); }
void operator()(Optional<std::string>* val) const { *val = value.as_string(); }
void operator()(std::vector<int>* val) const {
auto arr = value.as_array();
for (const auto& i : arr) {
val->emplace_back(i.as_integer());
}
}
void operator()(Optional<std::vector<int>>* val) const {
std::vector<int> res;
(*this)(&res);
*val = std::move(res);
}
void operator()(ConfigDBType* val) const {
if (value.as_string() == "random") {
*val = deterministicRandom()->coinflip() ? ConfigDBType::SIMPLE : ConfigDBType::PAXOS;
} else {
*val = configDBTypeFromString(value.as_string());
}
}
void operator()(Optional<ConfigDBType>* val) const {
ConfigDBType res;
(*this)(&res);
*val = std::move(res);
}
};
struct trace_visitor {
std::string key;
TraceEvent& evt;
trace_visitor(std::string const& key, TraceEvent& e) : key("Key" + key), evt(e) {}
template <class T>
void operator()(T const* val) const {
evt.detail(key.c_str(), *val);
}
void operator()(std::vector<int> const* val) const {
if (val->empty()) {
evt.detail(key.c_str(), "[]");
return;
}
std::stringstream value;
value << "[" << val->at(0);
for (int i = 1; i < val->size(); ++i) {
value << "," << val->at(i);
}
value << "]";
evt.detail(key.c_str(), value.str());
}
void operator()(Optional<std::vector<int>> const* val) const {
if (!val->present()) {
evt.detail(key.c_str(), *val);
} else {
(*this)(&(val->get()));
}
}
void operator()(ConfigDBType const* val) const { evt.detail(key.c_str(), *val); }
void operator()(Optional<ConfigDBType> const* val) const {
Optional<std::string> optStr;
if (val->present()) {
optStr = configDBTypeToString(val->get());
}
evt.detail(key.c_str(), optStr);
}
};
public:
~ConfigBuilder() {
TraceEvent evt("SimulatorConfigFromToml");
for (const auto& p : confMap) {
std::visit(trace_visitor(std::string(p.first), evt), p.second);
}
}
template <class V>
ConfigBuilder& add(std::string_view key, V value) {
confMap.emplace(key, value);
return *this;
}
void set(std::string_view key, const value_type& value) {
auto iter = confMap.find(key);
if (iter == confMap.end()) {
std::cerr << "Unknown configuration attribute " << key << std::endl;
TraceEvent("UnknownConfigurationAttribute").detail("Name", std::string(key));
throw unknown_error();
}
std::visit(visitor(value), iter->second);
}
};
bool isIniFile(const char* fileName) {
std::string name = fileName;
auto pos = name.find_last_of('.');
ASSERT(pos != std::string::npos && pos + 1 < name.size());
auto extension = name.substr(pos + 1);
return extension == "txt"sv;
}
void loadIniFile(const char* testFile) {
std::ifstream ifs;
ifs.open(testFile, std::ifstream::in);
if (!ifs.good())
return;
std::string cline;
while (ifs.good()) {
getline(ifs, cline);
std::string line = removeWhitespace(std::string(cline));
if (!line.size() || line.find(';') == 0)
continue;
size_t found = line.find('=');
if (found == std::string::npos)
// hmmm, not good
continue;
std::string attrib = removeWhitespace(line.substr(0, found));
std::string value = removeWhitespace(line.substr(found + 1));
if (attrib == "extraDB") {
sscanf(value.c_str(), "%d", &extraDB);
}
if (attrib == "minimumReplication") {
sscanf(value.c_str(), "%d", &minimumReplication);
}
if (attrib == "minimumRegions") {
sscanf(value.c_str(), "%d", &minimumRegions);
}
if (attrib == "configureLocked") {
sscanf(value.c_str(), "%d", &configureLocked);
}
if (attrib == "startIncompatibleProcess") {
startIncompatibleProcess = strcmp(value.c_str(), "true") == 0;
}
if (attrib == "logAntiQuorum") {
sscanf(value.c_str(), "%d", &logAntiQuorum);
}
if (attrib == "storageEngineExcludeTypes") {
std::stringstream ss(value);
for (int i; ss >> i;) {
storageEngineExcludeTypes.push_back(i);
if (ss.peek() == ',') {
ss.ignore();
}
}
}
if (attrib == "maxTLogVersion") {
sscanf(value.c_str(), "%d", &maxTLogVersion);
}
if (attrib == "disableTss") {
disableTss = strcmp(value.c_str(), "true") == 0;
}
if (attrib == "restartInfoLocation") {
isFirstTestInRestart = true;
}
if (attrib == "configDBType") {
if (value == "random") {
configDBType = deterministicRandom()->coinflip() ? ConfigDBType::SIMPLE : ConfigDBType::PAXOS;
} else {
configDBType = configDBTypeFromString(value);
}
}
}
ifs.close();
}
ConfigDBType configDBType{ ConfigDBType::DISABLED };
public:
int extraDB = 0;
int minimumReplication = 0;
int minimumRegions = 0;
bool configureLocked = false;
bool startIncompatibleProcess = false;
int logAntiQuorum = -1;
bool isFirstTestInRestart = false;
// 7.0 cannot be downgraded to 6.3 after enabling TSS, so disable TSS for 6.3 downgrade tests
bool disableTss = false;
// Storage Engine Types: Verify match with SimulationConfig::generateNormalConfig
// 0 = "ssd"
// 1 = "memory"
// 2 = "memory-radixtree-beta"
// 3 = "ssd-redwood-experimental"
// 4 = "ssd-rocksdb-experimental"
// Requires a comma-separated list of numbers WITHOUT whitespaces
std::vector<int> storageEngineExcludeTypes;
// Set the maximum TLog version that can be selected for a test
// Refer to FDBTypes.h::TLogVersion. Defaults to the maximum supported version.
int maxTLogVersion = TLogVersion::MAX_SUPPORTED;
// Set true to simplify simulation configs for easier debugging
bool simpleConfig = false;
int extraMachineCountDC = 0;
Optional<bool> generateFearless, buggify;
Optional<int> datacenters, desiredTLogCount, commitProxyCount, grvProxyCount, resolverCount, storageEngineType,
stderrSeverity, machineCount, processesPerMachine, coordinators;
Optional<std::string> config;
ConfigDBType getConfigDBType() const { return configDBType; }
bool tomlKeyPresent(const toml::value& data, std::string key) {
if (data.is_table()) {
for (const auto& [k, v] : data.as_table()) {
if (k == key || tomlKeyPresent(v, key)) {
return true;
}
}
} else if (data.is_array()) {
for (const auto& v : data.as_array()) {
if (tomlKeyPresent(v, key)) {
return true;
}
}
}
return false;
}
void readFromConfig(const char* testFile) {
if (isIniFile(testFile)) {
loadIniFile(testFile);
return;
}
ConfigBuilder builder;
builder.add("extraDB", &extraDB)
.add("minimumReplication", &minimumReplication)
.add("minimumRegions", &minimumRegions)
.add("configureLocked", &configureLocked)
.add("startIncompatibleProcess", &startIncompatibleProcess)
.add("logAntiQuorum", &logAntiQuorum)
.add("storageEngineExcludeTypes", &storageEngineExcludeTypes)
.add("maxTLogVersion", &maxTLogVersion)
.add("disableTss", &disableTss)
.add("simpleConfig", &simpleConfig)
.add("generateFearless", &generateFearless)
.add("datacenters", &datacenters)
.add("desiredTLogCount", &desiredTLogCount)
.add("commitProxyCount", &commitProxyCount)
.add("grvProxyCount", &grvProxyCount)
.add("resolverCount", &resolverCount)
.add("storageEngineType", &storageEngineType)
.add("config", &config)
.add("buggify", &buggify)
.add("StderrSeverity", &stderrSeverity)
.add("machineCount", &machineCount)
.add("processesPerMachine", &processesPerMachine)
.add("coordinators", &coordinators)
.add("configDB", &configDBType)
.add("extraMachineCountDC", &extraMachineCountDC);
try {
auto file = toml::parse(testFile);
if (file.contains("configuration") && toml::find(file, "configuration").is_table()) {
auto conf = toml::find(file, "configuration").as_table();
for (const auto& [key, value] : conf) {
if (key == "ClientInfoLogging") {
setNetworkOption(FDBNetworkOptions::DISABLE_CLIENT_STATISTICS_LOGGING);
} else if (key == "restartInfoLocation") {
isFirstTestInRestart = true;
} else {
builder.set(key, value);
}
}
if (stderrSeverity.present()) {
TraceEvent("StderrSeverity").detail("NewSeverity", stderrSeverity.get());
}
}
// look for restartInfoLocation to mark isFirstTestInRestart
if (!isFirstTestInRestart) {
isFirstTestInRestart = tomlKeyPresent(file, "restartInfoLocation");
}
} catch (std::exception& e) {
std::cerr << e.what() << std::endl;
TraceEvent("TOMLParseError").detail("Error", printable(e.what()));
throw unknown_error();
}
// Verify that we can use the passed config
if (simpleConfig) {
if (minimumRegions > 1) {
TraceEvent("ElapsedTime").detail("SimTime", now()).detail("RealTime", 0).detail("RandomUnseed", 0);
flushAndExit(0);
}
}
}
};
template <class T>
T simulate(const T& in) {
BinaryWriter writer(AssumeVersion(g_network->protocolVersion()));
writer << in;
BinaryReader reader(writer.getData(), writer.getLength(), AssumeVersion(g_network->protocolVersion()));
T out;
reader >> out;
return out;
}
ACTOR Future<Void> runBackup(Reference<IClusterConnectionRecord> connRecord) {
state std::vector<Future<Void>> agentFutures;
while (g_simulator.backupAgents == ISimulator::BackupAgentType::WaitForType) {
wait(delay(1.0));
}
if (g_simulator.backupAgents == ISimulator::BackupAgentType::BackupToFile) {
Database cx = Database::createDatabase(connRecord, -1);
state FileBackupAgent fileAgent;
agentFutures.push_back(fileAgent.run(
cx, 1.0 / CLIENT_KNOBS->BACKUP_AGGREGATE_POLL_RATE, CLIENT_KNOBS->SIM_BACKUP_TASKS_PER_AGENT));
while (g_simulator.backupAgents == ISimulator::BackupAgentType::BackupToFile) {
wait(delay(1.0));
}
for (auto it : agentFutures) {
it.cancel();
}
}
wait(Future<Void>(Never()));
throw internal_error();
}
ACTOR Future<Void> runDr(Reference<IClusterConnectionRecord> connRecord) {
state std::vector<Future<Void>> agentFutures;
while (g_simulator.drAgents == ISimulator::BackupAgentType::WaitForType) {
wait(delay(1.0));
}
if (g_simulator.drAgents == ISimulator::BackupAgentType::BackupToDB) {
Database cx = Database::createDatabase(connRecord, -1);
auto extraFile = makeReference<ClusterConnectionMemoryRecord>(*g_simulator.extraDB);
state Database extraDB = Database::createDatabase(extraFile, -1);
TraceEvent("StartingDrAgents")
.detail("ConnectionString", connRecord->getConnectionString().toString())
.detail("ExtraString", extraFile->getConnectionString().toString());
state DatabaseBackupAgent dbAgent = DatabaseBackupAgent(cx);
state DatabaseBackupAgent extraAgent = DatabaseBackupAgent(extraDB);
auto drPollDelay = 1.0 / CLIENT_KNOBS->BACKUP_AGGREGATE_POLL_RATE;
agentFutures.push_back(extraAgent.run(cx, drPollDelay, CLIENT_KNOBS->SIM_BACKUP_TASKS_PER_AGENT));
agentFutures.push_back(dbAgent.run(extraDB, drPollDelay, CLIENT_KNOBS->SIM_BACKUP_TASKS_PER_AGENT));
while (g_simulator.drAgents == ISimulator::BackupAgentType::BackupToDB) {
wait(delay(1.0));
}
TraceEvent("StoppingDrAgents").log();
for (auto it : agentFutures) {
it.cancel();
}
}
wait(Future<Void>(Never()));
throw internal_error();
}
enum AgentMode { AgentNone = 0, AgentOnly = 1, AgentAddition = 2 };
// SOMEDAY: when a process can be rebooted in isolation from the other on that machine,
// a loop{} will be needed around the waiting on simulatedFDBD(). For now this simply
// takes care of house-keeping such as context switching and file closing.
ACTOR Future<ISimulator::KillType> simulatedFDBDRebooter(Reference<IClusterConnectionRecord> connRecord,
IPAddress ip,
bool sslEnabled,
uint16_t port,
uint16_t listenPerProcess,
LocalityData localities,
ProcessClass processClass,
std::string* dataFolder,
std::string* coordFolder,
std::string baseFolder,
ClusterConnectionString connStr,
bool useSeedFile,
AgentMode runBackupAgents,
std::string whitelistBinPaths,
ProtocolVersion protocolVersion,
ConfigDBType configDBType) {
state ISimulator::ProcessInfo* simProcess = g_simulator.getCurrentProcess();
state UID randomId = nondeterministicRandom()->randomUniqueID();
state int cycles = 0;
loop {
auto waitTime =
SERVER_KNOBS->MIN_REBOOT_TIME +
(SERVER_KNOBS->MAX_REBOOT_TIME - SERVER_KNOBS->MIN_REBOOT_TIME) * deterministicRandom()->random01();
cycles++;
TraceEvent("SimulatedFDBDPreWait")
.detail("Cycles", cycles)
.detail("RandomId", randomId)
.detail("Address", NetworkAddress(ip, port, true, false))
.detail("ZoneId", localities.zoneId())
.detail("WaitTime", waitTime)
.detail("Port", port);
wait(delay(waitTime));
state ISimulator::ProcessInfo* process = g_simulator.newProcess("Server",
ip,
port,
sslEnabled,
listenPerProcess,
localities,
processClass,
dataFolder->c_str(),
coordFolder->c_str(),
protocolVersion);
wait(g_simulator.onProcess(
process,
TaskPriority::DefaultYield)); // Now switch execution to the process on which we will run
state Future<ISimulator::KillType> onShutdown = process->onShutdown();
try {
TraceEvent("SimulatedRebooterStarting")
.detail("Cycles", cycles)
.detail("RandomId", randomId)
.detail("ZoneId", localities.zoneId())
.detail("DataHall", localities.dataHallId())
.detail("Address", process->address.toString())
.detail("Excluded", process->excluded)
.detail("UsingSSL", sslEnabled);
TraceEvent("ProgramStart")
.detail("Cycles", cycles)
.detail("RandomId", randomId)
.detail("SourceVersion", getSourceVersion())
.detail("Version", FDB_VT_VERSION)
.detail("PackageName", FDB_VT_PACKAGE_NAME)
.detail("DataFolder", *dataFolder)
.detail("ConnectionString", connRecord ? connRecord->getConnectionString().toString() : "")
.detailf("ActualTime", "%lld", DEBUG_DETERMINISM ? 0 : time(nullptr))
.detail("CommandLine", "fdbserver -r simulation")
.detail("BuggifyEnabled", isBuggifyEnabled(BuggifyType::General))
.detail("Simulated", true)
.trackLatest("ProgramStart");
try {
// SOMEDAY: test lower memory limits, without making them too small and causing the database to stop
// making progress
FlowTransport::createInstance(processClass == ProcessClass::TesterClass || runBackupAgents == AgentOnly,
1,
WLTOKEN_RESERVED_COUNT);
Sim2FileSystem::newFileSystem();
std::vector<Future<Void>> futures;
for (int listenPort = port; listenPort < port + listenPerProcess; ++listenPort) {
NetworkAddress n(ip, listenPort, true, sslEnabled && listenPort == port);
futures.push_back(FlowTransport::transport().bind(n, n));
}
if (runBackupAgents != AgentOnly) {
futures.push_back(fdbd(connRecord,
localities,
processClass,
*dataFolder,
*coordFolder,
500e6,
"",
"",
-1,
whitelistBinPaths,
"",
{},
configDBType));
}
if (runBackupAgents != AgentNone) {
futures.push_back(runBackup(connRecord));
futures.push_back(runDr(connRecord));
}
futures.push_back(success(onShutdown));
wait(waitForAny(futures));
} catch (Error& e) {
// If in simulation, if we make it here with an error other than io_timeout but enASIOTimedOut is set
// then somewhere an io_timeout was converted to a different error.
if (g_network->isSimulated() && e.code() != error_code_io_timeout &&
(bool)g_network->global(INetwork::enASIOTimedOut))
TraceEvent(SevError, "IOTimeoutErrorSuppressed")
.detail("ErrorCode", e.code())
.detail("RandomId", randomId)
.backtrace();
if (e.code() == error_code_io_timeout && !onShutdown.isReady()) {
onShutdown = ISimulator::RebootProcess;
}
if (onShutdown.isReady() && onShutdown.isError())
throw onShutdown.getError();
if (e.code() != error_code_actor_cancelled)
printf("SimulatedFDBDTerminated: %s\n", e.what());
ASSERT(destructed ||
g_simulator.getCurrentProcess() == process); // simulatedFDBD catch called on different process
TraceEvent(e.code() == error_code_actor_cancelled || e.code() == error_code_file_not_found || destructed
? SevInfo
: SevError,
"SimulatedFDBDTerminated")
.error(e, true)
.detail("ZoneId", localities.zoneId());
}
TraceEvent("SimulatedFDBDDone")
.detail("Cycles", cycles)
.detail("RandomId", randomId)
.detail("Address", process->address)
.detail("Excluded", process->excluded)
.detail("ZoneId", localities.zoneId())
.detail("KillType", onShutdown.isReady() ? onShutdown.get() : ISimulator::None);
if (!onShutdown.isReady())
onShutdown = ISimulator::InjectFaults;
} catch (Error& e) {
TraceEvent(destructed ? SevInfo : SevError, "SimulatedFDBDRebooterError")
.error(e, true)
.detail("ZoneId", localities.zoneId())
.detail("RandomId", randomId);
onShutdown = e;
}
ASSERT(destructed || g_simulator.getCurrentProcess() == process);
if (!process->shutdownSignal.isSet() && !destructed) {
process->rebooting = true;
process->shutdownSignal.send(ISimulator::None);
}
TraceEvent("SimulatedFDBDWait")
.detail("Cycles", cycles)
.detail("RandomId", randomId)
.detail("Address", process->address)
.detail("Excluded", process->excluded)
.detail("Rebooting", process->rebooting)
.detail("ZoneId", localities.zoneId());
wait(g_simulator.onProcess(simProcess));
wait(delay(0.00001 + FLOW_KNOBS->MAX_BUGGIFIED_DELAY)); // One last chance for the process to clean up?
g_simulator.destroyProcess(
process); // Leak memory here; the process may be used in other parts of the simulation
auto shutdownResult = onShutdown.get();
TraceEvent("SimulatedFDBDShutdown")
.detail("Cycles", cycles)
.detail("RandomId", randomId)
.detail("Address", process->address)
.detail("Excluded", process->excluded)
.detail("ZoneId", localities.zoneId())
.detail("KillType", shutdownResult);
if (shutdownResult < ISimulator::RebootProcessAndDelete) {
TraceEvent("SimulatedFDBDLowerReboot")
.detail("Cycles", cycles)
.detail("RandomId", randomId)
.detail("Address", process->address)
.detail("Excluded", process->excluded)
.detail("ZoneId", localities.zoneId())
.detail("KillType", shutdownResult);
return onShutdown.get();
}
if (onShutdown.get() == ISimulator::RebootProcessAndDelete) {
TraceEvent("SimulatedFDBDRebootAndDelete")
.detail("Cycles", cycles)
.detail("RandomId", randomId)
.detail("Address", process->address)
.detail("ZoneId", localities.zoneId())
.detail("KillType", shutdownResult);
*coordFolder = joinPath(baseFolder, deterministicRandom()->randomUniqueID().toString());
*dataFolder = joinPath(baseFolder, deterministicRandom()->randomUniqueID().toString());
platform::createDirectory(*dataFolder);
if (!useSeedFile) {
writeFile(joinPath(*dataFolder, "fdb.cluster"), connStr.toString());
connRecord = makeReference<ClusterConnectionFile>(joinPath(*dataFolder, "fdb.cluster"));
} else {
connRecord =
makeReference<ClusterConnectionFile>(joinPath(*dataFolder, "fdb.cluster"), connStr.toString());
}
} else {
TraceEvent("SimulatedFDBDJustRepeat")
.detail("Cycles", cycles)
.detail("RandomId", randomId)
.detail("Address", process->address)
.detail("ZoneId", localities.zoneId())
.detail("KillType", shutdownResult);
}
}
}
// Since a datacenter kill is considered to be the same as killing a machine, files cannot be swapped across datacenters
std::map<Optional<Standalone<StringRef>>, std::vector<std::vector<std::string>>> availableFolders;
// process count is no longer needed because it is now the length of the vector of ip's, because it was one ip per
// process
ACTOR Future<Void> simulatedMachine(ClusterConnectionString connStr,
std::vector<IPAddress> ips,
bool sslEnabled,
LocalityData localities,
ProcessClass processClass,
std::string baseFolder,
bool restarting,
bool useSeedFile,
AgentMode runBackupAgents,
bool sslOnly,
std::string whitelistBinPaths,
ProtocolVersion protocolVersion,
ConfigDBType configDBType) {
state int bootCount = 0;
state std::vector<std::string> myFolders;
state std::vector<std::string> coordFolders;
state UID randomId = nondeterministicRandom()->randomUniqueID();
state int listenPerProcess = (sslEnabled && !sslOnly) ? 2 : 1;
try {
CSimpleIni ini;
ini.SetUnicode();
ini.LoadFile(joinPath(baseFolder, "restartInfo.ini").c_str());
for (int i = 0; i < ips.size(); i++) {
if (restarting) {
myFolders.push_back(
ini.GetValue(printable(localities.machineId()).c_str(),
format("%d", i * listenPerProcess).c_str(),
joinPath(baseFolder, deterministicRandom()->randomUniqueID().toString()).c_str()));
if (i == 0) {
std::string coordinationFolder =
ini.GetValue(printable(localities.machineId()).c_str(), "coordinationFolder", "");
if (!coordinationFolder.size())
coordinationFolder = ini.GetValue(
printable(localities.machineId()).c_str(),
format("c%d", i * listenPerProcess).c_str(),
joinPath(baseFolder, deterministicRandom()->randomUniqueID().toString()).c_str());
coordFolders.push_back(coordinationFolder);
} else {
coordFolders.push_back(
ini.GetValue(printable(localities.machineId()).c_str(),
format("c%d", i * listenPerProcess).c_str(),
joinPath(baseFolder, deterministicRandom()->randomUniqueID().toString()).c_str()));
}
} else {
coordFolders.push_back(joinPath(baseFolder, deterministicRandom()->randomUniqueID().toString()));
std::string thisFolder = deterministicRandom()->randomUniqueID().toString();
myFolders.push_back(joinPath(baseFolder, thisFolder));
platform::createDirectory(myFolders[i]);
if (!useSeedFile)
writeFile(joinPath(myFolders[i], "fdb.cluster"), connStr.toString());
}
}
loop {
state std::vector<Future<ISimulator::KillType>> processes;
for (int i = 0; i < ips.size(); i++) {
std::string path = joinPath(myFolders[i], "fdb.cluster");
Reference<IClusterConnectionRecord> clusterFile(
useSeedFile ? new ClusterConnectionFile(path, connStr.toString())
: new ClusterConnectionFile(path));
const int listenPort = i * listenPerProcess + 1;
AgentMode agentMode =
runBackupAgents == AgentOnly ? (i == ips.size() - 1 ? AgentOnly : AgentNone) : runBackupAgents;
if (g_simulator.hasDiffProtocolProcess && !g_simulator.setDiffProtocol && agentMode == AgentNone) {
processes.push_back(simulatedFDBDRebooter(clusterFile,
ips[i],
sslEnabled,
listenPort,
listenPerProcess,
localities,
processClass,
&myFolders[i],
&coordFolders[i],
baseFolder,
connStr,
useSeedFile,
agentMode,
whitelistBinPaths,
protocolVersion,
configDBType));
g_simulator.setDiffProtocol = true;
} else {
processes.push_back(simulatedFDBDRebooter(clusterFile,
ips[i],
sslEnabled,
listenPort,
listenPerProcess,
localities,
processClass,
&myFolders[i],
&coordFolders[i],
baseFolder,
connStr,
useSeedFile,
agentMode,
whitelistBinPaths,
g_network->protocolVersion(),
configDBType));
}
TraceEvent("SimulatedMachineProcess", randomId)
.detail("Address", NetworkAddress(ips[i], listenPort, true, false))
.detail("ZoneId", localities.zoneId())
.detail("DataHall", localities.dataHallId())
.detail("Folder", myFolders[i]);
}
TEST(bootCount >= 1); // Simulated machine rebooted
TEST(bootCount >= 2); // Simulated machine rebooted twice
TEST(bootCount >= 3); // Simulated machine rebooted three times
++bootCount;
TraceEvent("SimulatedMachineStart", randomId)
.detail("Folder0", myFolders[0])
.detail("CFolder0", coordFolders[0])
.detail("MachineIPs", toIPVectorString(ips))
.detail("SSL", sslEnabled)
.detail("Processes", processes.size())
.detail("BootCount", bootCount)
.detail("ProcessClass", processClass.toString())
.detail("Restarting", restarting)
.detail("UseSeedFile", useSeedFile)
.detail("ZoneId", localities.zoneId())
.detail("DataHall", localities.dataHallId())
.detail("Locality", localities.toString());
wait(waitForAll(processes));
TraceEvent("SimulatedMachineRebootStart", randomId)
.detail("Folder0", myFolders[0])
.detail("CFolder0", coordFolders[0])
.detail("MachineIPs", toIPVectorString(ips))
.detail("ZoneId", localities.zoneId())
.detail("DataHall", localities.dataHallId());
{
// Kill all open files, which may cause them to write invalid data.
auto& machineCache = g_simulator.getMachineById(localities.machineId())->openFiles;
// Copy the file pointers to a vector because the map may be modified while we are killing files
std::vector<AsyncFileNonDurable*> files;
for (auto fileItr = machineCache.begin(); fileItr != machineCache.end(); ++fileItr) {
ASSERT(fileItr->second.get().isReady());
files.push_back((AsyncFileNonDurable*)fileItr->second.get().get().getPtr());
}
std::vector<Future<Void>> killFutures;
for (auto fileItr = files.begin(); fileItr != files.end(); ++fileItr)
killFutures.push_back((*fileItr)->kill());
wait(waitForAll(killFutures));
}
state std::set<std::string> filenames;
state std::string closingStr;
auto& machineCache = g_simulator.getMachineById(localities.machineId())->openFiles;
for (auto it : machineCache) {
filenames.insert(it.first);
closingStr += it.first + ", ";
ASSERT(it.second.get().canGet());
}
for (auto it : g_simulator.getMachineById(localities.machineId())->deletingFiles) {
filenames.insert(it);
closingStr += it + ", ";
}
TraceEvent("SimulatedMachineRebootAfterKills", randomId)
.detail("Folder0", myFolders[0])
.detail("CFolder0", coordFolders[0])
.detail("MachineIPs", toIPVectorString(ips))
.detail("Closing", closingStr)
.detail("ZoneId", localities.zoneId())
.detail("DataHall", localities.dataHallId());
ISimulator::MachineInfo* machine = g_simulator.getMachineById(localities.machineId());
machine->closingFiles = filenames;
g_simulator.getMachineById(localities.machineId())->openFiles.clear();
// During a reboot:
// The process is expected to close all files and be inactive in zero time, but not necessarily
// without delay(0)-equivalents, so delay(0) a few times waiting for it to achieve that goal.
// After an injected fault:
// The process is expected to shut down eventually, but not necessarily instantly. Wait up to 60 seconds.
state int shutdownDelayCount = 0;
state double backoff = 0;
loop {
auto& machineCache = g_simulator.getMachineById(localities.machineId())->closingFiles;
if (!machineCache.empty()) {
std::string openFiles;
int i = 0;
for (auto it = machineCache.begin(); it != machineCache.end() && i < 5; ++it) {
openFiles += *it + ", ";
i++;
}
TraceEvent("MachineFilesOpen", randomId)
.detail("PAddr", toIPVectorString(ips))
.detail("OpenFiles", openFiles);
} else
break;
if (shutdownDelayCount++ >= 50) { // Worker doesn't shut down instantly on reboot
TraceEvent(SevError, "SimulatedFDBDFilesCheck", randomId)
.detail("PAddrs", toIPVectorString(ips))
.detail("ZoneId", localities.zoneId())
.detail("DataHall", localities.dataHallId());
ASSERT(false);
}
wait(delay(backoff));
backoff = std::min(backoff + 1.0, 6.0);
}
TraceEvent("SimulatedFDBDFilesClosed", randomId)
.detail("Address", toIPVectorString(ips))
.detail("ZoneId", localities.zoneId())
.detail("DataHall", localities.dataHallId());
g_simulator.destroyMachine(localities.machineId());
// SOMEDAY: when processes can be rebooted, this check will be needed
// ASSERT( this machine is rebooting );
// Since processes can end with different codes, take the highest (least severe) to detmine what to do
state ISimulator::KillType killType = processes[0].get();
for (int i = 1; i < ips.size(); i++)
killType = std::max(processes[i].get(), killType);
TEST(true); // Simulated machine has been rebooted
state bool swap = killType == ISimulator::Reboot && BUGGIFY_WITH_PROB(0.75) &&
g_simulator.canSwapToMachine(localities.zoneId());
if (swap)
availableFolders[localities.dcId()].push_back(myFolders);
auto rebootTime = deterministicRandom()->random01() * MACHINE_REBOOT_TIME;
TraceEvent("SimulatedMachineShutdown", randomId)
.detail("Swap", swap)
.detail("KillType", killType)
.detail("RebootTime", rebootTime)
.detail("ZoneId", localities.zoneId())
.detail("DataHall", localities.dataHallId())
.detail("MachineIPs", toIPVectorString(ips));
wait(delay(rebootTime));
if (swap) {
auto& avail = availableFolders[localities.dcId()];
int i = deterministicRandom()->randomInt(0, avail.size());
if (i != avail.size() - 1)
std::swap(avail[i], avail.back());
auto toRebootFrom = avail.back();
avail.pop_back();
if (myFolders != toRebootFrom) {
TEST(true); // Simulated machine swapped data folders
TraceEvent("SimulatedMachineFolderSwap", randomId)
.detail("OldFolder0", myFolders[0])
.detail("NewFolder0", toRebootFrom[0])
.detail("MachineIPs", toIPVectorString(ips));
}
myFolders = toRebootFrom;
if (!useSeedFile) {
for (auto f : toRebootFrom) {
if (!fileExists(joinPath(f, "fdb.cluster"))) {
writeFile(joinPath(f, "fdb.cluster"), connStr.toString());
}
}
}
} else if (killType == ISimulator::RebootAndDelete) {
for (int i = 0; i < ips.size(); i++) {
coordFolders[i] = joinPath(baseFolder, deterministicRandom()->randomUniqueID().toString());
myFolders[i] = joinPath(baseFolder, deterministicRandom()->randomUniqueID().toString());
platform::createDirectory(myFolders[i]);
if (!useSeedFile) {
writeFile(joinPath(myFolders[i], "fdb.cluster"), connStr.toString());
}
}
TEST(true); // Simulated machine rebooted with data loss
}
// this machine is rebooting = false;
}
} catch (Error& e) {
g_simulator.getMachineById(localities.machineId())->openFiles.clear();
throw;
}
}
IPAddress makeIPAddressForSim(bool isIPv6, std::array<int, 4> parts) {
if (isIPv6) {
IPAddress::IPAddressStore addrStore{ 0xAB, 0xCD };
uint16_t* ptr = (uint16_t*)addrStore.data();
ptr[4] = (uint16_t)(parts[0] << 8);
ptr[5] = (uint16_t)(parts[1] << 8);
ptr[6] = (uint16_t)(parts[2] << 8);
ptr[7] = (uint16_t)(parts[3] << 8);
return IPAddress(addrStore);
} else {
return IPAddress(parts[0] << 24 | parts[1] << 16 | parts[2] << 8 | parts[3]);
}
}
#include "fdbclient/MonitorLeader.h"
// Configures the system according to the given specifications in order to run
// simulation, but with the additional consideration that it is meant to act
// like a "rebooted" machine, mostly used for restarting tests.
ACTOR Future<Void> restartSimulatedSystem(std::vector<Future<Void>>* systemActors,
std::string baseFolder,
int* pTesterCount,
Optional<ClusterConnectionString>* pConnString,
Standalone<StringRef>* pStartingConfiguration,
TestConfig testConfig,
std::string whitelistBinPaths,
ProtocolVersion protocolVersion) {
CSimpleIni ini;
ini.SetUnicode();
ini.LoadFile(joinPath(baseFolder, "restartInfo.ini").c_str());
auto configDBType = testConfig.getConfigDBType();
// allows multiple ipAddr entries
ini.SetMultiKey();
try {
int machineCount = atoi(ini.GetValue("META", "machineCount"));
int processesPerMachine = atoi(ini.GetValue("META", "processesPerMachine"));
int listenersPerProcess = 1;
auto listenersPerProcessStr = ini.GetValue("META", "listenersPerProcess");
if (listenersPerProcessStr != nullptr) {
listenersPerProcess = atoi(listenersPerProcessStr);
}
int desiredCoordinators = atoi(ini.GetValue("META", "desiredCoordinators"));
int testerCount = atoi(ini.GetValue("META", "testerCount"));
auto tssModeStr = ini.GetValue("META", "tssMode");
if (tssModeStr != nullptr) {
g_simulator.tssMode = (ISimulator::TSSMode)atoi(tssModeStr);
}
bool enableExtraDB = (testConfig.extraDB == 3);
ClusterConnectionString conn(ini.GetValue("META", "connectionString"));
if (enableExtraDB) {
g_simulator.extraDB = new ClusterConnectionString(ini.GetValue("META", "connectionString"));
}
*pConnString = conn;
*pTesterCount = testerCount;
bool usingSSL = conn.toString().find(":tls") != std::string::npos || listenersPerProcess > 1;
int useSeedForMachine = deterministicRandom()->randomInt(0, machineCount);
std::vector<std::string> dcIds;
for (int i = 0; i < machineCount; i++) {
Optional<Standalone<StringRef>> dcUID;
Optional<Standalone<StringRef>> zoneId;
std::string machineIdString = ini.GetValue("META", format("%d", i).c_str());
Standalone<StringRef> machineId = StringRef(machineIdString);
std::string dcUIDini = ini.GetValue(machineIdString.c_str(), "dcUID");
if (!dcUIDini.empty()) {
dcUID = StringRef(dcUIDini);
}
auto zoneIDini = ini.GetValue(machineIdString.c_str(), "zoneId");
if (zoneIDini == nullptr) {
zoneId = machineId;
} else {
zoneId = StringRef(zoneIDini);
}
ProcessClass::ClassType cType =
(ProcessClass::ClassType)(atoi(ini.GetValue(machineIdString.c_str(), "mClass")));
// using specialized class types can lead to nondeterministic recruitment
if (cType == ProcessClass::MasterClass || cType == ProcessClass::ResolutionClass) {
cType = ProcessClass::StatelessClass;
}
ProcessClass processClass = ProcessClass(cType, ProcessClass::CommandLineSource);
if (processClass != ProcessClass::TesterClass) {
dcIds.push_back(dcUIDini);
}
std::vector<IPAddress> ipAddrs;
int processes = atoi(ini.GetValue(machineIdString.c_str(), "processes"));
auto ip = ini.GetValue(machineIdString.c_str(), "ipAddr");
// Helper to translate the IP address stored in INI file to out IPAddress representation.
// After IPv6 work, we store the actual string representation of IP address, however earlier, it was
// instead the 32 bit integer value.
auto parseIp = [](const char* ipStr) -> IPAddress {
Optional<IPAddress> parsedIp = IPAddress::parse(ipStr);
if (parsedIp.present()) {
return parsedIp.get();
} else {
return IPAddress(strtoul(ipStr, nullptr, 10));
}
};
if (ip == nullptr) {
for (int i = 0; i < processes; i++) {
const char* val =
ini.GetValue(machineIdString.c_str(), format("ipAddr%d", i * listenersPerProcess).c_str());
ipAddrs.push_back(parseIp(val));
}
} else {
// old way
ipAddrs.push_back(parseIp(ip));
for (int i = 1; i < processes; i++) {
if (ipAddrs.back().isV6()) {
IPAddress::IPAddressStore store = ipAddrs.back().toV6();
uint16_t* ptr = (uint16_t*)store.data();
ptr[7] += 1;
ipAddrs.push_back(IPAddress(store));
} else {
ipAddrs.push_back(IPAddress(ipAddrs.back().toV4() + 1));
}
}
}
LocalityData localities(Optional<Standalone<StringRef>>(), zoneId, machineId, dcUID);
localities.set(LiteralStringRef("data_hall"), dcUID);
// SOMEDAY: parse backup agent from test file
systemActors->push_back(reportErrors(
simulatedMachine(conn,
ipAddrs,
usingSSL,
localities,
processClass,
baseFolder,
true,
i == useSeedForMachine,
AgentAddition,
usingSSL && (listenersPerProcess == 1 || processClass == ProcessClass::TesterClass),
whitelistBinPaths,
protocolVersion,
configDBType),
processClass == ProcessClass::TesterClass ? "SimulatedTesterMachine" : "SimulatedMachine"));
}
g_simulator.desiredCoordinators = desiredCoordinators;
g_simulator.processesPerMachine = processesPerMachine;
uniquify(dcIds);
if (!BUGGIFY && dcIds.size() == 2 && dcIds[0] != "" && dcIds[1] != "") {
StatusObject primaryObj;
StatusObject primaryDcObj;
primaryDcObj["id"] = dcIds[0];
primaryDcObj["priority"] = 2;
StatusArray primaryDcArr;
primaryDcArr.push_back(primaryDcObj);
StatusObject remoteObj;
StatusObject remoteDcObj;
remoteDcObj["id"] = dcIds[1];
remoteDcObj["priority"] = 1;
StatusArray remoteDcArr;
remoteDcArr.push_back(remoteDcObj);
primaryObj["datacenters"] = primaryDcArr;
remoteObj["datacenters"] = remoteDcArr;
StatusArray regionArr;
regionArr.push_back(primaryObj);
regionArr.push_back(remoteObj);
*pStartingConfiguration =
"single usable_regions=2 regions=" +
json_spirit::write_string(json_spirit::mValue(regionArr), json_spirit::Output_options::none);
}
TraceEvent("RestartSimulatorSettings")
.detail("DesiredCoordinators", g_simulator.desiredCoordinators)
.detail("ProcessesPerMachine", g_simulator.processesPerMachine)
.detail("ListenersPerProcess", listenersPerProcess);
} catch (Error& e) {
TraceEvent(SevError, "RestartSimulationError").error(e);
}
wait(delay(1.0));
return Void();
}
// Configuration details compiled in a structure used when setting up a simulated cluster
struct SimulationConfig {
explicit SimulationConfig(const TestConfig& testConfig);
int extraDB;
bool generateFearless;
DatabaseConfiguration db;
void set_config(std::string config);
// Simulation layout
int datacenters;
int replication_type;
int machine_count; // Total, not per DC.
int processes_per_machine;
int coordinators;
private:
void setRandomConfig();
void setSimpleConfig();
void setSpecificConfig(const TestConfig& testConfig);
void setDatacenters(const TestConfig& testConfig);
void setStorageEngine(const TestConfig& testConfig);
void setRegions(const TestConfig& testConfig);
void setReplicationType(const TestConfig& testConfig);
void setMachineCount(const TestConfig& testConfig);
void setCoordinators(const TestConfig& testConfig);
void setProcessesPerMachine(const TestConfig& testConfig);
void setTss(const TestConfig& testConfig);
void generateNormalConfig(const TestConfig& testConfig);
};
SimulationConfig::SimulationConfig(const TestConfig& testConfig) : extraDB(testConfig.extraDB) {
generateNormalConfig(testConfig);
}
void SimulationConfig::set_config(std::string config) {
// The only mechanism we have for turning "single" into what single means
// is buildConfiguration()... :/
std::map<std::string, std::string> hack_map;
ASSERT(buildConfiguration(config, hack_map) != ConfigurationResult::NO_OPTIONS_PROVIDED);
for (auto kv : hack_map)
db.set(kv.first, kv.second);
}
StringRef StringRefOf(const char* s) {
return StringRef((uint8_t*)s, strlen(s));
}
// Set the randomly generated options of the config. Compiled here to easily observe and trace random options
void SimulationConfig::setRandomConfig() {
if (deterministicRandom()->random01() < 0.25) {
db.desiredTLogCount = deterministicRandom()->randomInt(1, 7);
}
if (deterministicRandom()->random01() < 0.25) {
db.commitProxyCount = deterministicRandom()->randomInt(1, 7);
}
if (deterministicRandom()->random01() < 0.25) {
db.grvProxyCount = deterministicRandom()->randomInt(1, 4);
}
if (deterministicRandom()->random01() < 0.25) {
db.resolverCount = deterministicRandom()->randomInt(1, 7);
}
// TraceEvent("SimulatedConfigRandom")
// .detail("DesiredTLogCount", db.desiredTLogCount)
// .detail("CommitProxyCount", db.commitProxyCount)
// .detail("GRVProxyCount", db.grvProxyCount)
// .detail("ResolverCount", db.resolverCount);
if (deterministicRandom()->random01() < 0.5) {
// TraceEvent("SimulatedConfigRandom").detail("PerpetualWiggle", 0);
set_config("perpetual_storage_wiggle=0");
} else {
// TraceEvent("SimulatedConfigRandom").detail("PerpetualWiggle", 1);
set_config("perpetual_storage_wiggle=1");
}
if (deterministicRandom()->random01() < 0.5) {
set_config("backup_worker_enabled:=1");
}
}
// Overwrite DB with simple options, used when simpleConfig is true in the TestConfig
void SimulationConfig::setSimpleConfig() {
db.desiredTLogCount = 1;
db.commitProxyCount = 1;
db.grvProxyCount = 1;
db.resolverCount = 1;
}
// Overwrite previous options with ones specified by TestConfig
void SimulationConfig::setSpecificConfig(const TestConfig& testConfig) {
if (testConfig.desiredTLogCount.present()) {
db.desiredTLogCount = testConfig.desiredTLogCount.get();
}
if (testConfig.commitProxyCount.present()) {
db.commitProxyCount = testConfig.commitProxyCount.get();
}
if (testConfig.grvProxyCount.present()) {
db.grvProxyCount = testConfig.grvProxyCount.get();
}
if (testConfig.resolverCount.present()) {
db.resolverCount = testConfig.resolverCount.get();
}
}
// Sets generateFearless and number of dataCenters based on testConfig details
// The number of datacenters may be overwritten in setRegions
void SimulationConfig::setDatacenters(const TestConfig& testConfig) {
generateFearless =
testConfig.simpleConfig ? false : (testConfig.minimumRegions > 1 || deterministicRandom()->random01() < 0.5);
if (testConfig.generateFearless.present()) {
// overwrite whatever decision we made before
generateFearless = testConfig.generateFearless.get();
}
datacenters =
testConfig.simpleConfig
? 1
: (generateFearless ? (testConfig.minimumReplication > 0 || deterministicRandom()->random01() < 0.5 ? 4 : 6)
: deterministicRandom()->randomInt(1, 4));
// Overwrite with specific option if present
if (testConfig.datacenters.present()) {
datacenters = testConfig.datacenters.get();
}
}
// Sets storage engine based on testConfig details
void SimulationConfig::setStorageEngine(const TestConfig& testConfig) {
// Using [0, 4) to disable the RocksDB storage engine.
// TODO: Figure out what is broken with the RocksDB engine in simulation.
int storage_engine_type = deterministicRandom()->randomInt(0, 4);
if (testConfig.storageEngineType.present()) {
storage_engine_type = testConfig.storageEngineType.get();
} else {
// Continuously re-pick the storage engine type if it's the one we want to exclude
while (std::find(testConfig.storageEngineExcludeTypes.begin(),
testConfig.storageEngineExcludeTypes.end(),
storage_engine_type) != testConfig.storageEngineExcludeTypes.end()) {
storage_engine_type = deterministicRandom()->randomInt(0, 5);
}
}
switch (storage_engine_type) {
case 0: {
TEST(true); // Simulated cluster using ssd storage engine
set_config("ssd");
break;
}
case 1: {
TEST(true); // Simulated cluster using default memory storage engine
set_config("memory");
break;
}
case 2: {
TEST(true); // Simulated cluster using radix-tree storage engine
set_config("memory-radixtree-beta");
break;
}
case 3: {
TEST(true); // Simulated cluster using redwood storage engine
set_config("ssd-redwood-experimental");
break;
}
case 4: {
TEST(true); // Simulated cluster using RocksDB storage engine
set_config("ssd-rocksdb-experimental");
// Tests using the RocksDB engine are necessarily non-deterministic because of RocksDB
// background threads.
TraceEvent(SevWarnAlways, "RocksDBNonDeterminism")
.detail("Explanation", "The RocksDB storage engine is threaded and non-deterministic");
noUnseed = true;
break;
}
default:
ASSERT(false); // Programmer forgot to adjust cases.
}
}
// Sets replication type and TLogSpillType and Version
void SimulationConfig::setReplicationType(const TestConfig& testConfig) {
replication_type = testConfig.simpleConfig
? 1
: (std::max(testConfig.minimumReplication,
datacenters > 4 ? deterministicRandom()->randomInt(1, 3)
: std::min(deterministicRandom()->randomInt(0, 6), 3)));
if (testConfig.config.present()) {
set_config(testConfig.config.get());
} else {
switch (replication_type) {
case 0: {
TEST(true); // Simulated cluster using custom redundancy mode
int storage_servers = deterministicRandom()->randomInt(1, generateFearless ? 4 : 5);
// FIXME: log replicas must be more than storage replicas because otherwise better master exists will not
// recognize it needs to change dcs
int replication_factor = deterministicRandom()->randomInt(storage_servers, generateFearless ? 4 : 5);
int anti_quorum = deterministicRandom()->randomInt(
0,
(replication_factor / 2) +
1); // The anti quorum cannot be more than half of the replication factor, or the
// log system will continue to accept commits when a recovery is impossible
// Go through buildConfiguration, as it sets tLogPolicy/storagePolicy.
set_config(format("storage_replicas:=%d log_replicas:=%d log_anti_quorum:=%d "
"replica_datacenters:=1 min_replica_datacenters:=1",
storage_servers,
replication_factor,
anti_quorum));
break;
}
case 1: {
TEST(true); // Simulated cluster running in single redundancy mode
set_config("single");
break;
}
case 2: {
TEST(true); // Simulated cluster running in double redundancy mode
set_config("double");
break;
}
case 3: {
if (datacenters <= 2 || generateFearless) {
TEST(true); // Simulated cluster running in triple redundancy mode
set_config("triple");
} else if (datacenters == 3) {
TEST(true); // Simulated cluster running in 3 data-hall mode
set_config("three_data_hall");
} else {
ASSERT(false);
}
break;
}
default:
ASSERT(false); // Programmer forgot to adjust cases.
}
if (deterministicRandom()->random01() < 0.5) {
int logSpill = deterministicRandom()->randomInt(TLogSpillType::VALUE, TLogSpillType::END);
set_config(format("log_spill:=%d", logSpill));
int logVersion =
deterministicRandom()->randomInt(TLogVersion::MIN_RECRUITABLE, testConfig.maxTLogVersion + 1);
set_config(format("log_version:=%d", logVersion));
} else {
if (deterministicRandom()->random01() < 0.7)
set_config(format("log_version:=%d", testConfig.maxTLogVersion));
if (deterministicRandom()->random01() < 0.5)
set_config(format("log_spill:=%d", TLogSpillType::DEFAULT));
}
}
}
// Set the regions of the config, including the primary and remote options
// This will also determine the replication types used for satellite and remote.
void SimulationConfig::setRegions(const TestConfig& testConfig) {
// The kill region workload relies on the fact that all "0", "2", and "4" are all of the possible primary dcids.
StatusObject primaryObj;
StatusObject primaryDcObj;
primaryDcObj["id"] = "0";
primaryDcObj["priority"] = 2;
StatusArray primaryDcArr;
primaryDcArr.push_back(primaryDcObj);
StatusObject remoteObj;
StatusObject remoteDcObj;
remoteDcObj["id"] = "1";
remoteDcObj["priority"] = 1;
StatusArray remoteDcArr;
remoteDcArr.push_back(remoteDcObj);
bool needsRemote = generateFearless;
if (generateFearless) {
if (datacenters > 4) {
// FIXME: we cannot use one satellite replication with more than one satellite per region because
// canKillProcesses does not respect usable_dcs
int satellite_replication_type = deterministicRandom()->randomInt(0, 3);
switch (satellite_replication_type) {
case 0: {
TEST(true); // Simulated cluster using no satellite redundancy mode (>4 datacenters)
break;
}
case 1: {
TEST(true); // Simulated cluster using two satellite fast redundancy mode
primaryObj["satellite_redundancy_mode"] = "two_satellite_fast";
remoteObj["satellite_redundancy_mode"] = "two_satellite_fast";
break;
}
case 2: {
TEST(true); // Simulated cluster using two satellite safe redundancy mode
primaryObj["satellite_redundancy_mode"] = "two_satellite_safe";
remoteObj["satellite_redundancy_mode"] = "two_satellite_safe";
break;
}
default:
ASSERT(false); // Programmer forgot to adjust cases.
}
} else {
int satellite_replication_type = deterministicRandom()->randomInt(0, 5);
switch (satellite_replication_type) {
case 0: {
// FIXME: implement
TEST(true); // Simulated cluster using custom satellite redundancy mode
break;
}
case 1: {
TEST(true); // Simulated cluster using no satellite redundancy mode (<4 datacenters)
break;
}
case 2: {
TEST(true); // Simulated cluster using single satellite redundancy mode
primaryObj["satellite_redundancy_mode"] = "one_satellite_single";
remoteObj["satellite_redundancy_mode"] = "one_satellite_single";
break;
}
case 3: {
TEST(true); // Simulated cluster using double satellite redundancy mode
primaryObj["satellite_redundancy_mode"] = "one_satellite_double";
remoteObj["satellite_redundancy_mode"] = "one_satellite_double";
break;
}
case 4: {
TEST(true); // Simulated cluster using triple satellite redundancy mode
primaryObj["satellite_redundancy_mode"] = "one_satellite_triple";
remoteObj["satellite_redundancy_mode"] = "one_satellite_triple";
break;
}
default:
ASSERT(false); // Programmer forgot to adjust cases.
}
}
if (deterministicRandom()->random01() < 0.25)
primaryObj["satellite_logs"] = deterministicRandom()->randomInt(1, 7);
if (deterministicRandom()->random01() < 0.25)
remoteObj["satellite_logs"] = deterministicRandom()->randomInt(1, 7);
// We cannot run with a remote DC when MAX_READ_TRANSACTION_LIFE_VERSIONS is too small, because the log
// routers will not be able to keep up.
if (testConfig.minimumRegions <= 1 &&
(deterministicRandom()->random01() < 0.25 ||
SERVER_KNOBS->MAX_READ_TRANSACTION_LIFE_VERSIONS < SERVER_KNOBS->VERSIONS_PER_SECOND)) {
TEST(true); // Simulated cluster using one region
needsRemote = false;
} else {
TEST(true); // Simulated cluster using two regions
db.usableRegions = 2;
}
int remote_replication_type = deterministicRandom()->randomInt(0, datacenters > 4 ? 4 : 5);
switch (remote_replication_type) {
case 0: {
// FIXME: implement
TEST(true); // Simulated cluster using custom remote redundancy mode
break;
}
case 1: {
TEST(true); // Simulated cluster using default remote redundancy mode
break;
}
case 2: {
TEST(true); // Simulated cluster using single remote redundancy mode
set_config("remote_single");
break;
}
case 3: {
TEST(true); // Simulated cluster using double remote redundancy mode
set_config("remote_double");
break;
}
case 4: {
TEST(true); // Simulated cluster using triple remote redundancy mode
set_config("remote_triple");
break;
}
default:
ASSERT(false); // Programmer forgot to adjust cases.
}
if (deterministicRandom()->random01() < 0.25)
db.desiredLogRouterCount = deterministicRandom()->randomInt(1, 7);
if (deterministicRandom()->random01() < 0.25)
db.remoteDesiredTLogCount = deterministicRandom()->randomInt(1, 7);
bool useNormalDCsAsSatellites =
datacenters > 4 && testConfig.minimumRegions < 2 && deterministicRandom()->random01() < 0.3;
StatusObject primarySatelliteObj;
primarySatelliteObj["id"] = useNormalDCsAsSatellites ? "1" : "2";
primarySatelliteObj["priority"] = 1;
primarySatelliteObj["satellite"] = 1;
if (deterministicRandom()->random01() < 0.25)
primarySatelliteObj["satellite_logs"] = deterministicRandom()->randomInt(1, 7);
primaryDcArr.push_back(primarySatelliteObj);
StatusObject remoteSatelliteObj;
remoteSatelliteObj["id"] = useNormalDCsAsSatellites ? "0" : "3";
remoteSatelliteObj["priority"] = 1;
remoteSatelliteObj["satellite"] = 1;
if (deterministicRandom()->random01() < 0.25)
remoteSatelliteObj["satellite_logs"] = deterministicRandom()->randomInt(1, 7);
remoteDcArr.push_back(remoteSatelliteObj);
if (datacenters > 4) {
StatusObject primarySatelliteObjB;
primarySatelliteObjB["id"] = useNormalDCsAsSatellites ? "2" : "4";
primarySatelliteObjB["priority"] = 1;
primarySatelliteObjB["satellite"] = 1;
if (deterministicRandom()->random01() < 0.25)
primarySatelliteObjB["satellite_logs"] = deterministicRandom()->randomInt(1, 7);
primaryDcArr.push_back(primarySatelliteObjB);
StatusObject remoteSatelliteObjB;
remoteSatelliteObjB["id"] = useNormalDCsAsSatellites ? "2" : "5";
remoteSatelliteObjB["priority"] = 1;
remoteSatelliteObjB["satellite"] = 1;
if (deterministicRandom()->random01() < 0.25)
remoteSatelliteObjB["satellite_logs"] = deterministicRandom()->randomInt(1, 7);
remoteDcArr.push_back(remoteSatelliteObjB);
}
if (useNormalDCsAsSatellites) {
datacenters = 3;
}
}
primaryObj["datacenters"] = primaryDcArr;
remoteObj["datacenters"] = remoteDcArr;
StatusArray regionArr;
regionArr.push_back(primaryObj);
if (needsRemote || deterministicRandom()->random01() < 0.5) {
regionArr.push_back(remoteObj);
}
if (needsRemote) {
g_simulator.originalRegions =
"regions=" + json_spirit::write_string(json_spirit::mValue(regionArr), json_spirit::Output_options::none);
StatusArray disablePrimary = regionArr;
disablePrimary[0].get_obj()["datacenters"].get_array()[0].get_obj()["priority"] = -1;
g_simulator.disablePrimary = "regions=" + json_spirit::write_string(json_spirit::mValue(disablePrimary),
json_spirit::Output_options::none);
StatusArray disableRemote = regionArr;
disableRemote[1].get_obj()["datacenters"].get_array()[0].get_obj()["priority"] = -1;
g_simulator.disableRemote = "regions=" + json_spirit::write_string(json_spirit::mValue(disableRemote),
json_spirit::Output_options::none);
} else {
// In order to generate a starting configuration with the remote disabled, do not apply the region
// configuration to the DatabaseConfiguration until after creating the starting conf string.
set_config("regions=" +
json_spirit::write_string(json_spirit::mValue(regionArr), json_spirit::Output_options::none));
}
}
// Sets the machine count based on the testConfig. May be overwritten later
// if the end result is not a viable config.
void SimulationConfig::setMachineCount(const TestConfig& testConfig) {
if (testConfig.machineCount.present()) {
machine_count = testConfig.machineCount.get();
} else if (generateFearless && testConfig.minimumReplication > 1) {
// low latency tests in fearless configurations need 4 machines per datacenter (3 for triple replication, 1 that
// is down during failures).
machine_count = 16;
} else if (generateFearless) {
machine_count = 12;
} else if (db.tLogPolicy && db.tLogPolicy->info() == "data_hall^2 x zoneid^2 x 1") {
machine_count = 9;
} else {
// datacenters+2 so that the configure database workload can configure into three_data_hall
machine_count = std::max(datacenters + 2,
((db.minDatacentersRequired() > 0) ? datacenters : 1) *
std::max(3, db.minZonesRequiredPerDatacenter()));
machine_count = deterministicRandom()->randomInt(machine_count, std::max(machine_count + 1, extraDB ? 6 : 10));
// generateMachineTeamTestConfig set up the number of servers per machine and the number of machines such that
// if we do not remove the surplus server and machine teams, the simulation test will report error.
// This is needed to make sure the number of server (and machine) teams is no larger than the desired number.
bool generateMachineTeamTestConfig = BUGGIFY_WITH_PROB(0.1) ? true : false;
if (generateMachineTeamTestConfig) {
// When DESIRED_TEAMS_PER_SERVER is set to 1, the desired machine team number is 5
// while the max possible machine team number is 10.
// If machine_count > 5, we can still test the effectivenss of machine teams
// Note: machine_count may be much larger than 5 because we may have a big replication factor
machine_count = std::max(machine_count, deterministicRandom()->randomInt(5, extraDB ? 6 : 10));
}
}
machine_count += datacenters * testConfig.extraMachineCountDC;
}
// Sets the coordinator count based on the testConfig. May be overwritten later
// if the end result is not a viable config.
void SimulationConfig::setCoordinators(const TestConfig& testConfig) {
if (testConfig.coordinators.present()) {
coordinators = testConfig.coordinators.get();
} else {
// because we protect a majority of coordinators from being killed, it is better to run with low numbers of
// coordinators to prevent too many processes from being protected
coordinators = (testConfig.minimumRegions <= 1 && BUGGIFY)
? deterministicRandom()->randomInt(1, std::max(machine_count, 2))
: 1;
}
}
// Sets the processes per machine based on the testConfig.
void SimulationConfig::setProcessesPerMachine(const TestConfig& testConfig) {
if (testConfig.processesPerMachine.present()) {
processes_per_machine = testConfig.processesPerMachine.get();
} else if (generateFearless) {
processes_per_machine = 1;
} else {
processes_per_machine = deterministicRandom()->randomInt(1, (extraDB ? 14 : 28) / machine_count + 2);
}
}
// Sets the TSS configuration based on the testConfig.
// Also configures the cluster behaviour through setting some flags on the simulator.
void SimulationConfig::setTss(const TestConfig& testConfig) {
int tssCount = 0;
if (!testConfig.simpleConfig && !testConfig.disableTss && deterministicRandom()->random01() < 0.25) {
// 1 or 2 tss
tssCount = deterministicRandom()->randomInt(1, 3);
}
// reduce tss to half of extra non-seed servers that can be recruited in usable regions.
tssCount =
std::max(0, std::min(tssCount, db.usableRegions * ((machine_count / datacenters) - db.storageTeamSize) / 2));
if (!testConfig.config.present() && tssCount > 0) {
std::string confStr = format("tss_count:=%d tss_storage_engine:=%d", tssCount, db.storageServerStoreType);
set_config(confStr);
double tssRandom = deterministicRandom()->random01();
if (tssRandom > 0.5 || !faultInjectionActivated) {
// normal tss mode
g_simulator.tssMode = ISimulator::TSSMode::EnabledNormal;
} else if (tssRandom < 0.25 && !testConfig.isFirstTestInRestart) {
// fault injection - don't enable in first test in restart because second test won't know it intentionally
// lost data
g_simulator.tssMode = ISimulator::TSSMode::EnabledDropMutations;
} else {
// delay injection
g_simulator.tssMode = ISimulator::TSSMode::EnabledAddDelay;
}
printf("enabling tss for simulation in mode %d: %s\n", g_simulator.tssMode, confStr.c_str());
}
}
void setConfigDB(TestConfig const& testConfig) {
g_simulator.configDBType = testConfig.getConfigDBType();
}
// Generates and sets an appropriate configuration for the database according to
// the provided testConfig. Some attributes are randomly generated for more coverage
// of different combinations
void SimulationConfig::generateNormalConfig(const TestConfig& testConfig) {
set_config("new");
// Some of these options will overwrite one another so the ordering is important.
// This is a bit inefficient but separates the different types of option setting paths for better readability.
setDatacenters(testConfig);
// These 3 sets will only change the settings with trivial logic and low coupling with
// other portions of the configuration. The parameters that are more involved and use
// complex logic will be found in their respective "set----" methods following after.
setRandomConfig();
if (testConfig.simpleConfig) {
setSimpleConfig();
}
setSpecificConfig(testConfig);
setStorageEngine(testConfig);
setReplicationType(testConfig);
if (generateFearless || (datacenters == 2 && deterministicRandom()->random01() < 0.5)) {
setRegions(testConfig);
}
setMachineCount(testConfig);
setCoordinators(testConfig);
if (testConfig.minimumReplication > 1 && datacenters == 3) {
// low latency tests in 3 data hall mode need 2 other data centers with 2 machines each to avoid waiting for
// logs to recover.
machine_count = std::max(machine_count, 6);
coordinators = 3;
}
setProcessesPerMachine(testConfig);
setTss(testConfig);
setConfigDB(testConfig);
}
// Configures the system according to the given specifications in order to run
// simulation under the correct conditions
void setupSimulatedSystem(std::vector<Future<Void>>* systemActors,
std::string baseFolder,
int* pTesterCount,
Optional<ClusterConnectionString>* pConnString,
Standalone<StringRef>* pStartingConfiguration,
std::string whitelistBinPaths,
TestConfig testConfig,
ProtocolVersion protocolVersion) {
// SOMEDAY: this does not test multi-interface configurations
SimulationConfig simconfig(testConfig);
if (testConfig.logAntiQuorum != -1) {
simconfig.db.tLogWriteAntiQuorum = testConfig.logAntiQuorum;
}
StatusObject startingConfigJSON = simconfig.db.toJSON(true);
std::string startingConfigString = "new";
if (testConfig.configureLocked) {
startingConfigString += " locked";
}
auto configDBType = testConfig.getConfigDBType();
for (auto kv : startingConfigJSON) {
if ("tss_storage_engine" == kv.first) {
continue;
}
if ("perpetual_storage_wiggle_locality" == kv.first) {
if (deterministicRandom()->random01() < 0.25) {
int dcId = deterministicRandom()->randomInt(0, simconfig.datacenters);
startingConfigString += " " + kv.first + "=" + "data_hall:" + std::to_string(dcId);
}
continue;
}
startingConfigString += " ";
if (kv.second.type() == json_spirit::int_type) {
startingConfigString += kv.first + ":=" + format("%d", kv.second.get_int());
} else if (kv.second.type() == json_spirit::str_type) {
if ("storage_migration_type" == kv.first) {
startingConfigString += kv.first + "=" + kv.second.get_str();
} else {
startingConfigString += kv.second.get_str();
}
} else if (kv.second.type() == json_spirit::array_type) {
startingConfigString += kv.first + "=" +
json_spirit::write_string(json_spirit::mValue(kv.second.get_array()),
json_spirit::Output_options::none);
} else {
ASSERT(false);
}
}
// handle tss_storage_engine separately because the passthrough needs the enum ordinal, but it's serialized to json
// as the string name
if (simconfig.db.desiredTSSCount > 0) {
startingConfigString += format(" tss_storage_engine:=%d", simconfig.db.testingStorageServerStoreType);
}
if (g_simulator.originalRegions != "") {
simconfig.set_config(g_simulator.originalRegions);
g_simulator.startingDisabledConfiguration = startingConfigString + " " + g_simulator.disableRemote;
startingConfigString += " " + g_simulator.originalRegions;
}
g_simulator.storagePolicy = simconfig.db.storagePolicy;
g_simulator.tLogPolicy = simconfig.db.tLogPolicy;
g_simulator.tLogWriteAntiQuorum = simconfig.db.tLogWriteAntiQuorum;
g_simulator.remoteTLogPolicy = simconfig.db.getRemoteTLogPolicy();
g_simulator.usableRegions = simconfig.db.usableRegions;
if (simconfig.db.regions.size() > 0) {
g_simulator.primaryDcId = simconfig.db.regions[0].dcId;
g_simulator.hasSatelliteReplication = simconfig.db.regions[0].satelliteTLogReplicationFactor > 0;
if (simconfig.db.regions[0].satelliteTLogUsableDcsFallback > 0) {
g_simulator.satelliteTLogPolicyFallback = simconfig.db.regions[0].satelliteTLogPolicyFallback;
g_simulator.satelliteTLogWriteAntiQuorumFallback =
simconfig.db.regions[0].satelliteTLogWriteAntiQuorumFallback;
} else {
g_simulator.satelliteTLogPolicyFallback = simconfig.db.regions[0].satelliteTLogPolicy;
g_simulator.satelliteTLogWriteAntiQuorumFallback = simconfig.db.regions[0].satelliteTLogWriteAntiQuorum;
}
g_simulator.satelliteTLogPolicy = simconfig.db.regions[0].satelliteTLogPolicy;
g_simulator.satelliteTLogWriteAntiQuorum = simconfig.db.regions[0].satelliteTLogWriteAntiQuorum;
for (auto s : simconfig.db.regions[0].satellites) {
g_simulator.primarySatelliteDcIds.push_back(s.dcId);
}
} else {
g_simulator.hasSatelliteReplication = false;
g_simulator.satelliteTLogWriteAntiQuorum = 0;
}
if (simconfig.db.regions.size() == 2) {
g_simulator.remoteDcId = simconfig.db.regions[1].dcId;
ASSERT((!simconfig.db.regions[0].satelliteTLogPolicy && !simconfig.db.regions[1].satelliteTLogPolicy) ||
simconfig.db.regions[0].satelliteTLogPolicy->info() ==
simconfig.db.regions[1].satelliteTLogPolicy->info());
for (auto s : simconfig.db.regions[1].satellites) {
g_simulator.remoteSatelliteDcIds.push_back(s.dcId);
}
}
if (g_simulator.usableRegions < 2 || !g_simulator.hasSatelliteReplication) {
g_simulator.allowLogSetKills = false;
}
ASSERT(g_simulator.storagePolicy && g_simulator.tLogPolicy);
ASSERT(!g_simulator.hasSatelliteReplication || g_simulator.satelliteTLogPolicy);
TraceEvent("SimulatorConfig").detail("ConfigString", StringRef(startingConfigString));
const int dataCenters = simconfig.datacenters;
const int machineCount = simconfig.machine_count;
const int coordinatorCount = simconfig.coordinators;
const int processesPerMachine = simconfig.processes_per_machine;
// half the time, when we have more than 4 machines that are not the first in their dataCenter, assign classes
bool assignClasses = machineCount - dataCenters > 4 && deterministicRandom()->random01() < 0.5;
// Use SSL 5% of the time
bool sslEnabled = deterministicRandom()->random01() < 0.10;
bool sslOnly = sslEnabled && deterministicRandom()->coinflip();
g_simulator.listenersPerProcess = sslEnabled && !sslOnly ? 2 : 1;
TEST(sslEnabled); // SSL enabled
TEST(!sslEnabled); // SSL disabled
// Use IPv6 25% of the time
bool useIPv6 = deterministicRandom()->random01() < 0.25;
TEST(useIPv6); // Use IPv6
TEST(!useIPv6); // Use IPv4
std::vector<NetworkAddress> coordinatorAddresses;
std::vector<NetworkAddress> extraCoordinatorAddresses; // Used by extra DB if the DR db is a new one
if (testConfig.minimumRegions > 1) {
// do not put coordinators in the primary region so that we can kill that region safely
int nonPrimaryDcs = dataCenters / 2;
for (int dc = 1; dc < dataCenters; dc += 2) {
int dcCoordinators = coordinatorCount / nonPrimaryDcs + ((dc - 1) / 2 < coordinatorCount % nonPrimaryDcs);
for (int m = 0; m < dcCoordinators; m++) {
auto ip = makeIPAddressForSim(useIPv6, { 2, dc, 1, m });
coordinatorAddresses.push_back(
NetworkAddress(ip, sslEnabled && !sslOnly ? 2 : 1, true, sslEnabled && sslOnly));
auto extraIp = makeIPAddressForSim(useIPv6, { 4, dc, 1, m });
extraCoordinatorAddresses.push_back(
NetworkAddress(extraIp, sslEnabled && !sslOnly ? 2 : 1, true, sslEnabled && sslOnly));
TraceEvent("SelectedCoordinator").detail("Address", coordinatorAddresses.back());
}
}
} else {
int assignedMachines = 0;
int coordCount = coordinatorCount;
if (coordinatorCount > 4) {
++coordCount;
}
for (int dc = 0; dc < dataCenters; dc++) {
int dcCoordinators = coordCount / dataCenters + (dc < coordCount % dataCenters);
int machines = machineCount / dataCenters + (dc < machineCount % dataCenters);
for (int m = 0; m < dcCoordinators; m++) {
if (coordinatorCount > 4 &&
(assignedMachines == 4 || (m + 1 == dcCoordinators && assignedMachines < 4 &&
assignedMachines + machines - dcCoordinators >= 4))) {
auto ip = makeIPAddressForSim(useIPv6, { 2, dc, 1, m });
TraceEvent("SkippedCoordinator")
.detail("Address", ip.toString())
.detail("M", m)
.detail("Machines", machines)
.detail("Assigned", assignedMachines)
.detail("DcCoord", dcCoordinators)
.detail("CoordinatorCount", coordinatorCount);
} else {
auto ip = makeIPAddressForSim(useIPv6, { 2, dc, 1, m });
coordinatorAddresses.push_back(
NetworkAddress(ip, sslEnabled && !sslOnly ? 2 : 1, true, sslEnabled && sslOnly));
auto extraIp = makeIPAddressForSim(useIPv6, { 4, dc, 1, m });
extraCoordinatorAddresses.push_back(
NetworkAddress(extraIp, sslEnabled && !sslOnly ? 2 : 1, true, sslEnabled && sslOnly));
TraceEvent("SelectedCoordinator")
.detail("Address", coordinatorAddresses.back())
.detail("M", m)
.detail("Machines", machines)
.detail("Assigned", assignedMachines)
.detail("DcCoord", dcCoordinators)
.detail("P1", (m + 1 == dcCoordinators))
.detail("P2", (assignedMachines < 4))
.detail("P3", (assignedMachines + machines - dcCoordinators >= 4))
.detail("CoordinatorCount", coordinatorCount);
}
assignedMachines++;
}
assignedMachines += machines - dcCoordinators;
}
}
ASSERT(coordinatorAddresses.size() > 0);
deterministicRandom()->randomShuffle(coordinatorAddresses);
for (int i = 0; i < (coordinatorAddresses.size() / 2) + 1; i++) {
TraceEvent("ProtectCoordinator")
.detail("Address", coordinatorAddresses[i])
.detail("Coordinators", describe(coordinatorAddresses));
g_simulator.protectedAddresses.insert(NetworkAddress(
coordinatorAddresses[i].ip, coordinatorAddresses[i].port, true, coordinatorAddresses[i].isTLS()));
if (coordinatorAddresses[i].port == 2) {
g_simulator.protectedAddresses.insert(NetworkAddress(coordinatorAddresses[i].ip, 1, true, true));
}
}
deterministicRandom()->randomShuffle(coordinatorAddresses);
ASSERT_EQ(coordinatorAddresses.size(), coordinatorCount);
ClusterConnectionString conn(coordinatorAddresses, LiteralStringRef("TestCluster:0"));
// If extraDB==0, leave g_simulator.extraDB as null because the test does not use DR.
if (testConfig.extraDB == 1) {
// The DR database can be either a new database or itself
g_simulator.extraDB =
BUGGIFY ? new ClusterConnectionString(coordinatorAddresses, LiteralStringRef("TestCluster:0"))
: new ClusterConnectionString(extraCoordinatorAddresses, LiteralStringRef("ExtraCluster:0"));
} else if (testConfig.extraDB == 2) {
// The DR database is a new database
g_simulator.extraDB =
new ClusterConnectionString(extraCoordinatorAddresses, LiteralStringRef("ExtraCluster:0"));
} else if (testConfig.extraDB == 3) {
// The DR database is the same database
g_simulator.extraDB = new ClusterConnectionString(coordinatorAddresses, LiteralStringRef("TestCluster:0"));
}
*pConnString = conn;
TraceEvent("SimulatedConnectionString")
.detail("String", conn.toString())
.detail("ConfigString", startingConfigString);
bool requiresExtraDBMachines = testConfig.extraDB && g_simulator.extraDB->toString() != conn.toString();
int assignedMachines = 0, nonVersatileMachines = 0;
bool gradualMigrationPossible = true;
std::vector<ProcessClass::ClassType> processClassesSubSet = { ProcessClass::UnsetClass,
ProcessClass::StatelessClass };
for (int dc = 0; dc < dataCenters; dc++) {
// FIXME: test unset dcID
Optional<Standalone<StringRef>> dcUID = StringRef(format("%d", dc));
std::vector<UID> machineIdentities;
int machines = machineCount / dataCenters +
(dc < machineCount % dataCenters); // add remainder of machines to first datacenter
int possible_ss = 0;
int dcCoordinators = coordinatorCount / dataCenters + (dc < coordinatorCount % dataCenters);
printf("Datacenter %d: %d/%d machines, %d/%d coordinators\n",
dc,
machines,
machineCount,
dcCoordinators,
coordinatorCount);
ASSERT_LE(dcCoordinators, machines);
// FIXME: temporarily code to test storage cache
// TODO: caching disabled for this merge
if (dc == 0) {
machines++;
}
int useSeedForMachine = deterministicRandom()->randomInt(0, machines);
Standalone<StringRef> zoneId;
Standalone<StringRef> newZoneId;
for (int machine = 0; machine < machines; machine++) {
Standalone<StringRef> machineId(deterministicRandom()->randomUniqueID().toString());
if (machine == 0 || machineCount - dataCenters <= 4 || assignedMachines != 4 ||
simconfig.db.regions.size() || deterministicRandom()->random01() < 0.5) {
zoneId = deterministicRandom()->randomUniqueID().toString();
newZoneId = deterministicRandom()->randomUniqueID().toString();
}
// Choose a machine class
ProcessClass processClass = ProcessClass(ProcessClass::UnsetClass, ProcessClass::CommandLineSource);
if (assignClasses) {
if (assignedMachines < 4)
processClass = ProcessClass((ProcessClass::ClassType)deterministicRandom()->randomInt(0, 2),
ProcessClass::CommandLineSource); // Unset or Storage
else if (assignedMachines == 4 && !simconfig.db.regions.size())
processClass = ProcessClass(
processClassesSubSet[deterministicRandom()->randomInt(0, processClassesSubSet.size())],
ProcessClass::CommandLineSource); // Unset or Stateless
else
processClass = ProcessClass((ProcessClass::ClassType)deterministicRandom()->randomInt(0, 3),
ProcessClass::CommandLineSource); // Unset, Storage, or Transaction
if (processClass ==
ProcessClass::StatelessClass) { // *can't* be assigned to other roles, even in an emergency
nonVersatileMachines++;
}
if (processClass == ProcessClass::UnsetClass || processClass == ProcessClass::StorageClass) {
possible_ss++;
}
}
// FIXME: temporarily code to test storage cache
// TODO: caching disabled for this merge
if (machine == machines - 1 && dc == 0) {
processClass = ProcessClass(ProcessClass::StorageCacheClass, ProcessClass::CommandLineSource);
nonVersatileMachines++;
}
std::vector<IPAddress> ips;
ips.reserve(processesPerMachine);
for (int i = 0; i < processesPerMachine; i++) {
ips.push_back(
makeIPAddressForSim(useIPv6, { 2, dc, deterministicRandom()->randomInt(1, i + 2), machine }));
}
if (requiresExtraDBMachines) {
ips.push_back(makeIPAddressForSim(useIPv6, { 2, dc, 1, machine }));
}
// check the sslEnablementMap using only one ip
LocalityData localities(Optional<Standalone<StringRef>>(), zoneId, machineId, dcUID);
localities.set(LiteralStringRef("data_hall"), dcUID);
systemActors->push_back(reportErrors(simulatedMachine(conn,
ips,
sslEnabled,
localities,
processClass,
baseFolder,
false,
machine == useSeedForMachine,
requiresExtraDBMachines ? AgentOnly : AgentAddition,
sslOnly,
whitelistBinPaths,
protocolVersion,
configDBType),
"SimulatedMachine"));
if (requiresExtraDBMachines) {
std::vector<IPAddress> extraIps;
extraIps.reserve(processesPerMachine);
for (int i = 0; i < processesPerMachine; i++) {
extraIps.push_back(
makeIPAddressForSim(useIPv6, { 4, dc, deterministicRandom()->randomInt(1, i + 2), machine }));
}
Standalone<StringRef> newMachineId(deterministicRandom()->randomUniqueID().toString());
LocalityData localities(Optional<Standalone<StringRef>>(), newZoneId, newMachineId, dcUID);
localities.set(LiteralStringRef("data_hall"), dcUID);
systemActors->push_back(reportErrors(simulatedMachine(*g_simulator.extraDB,
extraIps,
sslEnabled,
localities,
processClass,
baseFolder,
false,
machine == useSeedForMachine,
AgentNone,
sslOnly,
whitelistBinPaths,
protocolVersion,
configDBType),
"SimulatedMachine"));
}
assignedMachines++;
}
if (possible_ss - simconfig.db.desiredTSSCount / simconfig.db.usableRegions <= simconfig.db.storageTeamSize) {
gradualMigrationPossible = false;
}
}
g_simulator.desiredCoordinators = coordinatorCount;
g_simulator.physicalDatacenters = dataCenters;
g_simulator.processesPerMachine = processesPerMachine;
TraceEvent("SetupSimulatorSettings")
.detail("DesiredCoordinators", g_simulator.desiredCoordinators)
.detail("PhysicalDatacenters", g_simulator.physicalDatacenters)
.detail("ProcessesPerMachine", g_simulator.processesPerMachine);
// SOMEDAY: add locality for testers to simulate network topology
// FIXME: Start workers with tester class instead, at least sometimes run tests with the testers-only flag
int testerCount = *pTesterCount = deterministicRandom()->randomInt(4, 9);
int useSeedForMachine = deterministicRandom()->randomInt(0, testerCount);
for (int i = 0; i < testerCount; i++) {
std::vector<IPAddress> ips;
ips.push_back(makeIPAddressForSim(useIPv6, { 3, 4, 3, i + 1 }));
Standalone<StringRef> newZoneId = Standalone<StringRef>(deterministicRandom()->randomUniqueID().toString());
LocalityData localities(
Optional<Standalone<StringRef>>(), newZoneId, newZoneId, Optional<Standalone<StringRef>>());
systemActors->push_back(
reportErrors(simulatedMachine(conn,
ips,
sslEnabled && sslOnly,
localities,
ProcessClass(ProcessClass::TesterClass, ProcessClass::CommandLineSource),
baseFolder,
false,
i == useSeedForMachine,
AgentNone,
sslEnabled && sslOnly,
whitelistBinPaths,
protocolVersion,
configDBType),
"SimulatedTesterMachine"));
}
if (g_simulator.setDiffProtocol) {
--(*pTesterCount);
}
*pStartingConfiguration = startingConfigString;
// save some state that we only need when restarting the simulator.
g_simulator.connectionString = conn.toString();
g_simulator.testerCount = testerCount;
g_simulator.allowStorageMigrationTypeChange = gradualMigrationPossible;
TraceEvent("SimulatedClusterStarted")
.detail("DataCenters", dataCenters)
.detail("ServerMachineCount", machineCount)
.detail("ProcessesPerServer", processesPerMachine)
.detail("SSLEnabled", sslEnabled)
.detail("SSLOnly", sslOnly)
.detail("ClassesAssigned", assignClasses)
.detail("GradualMigrationPossible", gradualMigrationPossible)
.detail("StartingConfiguration", pStartingConfiguration->toString());
}
using namespace std::literals;
#if defined(SSD_ROCKSDB_EXPERIMENTAL) && !VALGRIND
bool rocksDBEnabled = true;
#else
bool rocksDBEnabled = false;
#endif
// Populates the TestConfig fields according to what is found in the test file.
void checkTestConf(const char* testFile, TestConfig* testConfig) {}
} // namespace
ACTOR void setupAndRun(std::string dataFolder,
const char* testFile,
bool rebooting,
bool restoring,
std::string whitelistBinPaths) {
state std::vector<Future<Void>> systemActors;
state Optional<ClusterConnectionString> connectionString;
state Standalone<StringRef> startingConfiguration;
state int testerCount = 1;
state TestConfig testConfig;
testConfig.readFromConfig(testFile);
g_simulator.hasDiffProtocolProcess = testConfig.startIncompatibleProcess;
g_simulator.setDiffProtocol = false;
// The RocksDB storage engine does not support the restarting tests because you cannot consistently get a clean
// snapshot of the storage engine without a snapshotting file system.
// https://github.com/apple/foundationdb/issues/5155
if (std::string_view(testFile).find("restarting") != std::string_view::npos) {
testConfig.storageEngineExcludeTypes.push_back(4);
}
// TODO: Currently backup and restore related simulation tests are failing when run with rocksDB storage engine
// possibly due to running the rocksdb in single thread in simulation.
// Re-enable the backup and restore related simulation tests when the tests are passing again.
if (std::string_view(testFile).find("Backup") != std::string_view::npos) {
testConfig.storageEngineExcludeTypes.push_back(4);
}
// The RocksDB engine is not always built with the rest of fdbserver. Don't try to use it if it is not included
// in the build.
if (!rocksDBEnabled) {
testConfig.storageEngineExcludeTypes.push_back(4);
}
state ProtocolVersion protocolVersion = currentProtocolVersion;
if (testConfig.startIncompatibleProcess) {
// isolates right most 1 bit of compatibleProtocolVersionMask to make this protocolVersion incompatible
uint64_t minAddToMakeIncompatible =
ProtocolVersion::compatibleProtocolVersionMask & ~(ProtocolVersion::compatibleProtocolVersionMask - 1);
protocolVersion = ProtocolVersion(currentProtocolVersion.version() + minAddToMakeIncompatible);
}
// TODO (IPv6) Use IPv6?
wait(g_simulator.onProcess(
g_simulator.newProcess("TestSystem",
IPAddress(0x01010101),
1,
false,
1,
LocalityData(Optional<Standalone<StringRef>>(),
Standalone<StringRef>(deterministicRandom()->randomUniqueID().toString()),
Standalone<StringRef>(deterministicRandom()->randomUniqueID().toString()),
Optional<Standalone<StringRef>>()),
ProcessClass(ProcessClass::TesterClass, ProcessClass::CommandLineSource),
"",
"",
currentProtocolVersion),
TaskPriority::DefaultYield));
Sim2FileSystem::newFileSystem();
FlowTransport::createInstance(true, 1, WLTOKEN_RESERVED_COUNT);
TEST(true); // Simulation start
try {
// systemActors.push_back( startSystemMonitor(dataFolder) );
if (rebooting) {
wait(timeoutError(restartSimulatedSystem(&systemActors,
dataFolder,
&testerCount,
&connectionString,
&startingConfiguration,
testConfig,
whitelistBinPaths,
protocolVersion),
100.0));
// FIXME: snapshot restore does not support multi-region restore, hence restore it as single region always
if (restoring) {
startingConfiguration = LiteralStringRef("usable_regions=1");
}
} else {
g_expect_full_pointermap = 1;
setupSimulatedSystem(&systemActors,
dataFolder,
&testerCount,
&connectionString,
&startingConfiguration,
whitelistBinPaths,
testConfig,
protocolVersion);
wait(delay(1.0)); // FIXME: WHY!!! //wait for machines to boot
}
std::string clusterFileDir = joinPath(dataFolder, deterministicRandom()->randomUniqueID().toString());
platform::createDirectory(clusterFileDir);
writeFile(joinPath(clusterFileDir, "fdb.cluster"), connectionString.get().toString());
wait(timeoutError(runTests(makeReference<ClusterConnectionFile>(joinPath(clusterFileDir, "fdb.cluster")),
TEST_TYPE_FROM_FILE,
TEST_ON_TESTERS,
testerCount,
testFile,
startingConfiguration),
isBuggifyEnabled(BuggifyType::General) ? 36000.0 : 5400.0));
} catch (Error& e) {
TraceEvent(SevError, "SetupAndRunError").error(e);
}
TraceEvent("SimulatedSystemDestruct").log();
g_simulator.stop();
destructed = true;
wait(Never());
ASSERT(false);
}