foundationdb/fdbrpc/FlowTransport.actor.cpp

1907 lines
72 KiB
C++

/*
* FlowTransport.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "fdbrpc/FlowTransport.h"
#include "flow/network.h"
#include <cstdint>
#include <unordered_map>
#if VALGRIND
#include <memcheck.h>
#endif
#include "fdbrpc/TenantInfo.h"
#include "fdbrpc/fdbrpc.h"
#include "fdbrpc/FailureMonitor.h"
#include "fdbrpc/HealthMonitor.h"
#include "fdbrpc/genericactors.actor.h"
#include "fdbrpc/IPAllowList.h"
#include "fdbrpc/simulator.h"
#include "flow/ActorCollection.h"
#include "flow/Error.h"
#include "flow/flow.h"
#include "flow/Net2Packet.h"
#include "flow/TDMetric.actor.h"
#include "flow/ObjectSerializer.h"
#include "flow/ProtocolVersion.h"
#include "flow/UnitTest.h"
#define XXH_INLINE_ALL
#include "flow/xxhash.h"
#include "flow/actorcompiler.h" // This must be the last #include.
static NetworkAddressList g_currentDeliveryPeerAddress = NetworkAddressList();
static Future<Void> g_currentDeliveryPeerDisconnect;
constexpr int PACKET_LEN_WIDTH = sizeof(uint32_t);
const uint64_t TOKEN_STREAM_FLAG = 1;
FDB_BOOLEAN_PARAM(InReadSocket);
FDB_BOOLEAN_PARAM(IsStableConnection);
class EndpointMap : NonCopyable {
public:
// Reserve space for this many wellKnownEndpoints
explicit EndpointMap(int wellKnownEndpointCount);
void insertWellKnown(NetworkMessageReceiver* r, const Endpoint::Token& token, TaskPriority priority);
void insert(NetworkMessageReceiver* r, Endpoint::Token& token, TaskPriority priority);
const Endpoint& insert(NetworkAddressList localAddresses,
std::vector<std::pair<FlowReceiver*, TaskPriority>> const& streams);
NetworkMessageReceiver* get(Endpoint::Token const& token);
TaskPriority getPriority(Endpoint::Token const& token);
void remove(Endpoint::Token const& token, NetworkMessageReceiver* r);
private:
void realloc();
struct Entry {
union {
uint64_t
uid[2]; // priority packed into lower 32 bits; actual lower 32 bits of token are the index in data[]
uint32_t nextFree;
};
NetworkMessageReceiver* receiver = nullptr;
Endpoint::Token& token() { return *(Endpoint::Token*)uid; }
};
int wellKnownEndpointCount;
std::vector<Entry> data;
uint32_t firstFree;
};
EndpointMap::EndpointMap(int wellKnownEndpointCount)
: wellKnownEndpointCount(wellKnownEndpointCount), data(wellKnownEndpointCount), firstFree(-1) {}
void EndpointMap::realloc() {
int oldSize = data.size();
data.resize(std::max(128, oldSize * 2));
for (int i = oldSize; i < data.size(); i++) {
data[i].receiver = 0;
data[i].nextFree = i + 1;
}
data[data.size() - 1].nextFree = firstFree;
firstFree = oldSize;
}
void EndpointMap::insertWellKnown(NetworkMessageReceiver* r, const Endpoint::Token& token, TaskPriority priority) {
int index = token.second();
ASSERT(index <= wellKnownEndpointCount);
ASSERT(data[index].receiver == nullptr);
data[index].receiver = r;
data[index].token() =
Endpoint::Token(token.first(), (token.second() & 0xffffffff00000000LL) | static_cast<uint32_t>(priority));
}
void EndpointMap::insert(NetworkMessageReceiver* r, Endpoint::Token& token, TaskPriority priority) {
if (firstFree == uint32_t(-1))
realloc();
int index = firstFree;
firstFree = data[index].nextFree;
token = Endpoint::Token(token.first(), (token.second() & 0xffffffff00000000LL) | index);
data[index].token() =
Endpoint::Token(token.first(), (token.second() & 0xffffffff00000000LL) | static_cast<uint32_t>(priority));
data[index].receiver = r;
}
const Endpoint& EndpointMap::insert(NetworkAddressList localAddresses,
std::vector<std::pair<FlowReceiver*, TaskPriority>> const& streams) {
int adjacentFree = 0;
int adjacentStart = -1;
firstFree = -1;
for (int i = wellKnownEndpointCount; i < data.size(); i++) {
if (data[i].receiver) {
adjacentFree = 0;
} else {
data[i].nextFree = firstFree;
firstFree = i;
if (adjacentStart == -1 && ++adjacentFree == streams.size()) {
adjacentStart = i + 1 - adjacentFree;
firstFree = data[adjacentStart].nextFree;
}
}
}
if (adjacentStart == -1) {
data.resize(data.size() + streams.size() - adjacentFree);
adjacentStart = data.size() - streams.size();
if (adjacentFree > 0) {
firstFree = data[adjacentStart].nextFree;
}
}
UID base = deterministicRandom()->randomUniqueID();
for (uint64_t i = 0; i < streams.size(); i++) {
int index = adjacentStart + i;
uint64_t first = (base.first() + (i << 32)) | TOKEN_STREAM_FLAG;
streams[i].first->setEndpoint(
Endpoint(localAddresses, UID(first, (base.second() & 0xffffffff00000000LL) | index)));
data[index].token() =
Endpoint::Token(first, (base.second() & 0xffffffff00000000LL) | static_cast<uint32_t>(streams[i].second));
data[index].receiver = (NetworkMessageReceiver*)streams[i].first;
}
return streams[0].first->getEndpoint(TaskPriority::DefaultEndpoint);
}
NetworkMessageReceiver* EndpointMap::get(Endpoint::Token const& token) {
uint32_t index = token.second();
if (index < wellKnownEndpointCount && data[index].receiver == nullptr) {
TraceEvent(SevWarnAlways, "WellKnownEndpointNotAdded")
.detail("Token", token)
.detail("Index", index)
.backtrace();
}
if (index < data.size() && data[index].token().first() == token.first() &&
((data[index].token().second() & 0xffffffff00000000LL) | index) == token.second())
return data[index].receiver;
return 0;
}
TaskPriority EndpointMap::getPriority(Endpoint::Token const& token) {
uint32_t index = token.second();
if (index < data.size() && data[index].token().first() == token.first() &&
((data[index].token().second() & 0xffffffff00000000LL) | index) == token.second()) {
auto res = static_cast<TaskPriority>(data[index].token().second());
// we don't allow this priority to be "misused" for other stuff as we won't even
// attempt to find an endpoint if UnknownEndpoint is returned here
ASSERT(res != TaskPriority::UnknownEndpoint);
return res;
}
return TaskPriority::UnknownEndpoint;
}
void EndpointMap::remove(Endpoint::Token const& token, NetworkMessageReceiver* r) {
uint32_t index = token.second();
if (index < wellKnownEndpointCount) {
data[index].receiver = nullptr;
} else if (index < data.size() && data[index].token().first() == token.first() &&
((data[index].token().second() & 0xffffffff00000000LL) | index) == token.second() &&
data[index].receiver == r) {
data[index].receiver = 0;
data[index].nextFree = firstFree;
firstFree = index;
}
}
struct EndpointNotFoundReceiver final : NetworkMessageReceiver {
EndpointNotFoundReceiver(EndpointMap& endpoints) {
endpoints.insertWellKnown(
this, Endpoint::wellKnownToken(WLTOKEN_ENDPOINT_NOT_FOUND), TaskPriority::DefaultEndpoint);
}
void receive(ArenaObjectReader& reader) override {
// Remote machine tells us it doesn't have endpoint e
UID token;
reader.deserialize(token);
Endpoint e = FlowTransport::transport().loadedEndpoint(token);
IFailureMonitor::failureMonitor().endpointNotFound(e);
}
bool isPublic() const override { return true; }
};
struct PingRequest {
constexpr static FileIdentifier file_identifier = 4707015;
ReplyPromise<Void> reply{ PeerCompatibilityPolicy{ RequirePeer::AtLeast,
ProtocolVersion::withStableInterfaces() } };
template <class Ar>
void serialize(Ar& ar) {
serializer(ar, reply);
}
};
struct PingReceiver final : NetworkMessageReceiver {
PingReceiver(EndpointMap& endpoints) {
endpoints.insertWellKnown(this, Endpoint::wellKnownToken(WLTOKEN_PING_PACKET), TaskPriority::ReadSocket);
}
void receive(ArenaObjectReader& reader) override {
PingRequest req;
reader.deserialize(req);
req.reply.send(Void());
}
PeerCompatibilityPolicy peerCompatibilityPolicy() const override {
return PeerCompatibilityPolicy{ RequirePeer::AtLeast, ProtocolVersion::withStableInterfaces() };
}
bool isPublic() const override { return true; }
};
struct TenantAuthorizer final : NetworkMessageReceiver {
TenantAuthorizer(EndpointMap& endpoints) {
endpoints.insertWellKnown(this, Endpoint::wellKnownToken(WLTOKEN_AUTH_TENANT), TaskPriority::ReadSocket);
}
void receive(ArenaObjectReader& reader) override {
AuthorizationRequest req;
try {
reader.deserialize(req);
// TODO: verify that token is valid
AuthorizedTenants& auth = reader.variable<AuthorizedTenants>("AuthorizedTenants");
for (auto const& t : req.tenants) {
auth.authorizedTenants.insert(TenantInfoRef(auth.arena, t));
}
req.reply.send(Void());
} catch (Error& e) {
if (e.code() == error_code_permission_denied) {
req.reply.sendError(e);
} else {
throw;
}
}
}
bool isPublic() const override { return true; }
};
struct UnauthorizedEndpointReceiver final : NetworkMessageReceiver {
UnauthorizedEndpointReceiver(EndpointMap& endpoints) {
endpoints.insertWellKnown(
this, Endpoint::wellKnownToken(WLTOKEN_UNAUTHORIZED_ENDPOINT), TaskPriority::ReadSocket);
}
void receive(ArenaObjectReader& reader) override {
UID token;
reader.deserialize(token);
Endpoint e = FlowTransport::transport().loadedEndpoint(token);
IFailureMonitor::failureMonitor().unauthorizedEndpoint(e);
}
bool isPublic() const override { return true; }
};
class TransportData {
public:
TransportData(uint64_t transportId, int maxWellKnownEndpoints, IPAllowList const* allowList);
~TransportData();
void initMetrics() {
bytesSent.init(LiteralStringRef("Net2.BytesSent"));
countPacketsReceived.init(LiteralStringRef("Net2.CountPacketsReceived"));
countPacketsGenerated.init(LiteralStringRef("Net2.CountPacketsGenerated"));
countConnEstablished.init(LiteralStringRef("Net2.CountConnEstablished"));
countConnClosedWithError.init(LiteralStringRef("Net2.CountConnClosedWithError"));
countConnClosedWithoutError.init(LiteralStringRef("Net2.CountConnClosedWithoutError"));
}
Reference<struct Peer> getPeer(NetworkAddress const& address);
Reference<struct Peer> getOrOpenPeer(NetworkAddress const& address, bool startConnectionKeeper = true);
// Returns true if given network address 'address' is one of the address we are listening on.
bool isLocalAddress(const NetworkAddress& address) const;
NetworkAddressList localAddresses;
std::vector<Future<Void>> listeners;
std::unordered_map<NetworkAddress, Reference<struct Peer>> peers;
std::unordered_map<NetworkAddress, std::pair<double, double>> closedPeers;
HealthMonitor healthMonitor;
std::set<NetworkAddress> orderedAddresses;
Reference<AsyncVar<bool>> degraded;
bool warnAlwaysForLargePacket;
EndpointMap endpoints;
EndpointNotFoundReceiver endpointNotFoundReceiver{ endpoints };
PingReceiver pingReceiver{ endpoints };
TenantAuthorizer tenantReceiver{ endpoints };
UnauthorizedEndpointReceiver unauthorizedEndpointReceiver{ endpoints };
Int64MetricHandle bytesSent;
Int64MetricHandle countPacketsReceived;
Int64MetricHandle countPacketsGenerated;
Int64MetricHandle countConnEstablished;
Int64MetricHandle countConnClosedWithError;
Int64MetricHandle countConnClosedWithoutError;
std::map<NetworkAddress, std::pair<uint64_t, double>> incompatiblePeers;
AsyncTrigger incompatiblePeersChanged;
uint32_t numIncompatibleConnections;
std::map<uint64_t, double> multiVersionConnections;
double lastIncompatibleMessage;
uint64_t transportId;
IPAllowList allowList;
std::shared_ptr<ContextVariableMap> localCVM = std::make_shared<ContextVariableMap>(); // for local delivery
Future<Void> multiVersionCleanup;
Future<Void> pingLogger;
};
ACTOR Future<Void> pingLatencyLogger(TransportData* self) {
state NetworkAddress lastAddress = NetworkAddress();
loop {
if (self->orderedAddresses.size()) {
auto it = self->orderedAddresses.upper_bound(lastAddress);
if (it == self->orderedAddresses.end()) {
it = self->orderedAddresses.begin();
}
lastAddress = *it;
auto peer = self->getPeer(lastAddress);
if (!peer) {
TraceEvent(SevWarnAlways, "MissingNetworkAddress").suppressFor(10.0).detail("PeerAddr", lastAddress);
}
if (peer->lastLoggedTime <= 0.0) {
peer->lastLoggedTime = peer->lastConnectTime;
}
if (peer && peer->pingLatencies.getPopulationSize() >= 10) {
TraceEvent("PingLatency")
.detail("Elapsed", now() - peer->lastLoggedTime)
.detail("PeerAddr", lastAddress)
.detail("MinLatency", peer->pingLatencies.min())
.detail("MaxLatency", peer->pingLatencies.max())
.detail("MeanLatency", peer->pingLatencies.mean())
.detail("MedianLatency", peer->pingLatencies.median())
.detail("P90Latency", peer->pingLatencies.percentile(0.90))
.detail("Count", peer->pingLatencies.getPopulationSize())
.detail("BytesReceived", peer->bytesReceived - peer->lastLoggedBytesReceived)
.detail("BytesSent", peer->bytesSent - peer->lastLoggedBytesSent)
.detail("TimeoutCount", peer->timeoutCount)
.detail("ConnectOutgoingCount", peer->connectOutgoingCount)
.detail("ConnectIncomingCount", peer->connectIncomingCount)
.detail("ConnectFailedCount", peer->connectFailedCount)
.detail("ConnectMinLatency", peer->connectLatencies.min())
.detail("ConnectMaxLatency", peer->connectLatencies.max())
.detail("ConnectMeanLatency", peer->connectLatencies.mean())
.detail("ConnectMedianLatency", peer->connectLatencies.median())
.detail("ConnectP90Latency", peer->connectLatencies.percentile(0.90));
peer->lastLoggedTime = now();
peer->connectOutgoingCount = 0;
peer->connectIncomingCount = 0;
peer->connectFailedCount = 0;
peer->pingLatencies.clear();
peer->connectLatencies.clear();
peer->lastLoggedBytesReceived = peer->bytesReceived;
peer->lastLoggedBytesSent = peer->bytesSent;
peer->timeoutCount = 0;
wait(delay(FLOW_KNOBS->PING_LOGGING_INTERVAL));
} else if (it == self->orderedAddresses.begin()) {
wait(delay(FLOW_KNOBS->PING_LOGGING_INTERVAL));
}
} else {
wait(delay(FLOW_KNOBS->PING_LOGGING_INTERVAL));
}
}
}
TransportData::TransportData(uint64_t transportId, int maxWellKnownEndpoints, IPAllowList const* allowList)
: warnAlwaysForLargePacket(true), endpoints(maxWellKnownEndpoints), endpointNotFoundReceiver(endpoints),
pingReceiver(endpoints), numIncompatibleConnections(0), lastIncompatibleMessage(0), transportId(transportId),
allowList(allowList == nullptr ? IPAllowList() : *allowList) {
degraded = makeReference<AsyncVar<bool>>(false);
pingLogger = pingLatencyLogger(this);
}
#define CONNECT_PACKET_V0 0x0FDB00A444020001LL
#define CONNECT_PACKET_V0_SIZE 14
#pragma pack(push, 1)
struct ConnectPacket {
// The value does not include the size of `connectPacketLength` itself,
// but only the other fields of this structure.
uint32_t connectPacketLength;
ProtocolVersion protocolVersion; // Expect currentProtocolVersion
uint16_t canonicalRemotePort; // Port number to reconnect to the originating process
uint64_t connectionId; // Multi-version clients will use the same Id for both connections, other connections will
// set this to zero. Added at protocol Version 0x0FDB00A444020001.
// IP Address to reconnect to the originating process. Only one of these must be populated.
uint32_t canonicalRemoteIp4;
enum ConnectPacketFlags { FLAG_IPV6 = 1 };
uint16_t flags;
uint8_t canonicalRemoteIp6[16];
ConnectPacket() { memset(this, 0, sizeof(*this)); }
IPAddress canonicalRemoteIp() const {
if (isIPv6()) {
IPAddress::IPAddressStore store;
memcpy(store.data(), canonicalRemoteIp6, sizeof(canonicalRemoteIp6));
return IPAddress(store);
} else {
return IPAddress(canonicalRemoteIp4);
}
}
void setCanonicalRemoteIp(const IPAddress& ip) {
if (ip.isV6()) {
flags = flags | FLAG_IPV6;
memcpy(&canonicalRemoteIp6, ip.toV6().data(), 16);
} else {
flags = flags & ~FLAG_IPV6;
canonicalRemoteIp4 = ip.toV4();
}
}
bool isIPv6() const { return flags & FLAG_IPV6; }
uint32_t totalPacketSize() const { return connectPacketLength + sizeof(connectPacketLength); }
template <class Ar>
void serialize(Ar& ar) {
serializer(ar, connectPacketLength);
if (connectPacketLength > sizeof(ConnectPacket) - sizeof(connectPacketLength)) {
ASSERT(!g_network->isSimulated());
throw serialization_failed();
}
serializer(ar, protocolVersion, canonicalRemotePort, connectionId, canonicalRemoteIp4);
if (ar.isDeserializing && !ar.protocolVersion().hasIPv6()) {
flags = 0;
} else {
// We can send everything in serialized packet, since the current version of ConnectPacket
// is backward compatible with CONNECT_PACKET_V0.
serializer(ar, flags);
ar.serializeBytes(&canonicalRemoteIp6, sizeof(canonicalRemoteIp6));
}
}
};
#pragma pack(pop)
ACTOR static Future<Void> connectionReader(TransportData* transport,
Reference<IConnection> conn,
Reference<struct Peer> peer,
Promise<Reference<struct Peer>> onConnected);
static void sendLocal(TransportData* self, ISerializeSource const& what, const Endpoint& destination);
static ReliablePacket* sendPacket(TransportData* self,
Reference<Peer> peer,
ISerializeSource const& what,
const Endpoint& destination,
bool reliable);
ACTOR Future<Void> connectionMonitor(Reference<Peer> peer) {
state Endpoint remotePingEndpoint({ peer->destination }, Endpoint::wellKnownToken(WLTOKEN_PING_PACKET));
loop {
if (!FlowTransport::isClient() && !peer->destination.isPublic() && peer->compatible) {
// Don't send ping messages to clients unless necessary. Instead monitor incoming client pings.
// We ignore this block for incompatible clients because pings from server would trigger the
// peer->resetPing and prevent 'connection_failed' due to ping timeout.
state double lastRefreshed = now();
state int64_t lastBytesReceived = peer->bytesReceived;
loop {
wait(delay(FLOW_KNOBS->CONNECTION_MONITOR_LOOP_TIME, TaskPriority::ReadSocket));
if (lastBytesReceived < peer->bytesReceived) {
lastRefreshed = now();
lastBytesReceived = peer->bytesReceived;
} else if (lastRefreshed < now() - FLOW_KNOBS->CONNECTION_MONITOR_IDLE_TIMEOUT *
FLOW_KNOBS->CONNECTION_MONITOR_INCOMING_IDLE_MULTIPLIER) {
// If we have not received anything in this period, client must have closed
// connection by now. Break loop to check if it is still alive by sending a ping.
break;
}
}
}
// We cannot let an error be thrown from connectionMonitor while still on the stack from scanPackets in
// connectionReader because then it would not call the destructor of connectionReader when connectionReader is
// cancelled.
wait(delay(0, TaskPriority::ReadSocket));
if (peer->reliable.empty() && peer->unsent.empty() && peer->outstandingReplies == 0) {
if (peer->peerReferences == 0 &&
(peer->lastDataPacketSentTime < now() - FLOW_KNOBS->CONNECTION_MONITOR_UNREFERENCED_CLOSE_DELAY)) {
// TODO: What about when peerReference == -1?
throw connection_unreferenced();
} else if (FlowTransport::isClient() && peer->compatible && peer->destination.isPublic() &&
(peer->lastConnectTime < now() - FLOW_KNOBS->CONNECTION_MONITOR_IDLE_TIMEOUT) &&
(peer->lastDataPacketSentTime < now() - FLOW_KNOBS->CONNECTION_MONITOR_IDLE_TIMEOUT)) {
// First condition is necessary because we may get here if we are server.
throw connection_idle();
}
}
wait(delayJittered(FLOW_KNOBS->CONNECTION_MONITOR_LOOP_TIME, TaskPriority::ReadSocket));
// TODO: Stop monitoring and close the connection with no onDisconnect requests outstanding
state PingRequest pingRequest;
FlowTransport::transport().sendUnreliable(SerializeSource<PingRequest>(pingRequest), remotePingEndpoint, true);
state int64_t startingBytes = peer->bytesReceived;
state int timeouts = 0;
state double startTime = now();
loop {
choose {
when(wait(delay(FLOW_KNOBS->CONNECTION_MONITOR_TIMEOUT))) {
peer->timeoutCount++;
if (startingBytes == peer->bytesReceived) {
if (peer->destination.isPublic()) {
peer->pingLatencies.addSample(now() - startTime);
}
TraceEvent("ConnectionTimeout").suppressFor(1.0).detail("WithAddr", peer->destination);
throw connection_failed();
}
if (timeouts > 1) {
TraceEvent(SevWarnAlways, "ConnectionSlowPing")
.suppressFor(1.0)
.detail("WithAddr", peer->destination)
.detail("Timeouts", timeouts);
}
startingBytes = peer->bytesReceived;
timeouts++;
}
when(wait(pingRequest.reply.getFuture())) {
if (peer->destination.isPublic()) {
peer->pingLatencies.addSample(now() - startTime);
}
break;
}
when(wait(peer->resetPing.onTrigger())) { break; }
}
}
}
}
ACTOR Future<Void> connectionWriter(Reference<Peer> self, Reference<IConnection> conn) {
state double lastWriteTime = now();
loop {
// wait( delay(0, TaskPriority::WriteSocket) );
wait(delayJittered(
std::max<double>(FLOW_KNOBS->MIN_COALESCE_DELAY, FLOW_KNOBS->MAX_COALESCE_DELAY - (now() - lastWriteTime)),
TaskPriority::WriteSocket));
// wait( delay(500e-6, TaskPriority::WriteSocket) );
// wait( yield(TaskPriority::WriteSocket) );
// Send until there is nothing left to send
loop {
lastWriteTime = now();
int sent = conn->write(self->unsent.getUnsent(), /* limit= */ FLOW_KNOBS->MAX_PACKET_SEND_BYTES);
if (sent) {
self->bytesSent += sent;
self->transport->bytesSent += sent;
self->unsent.sent(sent);
}
if (self->unsent.empty()) {
break;
}
TEST(true); // We didn't write everything, so apparently the write buffer is full. Wait for it to be
// nonfull.
wait(conn->onWritable());
wait(yield(TaskPriority::WriteSocket));
}
// Wait until there is something to send
while (self->unsent.empty())
wait(self->dataToSend.onTrigger());
}
}
ACTOR Future<Void> delayedHealthUpdate(NetworkAddress address, bool* tooManyConnectionsClosed) {
state double start = now();
loop {
if (FLOW_KNOBS->HEALTH_MONITOR_MARK_FAILED_UNSTABLE_CONNECTIONS &&
FlowTransport::transport().healthMonitor()->tooManyConnectionsClosed(address) && address.isPublic()) {
wait(delayJittered(FLOW_KNOBS->MAX_RECONNECTION_TIME * 2.0));
} else {
if (*tooManyConnectionsClosed) {
TraceEvent("TooManyConnectionsClosedMarkAvailable")
.detail("Dest", address)
.detail("StartTime", start)
.detail("TimeElapsed", now() - start)
.detail("ClosedCount", FlowTransport::transport().healthMonitor()->closedConnectionsCount(address));
*tooManyConnectionsClosed = false;
}
IFailureMonitor::failureMonitor().setStatus(address, FailureStatus(false));
break;
}
}
return Void();
}
ACTOR Future<Void> connectionKeeper(Reference<Peer> self,
Reference<IConnection> conn = Reference<IConnection>(),
Future<Void> reader = Void()) {
TraceEvent(SevDebug, "ConnectionKeeper", conn ? conn->getDebugID() : UID())
.detail("PeerAddr", self->destination)
.detail("ConnSet", (bool)conn);
ASSERT_WE_THINK(FlowTransport::transport().getLocalAddress() != self->destination);
state Future<Void> delayedHealthUpdateF;
state Optional<double> firstConnFailedTime = Optional<double>();
state int retryConnect = false;
state bool tooManyConnectionsClosed = false;
loop {
try {
delayedHealthUpdateF = Future<Void>();
if (!conn) { // Always, except for the first loop with an incoming connection
self->outgoingConnectionIdle = true;
// Wait until there is something to send.
while (self->unsent.empty()) {
// Override waiting, if we are in failed state to update failure monitoring status.
Future<Void> retryConnectF = Never();
if (retryConnect) {
retryConnectF = IFailureMonitor::failureMonitor().getState(self->destination).isAvailable()
? delay(FLOW_KNOBS->FAILURE_DETECTION_DELAY)
: delay(FLOW_KNOBS->SERVER_REQUEST_INTERVAL);
}
choose {
when(wait(self->dataToSend.onTrigger())) {}
when(wait(retryConnectF)) { break; }
}
}
ASSERT(self->destination.isPublic());
self->outgoingConnectionIdle = false;
wait(delayJittered(std::max(0.0,
self->lastConnectTime + self->reconnectionDelay -
now()))); // Don't connect() to the same peer more than once per 2 sec
self->lastConnectTime = now();
TraceEvent("ConnectingTo", conn ? conn->getDebugID() : UID())
.suppressFor(1.0)
.detail("PeerAddr", self->destination)
.detail("PeerReferences", self->peerReferences)
.detail("FailureStatus",
IFailureMonitor::failureMonitor().getState(self->destination).isAvailable() ? "OK"
: "FAILED");
++self->connectOutgoingCount;
try {
choose {
when(Reference<IConnection> _conn =
wait(INetworkConnections::net()->connect(self->destination))) {
conn = _conn;
wait(conn->connectHandshake());
self->connectLatencies.addSample(now() - self->lastConnectTime);
if (FlowTransport::isClient()) {
IFailureMonitor::failureMonitor().setStatus(self->destination, FailureStatus(false));
}
if (self->unsent.empty()) {
delayedHealthUpdateF =
delayedHealthUpdate(self->destination, &tooManyConnectionsClosed);
choose {
when(wait(delayedHealthUpdateF)) {
conn->close();
conn = Reference<IConnection>();
retryConnect = false;
continue;
}
when(wait(self->dataToSend.onTrigger())) {}
}
}
TraceEvent("ConnectionExchangingConnectPacket", conn->getDebugID())
.suppressFor(1.0)
.detail("PeerAddr", self->destination);
self->prependConnectPacket();
reader = connectionReader(self->transport, conn, self, Promise<Reference<Peer>>());
}
when(wait(delay(FLOW_KNOBS->CONNECTION_MONITOR_TIMEOUT))) { throw connection_failed(); }
}
} catch (Error& e) {
++self->connectFailedCount;
if (e.code() != error_code_connection_failed) {
throw;
}
TraceEvent("ConnectionTimedOut", conn ? conn->getDebugID() : UID())
.suppressFor(1.0)
.detail("PeerAddr", self->destination);
throw;
}
} else {
self->outgoingConnectionIdle = false;
self->lastConnectTime = now();
}
firstConnFailedTime.reset();
try {
self->transport->countConnEstablished++;
if (!delayedHealthUpdateF.isValid())
delayedHealthUpdateF = delayedHealthUpdate(self->destination, &tooManyConnectionsClosed);
wait(connectionWriter(self, conn) || reader || connectionMonitor(self) ||
self->resetConnection.onTrigger());
TraceEvent("ConnectionReset", conn ? conn->getDebugID() : UID())
.suppressFor(1.0)
.detail("PeerAddr", self->destination);
throw connection_failed();
} catch (Error& e) {
if (e.code() == error_code_connection_failed || e.code() == error_code_actor_cancelled ||
e.code() == error_code_connection_unreferenced ||
(g_network->isSimulated() && e.code() == error_code_checksum_failed))
self->transport->countConnClosedWithoutError++;
else
self->transport->countConnClosedWithError++;
throw e;
}
} catch (Error& e) {
delayedHealthUpdateF.cancel();
if (now() - self->lastConnectTime > FLOW_KNOBS->RECONNECTION_RESET_TIME) {
self->reconnectionDelay = FLOW_KNOBS->INITIAL_RECONNECTION_TIME;
} else {
self->reconnectionDelay = std::min(FLOW_KNOBS->MAX_RECONNECTION_TIME,
self->reconnectionDelay * FLOW_KNOBS->RECONNECTION_TIME_GROWTH_RATE);
}
if (firstConnFailedTime.present()) {
if (now() - firstConnFailedTime.get() > FLOW_KNOBS->PEER_UNAVAILABLE_FOR_LONG_TIME_TIMEOUT) {
TraceEvent(SevWarnAlways, "PeerUnavailableForLongTime", conn ? conn->getDebugID() : UID())
.suppressFor(1.0)
.detail("PeerAddr", self->destination);
firstConnFailedTime = now() - FLOW_KNOBS->PEER_UNAVAILABLE_FOR_LONG_TIME_TIMEOUT / 2.0;
}
} else {
firstConnFailedTime = now();
}
// Don't immediately mark connection as failed. To stay closed to earlier behaviour of centralized
// failure monitoring, wait until connection stays failed for FLOW_KNOBS->FAILURE_DETECTION_DELAY timeout.
retryConnect = true;
if (e.code() == error_code_connection_failed) {
if (!self->destination.isPublic()) {
// Can't connect back to non-public addresses.
IFailureMonitor::failureMonitor().setStatus(self->destination, FailureStatus(true));
} else if (now() - firstConnFailedTime.get() > FLOW_KNOBS->FAILURE_DETECTION_DELAY) {
IFailureMonitor::failureMonitor().setStatus(self->destination, FailureStatus(true));
}
}
self->discardUnreliablePackets();
reader = Future<Void>();
bool ok = e.code() == error_code_connection_failed || e.code() == error_code_actor_cancelled ||
e.code() == error_code_connection_unreferenced || e.code() == error_code_connection_idle ||
(g_network->isSimulated() && e.code() == error_code_checksum_failed);
if (self->compatible) {
TraceEvent(ok ? SevInfo : SevWarnAlways, "ConnectionClosed", conn ? conn->getDebugID() : UID())
.errorUnsuppressed(e)
.suppressFor(1.0)
.detail("PeerAddr", self->destination);
} else {
TraceEvent(
ok ? SevInfo : SevWarnAlways, "IncompatibleConnectionClosed", conn ? conn->getDebugID() : UID())
.errorUnsuppressed(e)
.suppressFor(1.0)
.detail("PeerAddr", self->destination);
}
if (self->destination.isPublic() &&
IFailureMonitor::failureMonitor().getState(self->destination).isAvailable() &&
!FlowTransport::isClient()) {
auto& it = self->transport->closedPeers[self->destination];
if (now() - it.second > FLOW_KNOBS->TOO_MANY_CONNECTIONS_CLOSED_RESET_DELAY) {
it.first = now();
} else if (now() - it.first > FLOW_KNOBS->TOO_MANY_CONNECTIONS_CLOSED_TIMEOUT) {
TraceEvent(SevWarnAlways, "TooManyConnectionsClosed", conn ? conn->getDebugID() : UID())
.suppressFor(5.0)
.detail("PeerAddr", self->destination);
self->transport->degraded->set(true);
}
it.second = now();
}
if (conn) {
if (self->destination.isPublic() && e.code() == error_code_connection_failed) {
FlowTransport::transport().healthMonitor()->reportPeerClosed(self->destination);
if (FLOW_KNOBS->HEALTH_MONITOR_MARK_FAILED_UNSTABLE_CONNECTIONS &&
FlowTransport::transport().healthMonitor()->tooManyConnectionsClosed(self->destination) &&
self->destination.isPublic()) {
TraceEvent("TooManyConnectionsClosedMarkFailed")
.detail("Dest", self->destination)
.detail(
"ClosedCount",
FlowTransport::transport().healthMonitor()->closedConnectionsCount(self->destination));
tooManyConnectionsClosed = true;
IFailureMonitor::failureMonitor().setStatus(self->destination, FailureStatus(true));
}
}
conn->close();
conn = Reference<IConnection>();
// Old versions will throw this error, and we don't want to forget their protocol versions.
// This means we can't tell the difference between an old protocol version and one we
// can no longer connect to.
if (e.code() != error_code_incompatible_protocol_version) {
self->protocolVersion->set(Optional<ProtocolVersion>());
}
}
// Clients might send more packets in response, which needs to go out on the next connection
IFailureMonitor::failureMonitor().notifyDisconnect(self->destination);
Promise<Void> disconnect = self->disconnect;
self->disconnect = Promise<Void>();
disconnect.send(Void());
if (e.code() == error_code_actor_cancelled)
throw;
// Try to recover, even from serious errors, by retrying
if (self->peerReferences <= 0 && self->reliable.empty() && self->unsent.empty() &&
self->outstandingReplies == 0) {
TraceEvent("PeerDestroy").errorUnsuppressed(e).suppressFor(1.0).detail("PeerAddr", self->destination);
self->connect.cancel();
self->transport->peers.erase(self->destination);
self->transport->orderedAddresses.erase(self->destination);
return Void();
}
}
}
}
Peer::Peer(TransportData* transport, NetworkAddress const& destination)
: transport(transport), destination(destination), compatible(true), outgoingConnectionIdle(true),
lastConnectTime(0.0), reconnectionDelay(FLOW_KNOBS->INITIAL_RECONNECTION_TIME), peerReferences(-1),
incompatibleProtocolVersionNewer(false), bytesReceived(0), bytesSent(0), lastDataPacketSentTime(now()),
outstandingReplies(0), pingLatencies(destination.isPublic() ? FLOW_KNOBS->PING_SAMPLE_AMOUNT : 1),
lastLoggedTime(0.0), lastLoggedBytesReceived(0), lastLoggedBytesSent(0), timeoutCount(0),
protocolVersion(Reference<AsyncVar<Optional<ProtocolVersion>>>(new AsyncVar<Optional<ProtocolVersion>>())),
connectOutgoingCount(0), connectIncomingCount(0), connectFailedCount(0),
connectLatencies(destination.isPublic() ? FLOW_KNOBS->NETWORK_CONNECT_SAMPLE_AMOUNT : 1) {
IFailureMonitor::failureMonitor().setStatus(destination, FailureStatus(false));
}
void Peer::send(PacketBuffer* pb, ReliablePacket* rp, bool firstUnsent) {
unsent.setWriteBuffer(pb);
if (rp)
reliable.insert(rp);
if (firstUnsent)
dataToSend.trigger();
}
void Peer::prependConnectPacket() {
// Send the ConnectPacket expected at the beginning of a new connection
ConnectPacket pkt;
if (transport->localAddresses.address.isTLS() == destination.isTLS()) {
pkt.canonicalRemotePort = transport->localAddresses.address.port;
pkt.setCanonicalRemoteIp(transport->localAddresses.address.ip);
} else if (transport->localAddresses.secondaryAddress.present()) {
pkt.canonicalRemotePort = transport->localAddresses.secondaryAddress.get().port;
pkt.setCanonicalRemoteIp(transport->localAddresses.secondaryAddress.get().ip);
} else {
// a "mixed" TLS/non-TLS connection is like a client/server connection - there's no way to reverse it
pkt.canonicalRemotePort = 0;
pkt.setCanonicalRemoteIp(IPAddress(0));
}
pkt.connectPacketLength = sizeof(pkt) - sizeof(pkt.connectPacketLength);
pkt.protocolVersion = g_network->protocolVersion();
pkt.protocolVersion.addObjectSerializerFlag();
pkt.connectionId = transport->transportId;
PacketBuffer* pb_first = PacketBuffer::create();
PacketWriter wr(pb_first, nullptr, Unversioned());
pkt.serialize(wr);
unsent.prependWriteBuffer(pb_first, wr.finish());
}
void Peer::discardUnreliablePackets() {
// Throw away the current unsent list, dropping the reference count on each PacketBuffer that accounts for presence
// in the unsent list
unsent.discardAll();
// If there are reliable packets, compact reliable packets into a new unsent range
if (!reliable.empty()) {
PacketBuffer* pb = unsent.getWriteBuffer();
pb = reliable.compact(pb, nullptr);
unsent.setWriteBuffer(pb);
}
}
void Peer::onIncomingConnection(Reference<Peer> self, Reference<IConnection> conn, Future<Void> reader) {
// In case two processes are trying to connect to each other simultaneously, the process with the larger canonical
// NetworkAddress gets to keep its outgoing connection.
++self->connectIncomingCount;
if (!destination.isPublic() && !outgoingConnectionIdle)
throw address_in_use();
NetworkAddress compatibleAddr = transport->localAddresses.address;
if (transport->localAddresses.secondaryAddress.present() &&
transport->localAddresses.secondaryAddress.get().isTLS() == destination.isTLS()) {
compatibleAddr = transport->localAddresses.secondaryAddress.get();
}
if (!destination.isPublic() || outgoingConnectionIdle || destination > compatibleAddr ||
(lastConnectTime > 1.0 && now() - lastConnectTime > FLOW_KNOBS->ALWAYS_ACCEPT_DELAY)) {
// Keep the new connection
TraceEvent("IncomingConnection", conn->getDebugID())
.suppressFor(1.0)
.detail("FromAddr", conn->getPeerAddress())
.detail("CanonicalAddr", destination)
.detail("IsPublic", destination.isPublic())
.detail("Trusted", self->transport->allowList(conn->getPeerAddress().ip));
connect.cancel();
prependConnectPacket();
connect = connectionKeeper(self, conn, reader);
} else {
TraceEvent("RedundantConnection", conn->getDebugID())
.suppressFor(1.0)
.detail("FromAddr", conn->getPeerAddress().toString())
.detail("CanonicalAddr", destination)
.detail("LocalAddr", compatibleAddr);
// Keep our prior connection
reader.cancel();
conn->close();
// Send an (ignored) packet to make sure that, if our outgoing connection died before the peer made this
// connection attempt, we eventually find out that our connection is dead, close it, and then respond to the
// next connection reattempt from peer.
}
}
TransportData::~TransportData() {
for (auto& p : peers) {
p.second->connect.cancel();
}
}
static bool checkCompatible(const PeerCompatibilityPolicy& policy, ProtocolVersion version) {
switch (policy.requirement) {
case RequirePeer::Exactly:
return version.version() == policy.version.version();
case RequirePeer::AtLeast:
return version.version() >= policy.version.version();
default:
ASSERT(false);
return false;
}
}
// This actor looks up the task associated with an endpoint
// and sends the message to it. The actual deserialization will
// be done by that task (see NetworkMessageReceiver).
ACTOR static void deliver(TransportData* self,
Endpoint destination,
TaskPriority priority,
ArenaReader reader,
NetworkAddress peerAddress,
Reference<AuthorizedTenants> authorizedTenants,
std::shared_ptr<ContextVariableMap> cvm,
InReadSocket inReadSocket,
Future<Void> disconnect) {
// We want to run the task at the right priority. If the priority is higher than the current priority (which is
// ReadSocket) we can just upgrade. Otherwise we'll context switch so that we don't block other tasks that might run
// with a higher priority. ReplyPromiseStream needs to guarantee that messages are received in the order they were
// sent, so we are using orderedDelay.
// NOTE: don't skip delay(0) when it's local deliver since it could cause out of order object deconstruction.
if (priority < TaskPriority::ReadSocket || !inReadSocket) {
wait(orderedDelay(0, priority));
} else {
g_network->setCurrentTask(priority);
}
auto receiver = self->endpoints.get(destination.token);
if (receiver && (authorizedTenants->trusted || receiver->isPublic())) {
if (!checkCompatible(receiver->peerCompatibilityPolicy(), reader.protocolVersion())) {
return;
}
try {
g_currentDeliveryPeerAddress = destination.addresses;
g_currentDeliveryPeerDisconnect = disconnect;
StringRef data = reader.arenaReadAll();
ASSERT(data.size() > 8);
ArenaObjectReader objReader(reader.arena(), reader.arenaReadAll(), AssumeVersion(reader.protocolVersion()));
objReader.setContextVariableMap(cvm);
receiver->receive(objReader);
g_currentDeliveryPeerAddress = { NetworkAddress() };
g_currentDeliveryPeerDisconnect = Future<Void>();
} catch (Error& e) {
g_currentDeliveryPeerAddress = { NetworkAddress() };
g_currentDeliveryPeerDisconnect = Future<Void>();
TraceEvent(SevError, "ReceiverError")
.error(e)
.detail("Token", destination.token.toString())
.detail("Peer", destination.getPrimaryAddress());
if (!FlowTransport::isClient()) {
flushAndExit(FDB_EXIT_ERROR);
}
throw;
}
} else if (destination.token.first() & TOKEN_STREAM_FLAG) {
// We don't have the (stream) endpoint 'token', notify the remote machine
if (receiver) {
TraceEvent(SevWarnAlways, "AttemptedRPCToPrivatePrevented")
.detail("From", peerAddress)
.detail("Token", destination.token);
ASSERT(!self->isLocalAddress(destination.getPrimaryAddress()));
Reference<Peer> peer = self->getOrOpenPeer(destination.getPrimaryAddress());
sendPacket(self,
peer,
SerializeSource<UID>(destination.token),
Endpoint::wellKnown(destination.addresses, WLTOKEN_UNAUTHORIZED_ENDPOINT),
false);
} else {
if (destination.token.first() != -1) {
if (self->isLocalAddress(destination.getPrimaryAddress())) {
sendLocal(self,
SerializeSource<UID>(destination.token),
Endpoint::wellKnown(destination.addresses, WLTOKEN_ENDPOINT_NOT_FOUND));
} else {
Reference<Peer> peer = self->getOrOpenPeer(destination.getPrimaryAddress());
sendPacket(self,
peer,
SerializeSource<UID>(destination.token),
Endpoint::wellKnown(destination.addresses, WLTOKEN_ENDPOINT_NOT_FOUND),
false);
}
}
}
}
}
static void scanPackets(TransportData* transport,
uint8_t*& unprocessed_begin,
const uint8_t* e,
Arena& arena,
NetworkAddress const& peerAddress,
Reference<AuthorizedTenants> const& authorizedTenants,
std::shared_ptr<ContextVariableMap> cvm,
ProtocolVersion peerProtocolVersion,
Future<Void> disconnect,
IsStableConnection isStableConnection) {
// Find each complete packet in the given byte range and queue a ready task to deliver it.
// Remove the complete packets from the range by increasing unprocessed_begin.
// There won't be more than 64K of data plus one packet, so this shouldn't take a long time.
uint8_t* p = unprocessed_begin;
const bool checksumEnabled = !peerAddress.isTLS();
loop {
uint32_t packetLen;
XXH64_hash_t packetChecksum;
// Read packet length if size is sufficient or stop
if (e - p < PACKET_LEN_WIDTH)
break;
packetLen = *(uint32_t*)p;
p += PACKET_LEN_WIDTH;
// Read checksum if present
if (checksumEnabled) {
// Read checksum if size is sufficient or stop
if (e - p < sizeof(packetChecksum))
break;
packetChecksum = *(XXH64_hash_t*)p;
p += sizeof(packetChecksum);
}
if (packetLen > FLOW_KNOBS->PACKET_LIMIT) {
TraceEvent(SevError, "PacketLimitExceeded")
.detail("FromPeer", peerAddress.toString())
.detail("Length", (int)packetLen);
throw platform_error();
}
if (e - p < packetLen)
break;
ASSERT(packetLen >= sizeof(UID));
if (checksumEnabled) {
bool isBuggifyEnabled = false;
if (g_network->isSimulated() && !isStableConnection &&
g_network->now() - g_simulator.lastConnectionFailure > g_simulator.connectionFailuresDisableDuration &&
BUGGIFY_WITH_PROB(0.0001)) {
g_simulator.lastConnectionFailure = g_network->now();
isBuggifyEnabled = true;
TraceEvent(SevInfo, "BitsFlip").log();
int flipBits = 32 - (int)floor(log2(deterministicRandom()->randomUInt32()));
uint32_t firstFlipByteLocation = deterministicRandom()->randomUInt32() % packetLen;
int firstFlipBitLocation = deterministicRandom()->randomInt(0, 8);
*(p + firstFlipByteLocation) ^= 1 << firstFlipBitLocation;
flipBits--;
for (int i = 0; i < flipBits; i++) {
uint32_t byteLocation = deterministicRandom()->randomUInt32() % packetLen;
int bitLocation = deterministicRandom()->randomInt(0, 8);
if (byteLocation != firstFlipByteLocation || bitLocation != firstFlipBitLocation) {
*(p + byteLocation) ^= 1 << bitLocation;
}
}
}
XXH64_hash_t calculatedChecksum = XXH3_64bits(p, packetLen);
if (calculatedChecksum != packetChecksum) {
if (isBuggifyEnabled) {
TraceEvent(SevInfo, "ChecksumMismatchExp")
.detail("PacketChecksum", packetChecksum)
.detail("CalculatedChecksum", calculatedChecksum)
.detail("PeerAddress", peerAddress.toString());
} else {
TraceEvent(SevWarnAlways, "ChecksumMismatchUnexp")
.detail("PacketChecksum", packetChecksum)
.detail("CalculatedChecksum", calculatedChecksum);
}
throw checksum_failed();
} else {
if (isBuggifyEnabled) {
TraceEvent(SevError, "ChecksumMatchUnexp")
.detail("PacketChecksum", packetChecksum)
.detail("CalculatedChecksum", calculatedChecksum);
}
}
}
#if VALGRIND
VALGRIND_CHECK_MEM_IS_DEFINED(p, packetLen);
#endif
// remove object serializer flag to account for flat buffer
peerProtocolVersion.removeObjectSerializerFlag();
ArenaReader reader(arena, StringRef(p, packetLen), AssumeVersion(peerProtocolVersion));
UID token;
reader >> token;
++transport->countPacketsReceived;
if (packetLen > FLOW_KNOBS->PACKET_WARNING) {
TraceEvent(transport->warnAlwaysForLargePacket ? SevWarnAlways : SevWarn, "LargePacketReceived")
.suppressFor(1.0)
.detail("FromPeer", peerAddress.toString())
.detail("Length", (int)packetLen)
.detail("Token", token);
if (g_network->isSimulated())
transport->warnAlwaysForLargePacket = false;
}
ASSERT(!reader.empty());
TaskPriority priority = transport->endpoints.getPriority(token);
// we ignore packets to unknown endpoints if they're not going to a stream anyways, so we can just
// return here. The main place where this seems to happen is if a ReplyPromise is not waited on
// long enough.
// It would be slightly more elegant/readable to put this if-block into the deliver actor, but if
// we have many messages to UnknownEndpoint we want to optimize earlier. As deliver is an actor it
// will allocate some state on the heap and this prevents it from doing that.
if (priority != TaskPriority::UnknownEndpoint || (token.first() & TOKEN_STREAM_FLAG) != 0) {
deliver(transport,
Endpoint({ peerAddress }, token),
priority,
std::move(reader),
peerAddress,
authorizedTenants,
cvm,
InReadSocket::True,
disconnect);
}
unprocessed_begin = p = p + packetLen;
}
}
// Given unprocessed buffer [begin, end), check if next packet size is known and return
// enough size for the next packet, whose format is: {size, optional_checksum, data} +
// next_packet_size.
static int getNewBufferSize(const uint8_t* begin,
const uint8_t* end,
const NetworkAddress& peerAddress,
ProtocolVersion peerProtocolVersion) {
const int len = end - begin;
if (len < PACKET_LEN_WIDTH) {
return FLOW_KNOBS->MIN_PACKET_BUFFER_BYTES;
}
const uint32_t packetLen = *(uint32_t*)begin;
if (packetLen > FLOW_KNOBS->PACKET_LIMIT) {
TraceEvent(SevError, "PacketLimitExceeded")
.detail("FromPeer", peerAddress.toString())
.detail("Length", (int)packetLen);
throw platform_error();
}
return std::max<uint32_t>(FLOW_KNOBS->MIN_PACKET_BUFFER_BYTES,
packetLen + sizeof(uint32_t) * (peerAddress.isTLS() ? 2 : 3));
}
// This actor exists whenever there is an open or opening connection, whether incoming or outgoing
// For incoming connections conn is set and peer is initially nullptr; for outgoing connections it is the reverse
ACTOR static Future<Void> connectionReader(TransportData* transport,
Reference<IConnection> conn,
Reference<Peer> peer,
Promise<Reference<Peer>> onConnected) {
state Arena arena;
state uint8_t* unprocessed_begin = nullptr;
state uint8_t* unprocessed_end = nullptr;
state uint8_t* buffer_end = nullptr;
state bool expectConnectPacket = true;
state bool compatible = false;
state bool incompatiblePeerCounted = false;
state bool incompatibleProtocolVersionNewer = false;
state NetworkAddress peerAddress;
state ProtocolVersion peerProtocolVersion;
state Reference<AuthorizedTenants> authorizedTenants = makeReference<AuthorizedTenants>();
state std::shared_ptr<ContextVariableMap> cvm = std::make_shared<ContextVariableMap>();
peerAddress = conn->getPeerAddress();
authorizedTenants->trusted = transport->allowList(conn->getPeerAddress().ip);
(*cvm)["AuthorizedTenants"] = &authorizedTenants;
(*cvm)["PeerAddress"] = &peerAddress;
authorizedTenants->trusted = transport->allowList(peerAddress.ip);
if (!peer) {
ASSERT(!peerAddress.isPublic());
}
try {
loop {
loop {
state int readAllBytes = buffer_end - unprocessed_end;
if (readAllBytes < FLOW_KNOBS->MIN_PACKET_BUFFER_FREE_BYTES) {
Arena newArena;
const int unproc_len = unprocessed_end - unprocessed_begin;
const int len =
getNewBufferSize(unprocessed_begin, unprocessed_end, peerAddress, peerProtocolVersion);
uint8_t* const newBuffer = new (newArena) uint8_t[len];
if (unproc_len > 0) {
memcpy(newBuffer, unprocessed_begin, unproc_len);
}
arena = newArena;
unprocessed_begin = newBuffer;
unprocessed_end = newBuffer + unproc_len;
buffer_end = newBuffer + len;
readAllBytes = buffer_end - unprocessed_end;
}
state int totalReadBytes = 0;
while (true) {
const int len = std::min<int>(buffer_end - unprocessed_end, FLOW_KNOBS->MAX_PACKET_SEND_BYTES);
if (len == 0)
break;
state int readBytes = conn->read(unprocessed_end, unprocessed_end + len);
if (readBytes == 0)
break;
wait(yield(TaskPriority::ReadSocket));
totalReadBytes += readBytes;
unprocessed_end += readBytes;
}
if (peer) {
peer->bytesReceived += totalReadBytes;
}
if (totalReadBytes == 0)
break;
state bool readWillBlock = totalReadBytes != readAllBytes;
if (expectConnectPacket && unprocessed_end - unprocessed_begin >= CONNECT_PACKET_V0_SIZE) {
// At the beginning of a connection, we expect to receive a packet containing the protocol version
// and the listening port of the remote process
int32_t connectPacketSize = ((ConnectPacket*)unprocessed_begin)->totalPacketSize();
if (unprocessed_end - unprocessed_begin >= connectPacketSize) {
auto protocolVersion = ((ConnectPacket*)unprocessed_begin)->protocolVersion;
BinaryReader pktReader(unprocessed_begin, connectPacketSize, AssumeVersion(protocolVersion));
ConnectPacket pkt;
serializer(pktReader, pkt);
uint64_t connectionId = pkt.connectionId;
if (!pkt.protocolVersion.hasObjectSerializerFlag() ||
!pkt.protocolVersion.isCompatible(g_network->protocolVersion())) {
incompatibleProtocolVersionNewer = pkt.protocolVersion > g_network->protocolVersion();
NetworkAddress addr = pkt.canonicalRemotePort
? NetworkAddress(pkt.canonicalRemoteIp(), pkt.canonicalRemotePort)
: conn->getPeerAddress();
if (connectionId != 1)
addr.port = 0;
if (!transport->multiVersionConnections.count(connectionId)) {
if (now() - transport->lastIncompatibleMessage >
FLOW_KNOBS->CONNECTION_REJECTED_MESSAGE_DELAY) {
TraceEvent(SevWarn, "ConnectionRejected", conn->getDebugID())
.detail("Reason", "IncompatibleProtocolVersion")
.detail("LocalVersion", g_network->protocolVersion())
.detail("RejectedVersion", pkt.protocolVersion)
.detail("Peer",
pkt.canonicalRemotePort
? NetworkAddress(pkt.canonicalRemoteIp(), pkt.canonicalRemotePort)
: conn->getPeerAddress())
.detail("ConnectionId", connectionId);
transport->lastIncompatibleMessage = now();
}
if (!transport->incompatiblePeers.count(addr)) {
transport->incompatiblePeers[addr] = std::make_pair(connectionId, now());
}
} else if (connectionId > 1) {
transport->multiVersionConnections[connectionId] =
now() + FLOW_KNOBS->CONNECTION_ID_TIMEOUT;
}
compatible = false;
if (!protocolVersion.hasInexpensiveMultiVersionClient()) {
if (peer) {
peer->protocolVersion->set(protocolVersion);
}
// Older versions expected us to hang up. It may work even if we don't hang up here, but
// it's safer to keep the old behavior.
throw incompatible_protocol_version();
}
} else {
compatible = true;
TraceEvent("ConnectionEstablished", conn->getDebugID())
.suppressFor(1.0)
.detail("Peer", conn->getPeerAddress())
.detail("ConnectionId", connectionId);
}
if (connectionId > 1) {
transport->multiVersionConnections[connectionId] =
now() + FLOW_KNOBS->CONNECTION_ID_TIMEOUT;
}
unprocessed_begin += connectPacketSize;
expectConnectPacket = false;
if (peer) {
peerProtocolVersion = protocolVersion;
// Outgoing connection; port information should be what we expect
TraceEvent("ConnectedOutgoing")
.suppressFor(1.0)
.detail("PeerAddr", NetworkAddress(pkt.canonicalRemoteIp(), pkt.canonicalRemotePort));
peer->compatible = compatible;
peer->incompatibleProtocolVersionNewer = incompatibleProtocolVersionNewer;
if (!compatible) {
peer->transport->numIncompatibleConnections++;
incompatiblePeerCounted = true;
}
ASSERT(pkt.canonicalRemotePort == peerAddress.port);
onConnected.send(peer);
} else {
peerProtocolVersion = protocolVersion;
if (pkt.canonicalRemotePort) {
peerAddress = NetworkAddress(pkt.canonicalRemoteIp(),
pkt.canonicalRemotePort,
true,
peerAddress.isTLS(),
NetworkAddressFromHostname(peerAddress.fromHostname));
}
peer = transport->getOrOpenPeer(peerAddress, false);
peer->compatible = compatible;
peer->incompatibleProtocolVersionNewer = incompatibleProtocolVersionNewer;
if (!compatible) {
peer->transport->numIncompatibleConnections++;
incompatiblePeerCounted = true;
}
onConnected.send(peer);
wait(delay(0)); // Check for cancellation
}
peer->protocolVersion->set(peerProtocolVersion);
}
}
if (!expectConnectPacket) {
if (compatible || peerProtocolVersion.hasStableInterfaces()) {
scanPackets(transport,
unprocessed_begin,
unprocessed_end,
arena,
peerAddress,
authorizedTenants,
cvm,
peerProtocolVersion,
peer->disconnect.getFuture(),
IsStableConnection(g_network->isSimulated() && conn->isStableConnection()));
} else {
unprocessed_begin = unprocessed_end;
peer->resetPing.trigger();
}
}
if (readWillBlock)
break;
wait(yield(TaskPriority::ReadSocket));
}
wait(conn->onReadable());
wait(delay(0, TaskPriority::ReadSocket)); // We don't want to call conn->read directly from the reactor - we
// could get stuck in the reactor reading 1 packet at a time
}
} catch (Error& e) {
if (incompatiblePeerCounted) {
ASSERT(peer && peer->transport->numIncompatibleConnections > 0);
peer->transport->numIncompatibleConnections--;
}
throw;
}
}
ACTOR static Future<Void> connectionIncoming(TransportData* self, Reference<IConnection> conn) {
try {
wait(conn->acceptHandshake());
state Promise<Reference<Peer>> onConnected;
state Future<Void> reader = connectionReader(self, conn, Reference<Peer>(), onConnected);
choose {
when(wait(reader)) {
ASSERT(false);
return Void();
}
when(Reference<Peer> p = wait(onConnected.getFuture())) { p->onIncomingConnection(p, conn, reader); }
when(wait(delayJittered(FLOW_KNOBS->CONNECTION_MONITOR_TIMEOUT))) {
TEST(true); // Incoming connection timed out
throw timed_out();
}
}
return Void();
} catch (Error& e) {
if (e.code() != error_code_actor_cancelled) {
TraceEvent("IncomingConnectionError", conn->getDebugID())
.errorUnsuppressed(e)
.suppressFor(1.0)
.detail("FromAddress", conn->getPeerAddress());
}
conn->close();
return Void();
}
}
ACTOR static Future<Void> listen(TransportData* self, NetworkAddress listenAddr) {
state ActorCollectionNoErrors
incoming; // Actors monitoring incoming connections that haven't yet been associated with a peer
state Reference<IListener> listener = INetworkConnections::net()->listen(listenAddr);
if (!g_network->isSimulated() && self->localAddresses.address.port == 0) {
TraceEvent(SevInfo, "UpdatingListenAddress")
.detail("AssignedListenAddress", listener->getListenAddress().toString());
self->localAddresses.address = listener->getListenAddress();
}
state uint64_t connectionCount = 0;
try {
loop {
Reference<IConnection> conn = wait(listener->accept());
if (conn) {
TraceEvent("ConnectionFrom", conn->getDebugID())
.suppressFor(1.0)
.detail("FromAddress", conn->getPeerAddress())
.detail("ListenAddress", listenAddr.toString());
incoming.add(connectionIncoming(self, conn));
}
connectionCount++;
if (connectionCount % (FLOW_KNOBS->ACCEPT_BATCH_SIZE) == 0) {
wait(delay(0, TaskPriority::AcceptSocket));
}
}
} catch (Error& e) {
TraceEvent(SevError, "ListenError").error(e);
throw;
}
}
Reference<Peer> TransportData::getPeer(NetworkAddress const& address) {
auto peer = peers.find(address);
if (peer != peers.end()) {
return peer->second;
}
return Reference<Peer>();
}
Reference<Peer> TransportData::getOrOpenPeer(NetworkAddress const& address, bool startConnectionKeeper) {
auto peer = getPeer(address);
if (!peer) {
peer = makeReference<Peer>(this, address);
if (startConnectionKeeper && !isLocalAddress(address)) {
peer->connect = connectionKeeper(peer);
}
peers[address] = peer;
if (address.isPublic()) {
orderedAddresses.insert(address);
}
}
return peer;
}
bool TransportData::isLocalAddress(const NetworkAddress& address) const {
return address == localAddresses.address ||
(localAddresses.secondaryAddress.present() && address == localAddresses.secondaryAddress.get());
}
ACTOR static Future<Void> multiVersionCleanupWorker(TransportData* self) {
loop {
wait(delay(FLOW_KNOBS->CONNECTION_CLEANUP_DELAY));
bool foundIncompatible = false;
for (auto it = self->incompatiblePeers.begin(); it != self->incompatiblePeers.end();) {
if (self->multiVersionConnections.count(it->second.first)) {
it = self->incompatiblePeers.erase(it);
} else {
if (now() - it->second.second > FLOW_KNOBS->INCOMPATIBLE_PEER_DELAY_BEFORE_LOGGING) {
foundIncompatible = true;
}
it++;
}
}
for (auto it = self->multiVersionConnections.begin(); it != self->multiVersionConnections.end();) {
if (it->second < now()) {
it = self->multiVersionConnections.erase(it);
} else {
it++;
}
}
if (foundIncompatible) {
self->incompatiblePeersChanged.trigger();
}
}
}
FlowTransport::FlowTransport(uint64_t transportId, int maxWellKnownEndpoints, IPAllowList const* allowList)
: self(new TransportData(transportId, maxWellKnownEndpoints, allowList)) {
self->multiVersionCleanup = multiVersionCleanupWorker(self);
}
FlowTransport::~FlowTransport() {
delete self;
}
void FlowTransport::initMetrics() {
self->initMetrics();
}
NetworkAddressList FlowTransport::getLocalAddresses() const {
return self->localAddresses;
}
NetworkAddress FlowTransport::getLocalAddress() const {
return self->localAddresses.address;
}
void FlowTransport::setLocalAddress(NetworkAddress const& address) {
self->localAddresses.address = address;
}
const std::unordered_map<NetworkAddress, Reference<Peer>>& FlowTransport::getAllPeers() const {
return self->peers;
}
std::map<NetworkAddress, std::pair<uint64_t, double>>* FlowTransport::getIncompatiblePeers() {
for (auto it = self->incompatiblePeers.begin(); it != self->incompatiblePeers.end();) {
if (self->multiVersionConnections.count(it->second.first)) {
it = self->incompatiblePeers.erase(it);
} else {
it++;
}
}
return &self->incompatiblePeers;
}
Future<Void> FlowTransport::onIncompatibleChanged() {
return self->incompatiblePeersChanged.onTrigger();
}
Future<Void> FlowTransport::bind(NetworkAddress publicAddress, NetworkAddress listenAddress) {
ASSERT(publicAddress.isPublic());
if (self->localAddresses.address == NetworkAddress()) {
self->localAddresses.address = publicAddress;
} else {
self->localAddresses.secondaryAddress = publicAddress;
}
TraceEvent("Binding").detail("PublicAddress", publicAddress).detail("ListenAddress", listenAddress);
Future<Void> listenF = listen(self, listenAddress);
self->listeners.push_back(listenF);
return listenF;
}
Endpoint FlowTransport::loadedEndpoint(const UID& token) {
return Endpoint(g_currentDeliveryPeerAddress, token);
}
Future<Void> FlowTransport::loadedDisconnect() {
return g_currentDeliveryPeerDisconnect;
}
void FlowTransport::addPeerReference(const Endpoint& endpoint, bool isStream) {
if (!isStream || !endpoint.getPrimaryAddress().isValid() || !endpoint.getPrimaryAddress().isPublic())
return;
Reference<Peer> peer = self->getOrOpenPeer(endpoint.getPrimaryAddress());
if (peer->peerReferences == -1) {
peer->peerReferences = 1;
} else {
peer->peerReferences++;
}
}
void FlowTransport::removePeerReference(const Endpoint& endpoint, bool isStream) {
if (!isStream || !endpoint.getPrimaryAddress().isValid() || !endpoint.getPrimaryAddress().isPublic())
return;
Reference<Peer> peer = self->getPeer(endpoint.getPrimaryAddress());
if (peer) {
peer->peerReferences--;
if (peer->peerReferences < 0) {
TraceEvent(SevError, "InvalidPeerReferences")
.detail("References", peer->peerReferences)
.detail("Address", endpoint.getPrimaryAddress())
.detail("Token", endpoint.token);
}
if (peer->peerReferences == 0 && peer->reliable.empty() && peer->unsent.empty() &&
peer->outstandingReplies == 0 &&
peer->lastDataPacketSentTime < now() - FLOW_KNOBS->CONNECTION_MONITOR_UNREFERENCED_CLOSE_DELAY) {
peer->resetPing.trigger();
}
}
}
void FlowTransport::addEndpoint(Endpoint& endpoint, NetworkMessageReceiver* receiver, TaskPriority taskID) {
endpoint.token = deterministicRandom()->randomUniqueID();
if (receiver->isStream()) {
endpoint.addresses = self->localAddresses;
endpoint.token = UID(endpoint.token.first() | TOKEN_STREAM_FLAG, endpoint.token.second());
} else {
endpoint.addresses = NetworkAddressList();
endpoint.token = UID(endpoint.token.first() & ~TOKEN_STREAM_FLAG, endpoint.token.second());
}
self->endpoints.insert(receiver, endpoint.token, taskID);
}
void FlowTransport::addEndpoints(std::vector<std::pair<FlowReceiver*, TaskPriority>> const& streams) {
self->endpoints.insert(self->localAddresses, streams);
}
void FlowTransport::removeEndpoint(const Endpoint& endpoint, NetworkMessageReceiver* receiver) {
self->endpoints.remove(endpoint.token, receiver);
}
void FlowTransport::addWellKnownEndpoint(Endpoint& endpoint, NetworkMessageReceiver* receiver, TaskPriority taskID) {
endpoint.addresses = self->localAddresses;
ASSERT(receiver->isStream());
self->endpoints.insertWellKnown(receiver, endpoint.token, taskID);
}
static void sendLocal(TransportData* self, ISerializeSource const& what, const Endpoint& destination) {
TEST(true); // "Loopback" delivery
// SOMEDAY: Would it be better to avoid (de)serialization by doing this check in flow?
Standalone<StringRef> copy;
ObjectWriter wr(AssumeVersion(g_network->protocolVersion()));
what.serializeObjectWriter(wr);
copy = wr.toStringRef();
#if VALGRIND
VALGRIND_CHECK_MEM_IS_DEFINED(copy.begin(), copy.size());
#endif
ASSERT(copy.size() > 0);
TaskPriority priority = self->endpoints.getPriority(destination.token);
if (priority != TaskPriority::UnknownEndpoint || (destination.token.first() & TOKEN_STREAM_FLAG) != 0) {
Reference<AuthorizedTenants> authorizedTenants = makeReference<AuthorizedTenants>();
authorizedTenants->trusted = true;
deliver(self,
destination,
priority,
ArenaReader(copy.arena(), copy, AssumeVersion(currentProtocolVersion)),
NetworkAddress(),
authorizedTenants,
self->localCVM,
InReadSocket::False,
Never());
}
}
static ReliablePacket* sendPacket(TransportData* self,
Reference<Peer> peer,
ISerializeSource const& what,
const Endpoint& destination,
bool reliable) {
const bool checksumEnabled = !destination.getPrimaryAddress().isTLS();
++self->countPacketsGenerated;
// If there isn't an open connection, a public address, or the peer isn't compatible, we can't send
if (!peer || (peer->outgoingConnectionIdle && !destination.getPrimaryAddress().isPublic()) ||
(peer->incompatibleProtocolVersionNewer &&
destination.token != Endpoint::wellKnownToken(WLTOKEN_PING_PACKET))) {
TEST(true); // Can't send to private address without a compatible open connection
return nullptr;
}
bool firstUnsent = peer->unsent.empty();
PacketBuffer* pb = peer->unsent.getWriteBuffer();
ReliablePacket* rp = reliable ? new ReliablePacket : 0;
int prevBytesWritten = pb->bytes_written;
PacketBuffer* checksumPb = pb;
PacketWriter wr(pb,
rp,
AssumeVersion(g_network->protocolVersion())); // SOMEDAY: Can we downgrade to talk to older peers?
// Reserve some space for packet length and checksum, write them after serializing data
SplitBuffer packetInfoBuffer;
uint32_t len;
// This is technically abstraction breaking but avoids XXH3_createState() and XXH3_freeState() which are just
// malloc/free
XXH3_state_t checksumState;
// Checksum will be calculated with buffer API if contiguous, else using stream API. Mode is tracked here.
bool checksumStream = false;
XXH64_hash_t checksum;
int packetInfoSize = PACKET_LEN_WIDTH;
if (checksumEnabled) {
packetInfoSize += sizeof(checksum);
}
wr.writeAhead(packetInfoSize, &packetInfoBuffer);
wr << destination.token;
what.serializePacketWriter(wr);
pb = wr.finish();
len = wr.size() - packetInfoSize;
if (checksumEnabled) {
// Find the correct place to start calculating checksum
uint32_t checksumUnprocessedLength = len;
prevBytesWritten += packetInfoSize;
if (prevBytesWritten >= checksumPb->bytes_written) {
prevBytesWritten -= checksumPb->bytes_written;
checksumPb = checksumPb->nextPacketBuffer();
}
// Checksum calculation
while (checksumUnprocessedLength > 0) {
uint32_t processLength =
std::min(checksumUnprocessedLength, (uint32_t)(checksumPb->bytes_written - prevBytesWritten));
// If not in checksum stream mode yet
if (!checksumStream) {
// If there is nothing left to process then calculate checksum directly
if (processLength == checksumUnprocessedLength) {
checksum = XXH3_64bits(checksumPb->data() + prevBytesWritten, processLength);
} else {
// Otherwise, initialize checksum state and switch to stream mode
if (XXH3_64bits_reset(&checksumState) != XXH_OK) {
throw internal_error();
}
checksumStream = true;
}
}
// If in checksum stream mode, update the checksum state
if (checksumStream) {
if (XXH3_64bits_update(&checksumState, checksumPb->data() + prevBytesWritten, processLength) !=
XXH_OK) {
throw internal_error();
}
}
checksumUnprocessedLength -= processLength;
checksumPb = checksumPb->nextPacketBuffer();
prevBytesWritten = 0;
}
// If in checksum stream mode, get the final checksum
if (checksumStream) {
checksum = XXH3_64bits_digest(&checksumState);
}
}
// Write packet length and checksum into packet buffer
packetInfoBuffer.write(&len, sizeof(len));
if (checksumEnabled) {
packetInfoBuffer.write(&checksum, sizeof(checksum), sizeof(len));
}
if (len > FLOW_KNOBS->PACKET_LIMIT) {
TraceEvent(SevError, "PacketLimitExceeded")
.detail("ToPeer", destination.getPrimaryAddress())
.detail("Length", (int)len);
// throw platform_error(); // FIXME: How to recover from this situation?
} else if (len > FLOW_KNOBS->PACKET_WARNING) {
TraceEvent(self->warnAlwaysForLargePacket ? SevWarnAlways : SevWarn, "LargePacketSent")
.suppressFor(1.0)
.detail("ToPeer", destination.getPrimaryAddress())
.detail("Length", (int)len)
.detail("Token", destination.token)
.backtrace();
if (g_network->isSimulated())
self->warnAlwaysForLargePacket = false;
}
#if VALGRIND
SendBuffer* checkbuf = pb;
while (checkbuf) {
int size = checkbuf->bytes_written;
const uint8_t* data = checkbuf->data();
VALGRIND_CHECK_MEM_IS_DEFINED(data, size);
checkbuf = checkbuf->next;
}
#endif
peer->send(pb, rp, firstUnsent);
if (destination.token != Endpoint::wellKnownToken(WLTOKEN_PING_PACKET)) {
peer->lastDataPacketSentTime = now();
}
return rp;
}
ReliablePacket* FlowTransport::sendReliable(ISerializeSource const& what, const Endpoint& destination) {
if (self->isLocalAddress(destination.getPrimaryAddress())) {
sendLocal(self, what, destination);
return nullptr;
}
Reference<Peer> peer = self->getOrOpenPeer(destination.getPrimaryAddress());
return sendPacket(self, peer, what, destination, true);
}
void FlowTransport::cancelReliable(ReliablePacket* p) {
if (p)
p->remove();
// SOMEDAY: Call reliable.compact() if a lot of memory is wasted in PacketBuffers by formerly reliable packets mixed
// with a few reliable ones. Don't forget to delref the new PacketBuffers since they are unsent.
}
Reference<Peer> FlowTransport::sendUnreliable(ISerializeSource const& what,
const Endpoint& destination,
bool openConnection) {
if (self->isLocalAddress(destination.getPrimaryAddress())) {
sendLocal(self, what, destination);
return Reference<Peer>();
}
Reference<Peer> peer;
if (openConnection) {
peer = self->getOrOpenPeer(destination.getPrimaryAddress());
} else {
peer = self->getPeer(destination.getPrimaryAddress());
}
sendPacket(self, peer, what, destination, false);
return peer;
}
Reference<AsyncVar<bool>> FlowTransport::getDegraded() {
return self->degraded;
}
// Returns the protocol version of the peer at the specified address. The result is returned as an AsyncVar that
// can be used to monitor for changes of a peer's protocol. The protocol version will be unset in the event that
// there is no connection established to the peer.
//
// Note that this function does not establish a connection to the peer. In order to obtain a peer's protocol
// version, some other mechanism should be used to connect to that peer.
Reference<AsyncVar<Optional<ProtocolVersion>> const> FlowTransport::getPeerProtocolAsyncVar(NetworkAddress addr) {
return self->peers.at(addr)->protocolVersion;
}
void FlowTransport::resetConnection(NetworkAddress address) {
auto peer = self->getPeer(address);
if (peer) {
peer->resetConnection.trigger();
}
}
bool FlowTransport::incompatibleOutgoingConnectionsPresent() {
return self->numIncompatibleConnections > 0;
}
void FlowTransport::createInstance(bool isClient,
uint64_t transportId,
int maxWellKnownEndpoints,
IPAllowList const* allowList) {
g_network->setGlobal(INetwork::enFlowTransport,
(flowGlobalType) new FlowTransport(transportId, maxWellKnownEndpoints, allowList));
g_network->setGlobal(INetwork::enNetworkAddressFunc, (flowGlobalType)&FlowTransport::getGlobalLocalAddress);
g_network->setGlobal(INetwork::enNetworkAddressesFunc, (flowGlobalType)&FlowTransport::getGlobalLocalAddresses);
g_network->setGlobal(INetwork::enFailureMonitor, (flowGlobalType) new SimpleFailureMonitor());
g_network->setGlobal(INetwork::enClientFailureMonitor, isClient ? (flowGlobalType)1 : nullptr);
}
HealthMonitor* FlowTransport::healthMonitor() {
return &self->healthMonitor;
}