foundationdb/fdbserver/VersionedBTree.actor.cpp

2206 lines
86 KiB
C++
Executable File

/*
* VersionedBTree.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "flow/flow.h"
#include "IVersionedStore.h"
#include "IPager.h"
#include "fdbclient/Tuple.h"
#include "flow/serialize.h"
#include "flow/genericactors.actor.h"
#include "flow/UnitTest.h"
#include "MemoryPager.h"
#include "IndirectShadowPager.h"
#include <map>
#include <vector>
#include "fdbclient/CommitTransaction.h"
#include "IKeyValueStore.h"
#include "PrefixTree.h"
#include <string.h>
#include <boost/asio.hpp>
// Convenience method for converting a Standalone to a Ref while adding its arena to another arena.
template<typename T> inline const Standalone<T> & dependsOn(Arena &arena, const Standalone<T> &s) {
arena.dependsOn(s.arena());
return s;
}
struct BTreePage {
enum EPageFlags { IS_LEAF = 1};
uint8_t flags;
uint16_t count;
uint32_t kvBytes;
PrefixTree tree;
static inline int GetHeaderSize() {
return sizeof(BTreePage) - sizeof(PrefixTree);
}
std::string toString(bool write, LogicalPageID id, Version ver, StringRef lowerBoundKey, StringRef upperBoundKey) const {
std::string r;
r += format("BTreePage op=%s id=%d ver=%lld ptr=%p flags=0x%X count=%d kvBytes=%d\nlowerBoundKey='%s'\nupperBoundKey='%s'",
write ? "write" : "read", id, ver, this, (int)flags, (int)count, (int)kvBytes,
lowerBoundKey.toHexString().c_str(), upperBoundKey.toHexString().c_str());
try {
if(count > 0) {
PrefixTree::Cursor c = tree.getCursor(lowerBoundKey, upperBoundKey);
c.moveFirst();
ASSERT(c.valid());
do {
r += "\n ";
Tuple t;
try {
t = Tuple::unpack(c.getKeyRef());
for(int i = 0; i < t.size(); ++i) {
if(i != 0)
r += ",";
if(t.getType(i) == Tuple::ElementType::BYTES)
r += format("'%s'", t.getString(i).printable().c_str());
if(t.getType(i) == Tuple::ElementType::INT)
r += format("%lld", t.getInt(i, true));
}
} catch(Error &e) {
}
r += format("['%s']", c.getKeyRef().toHexString().c_str());
r += " -> ";
if(flags && IS_LEAF)
r += format("'%s'", c.getValueRef().toHexString().c_str());
else
r += format("Page %u", *(const uint32_t *)c.getValueRef().begin());
} while(c.moveNext());
}
} catch(Error &e) {
debug_printf("BTreePage::toString ERROR: %s\n", e.what());
debug_printf("BTreePage::toString partial result: %s\n", r.c_str());
throw;
}
return r;
}
} __attribute__((packed, aligned(1)));
static void writeEmptyPage(Reference<IPage> page, uint8_t newFlags, int pageSize) {
BTreePage *btpage = (BTreePage *)page->begin();
btpage->flags = newFlags;
btpage->kvBytes = 0;
btpage->count = 0;
btpage->tree.build(nullptr, nullptr, StringRef(), StringRef());
}
struct BoundariesAndPage {
Key lowerBound;
Reference<IPage> page;
Optional<Key> forcedUpperBound;
};
// Returns a std::vector of pairs of lower boundary key indices within kvPairs and encoded pages.
template<typename Allocator>
static std::vector<BoundariesAndPage> buildPages(bool minimalBoundaries, StringRef lowerBound, StringRef upperBound, std::vector<PrefixTree::EntryRef> entries, uint8_t newFlags, Allocator const &newPageFn, int pageSize)
{
// For convenience, reduce the effective page size by the btree page and prefix tree header sizes
pageSize -= (BTreePage::GetHeaderSize() + PrefixTree::GetHeaderSize());
std::vector<BoundariesAndPage> pages;
// TODO: Move all of this abstraction breaking stuff into PrefixTree in the form of a helper function or class.
int kvBytes = 0; // User key/value bytes in page
int compressedBytes = 0; // Conservative estimate of size of compressed page. TODO: Make this exactly right if possible
int start = 0;
int i = 0;
const int iEnd = entries.size();
// Lower bound of the page being added to
Key pageLowerBound = lowerBound;
Key pageUpperBound;
Key forcedBoundary;
while(i <= iEnd) {
bool end = i == iEnd;
bool flush = end;
// If not the end, add i to the page if necessary
if(end) {
pageUpperBound = upperBound;
}
else {
// Common prefix with previous record
const PrefixTree::EntryRef &entry = entries[i];
int prefixLen = commonPrefixLength(entry.key, (i == start) ? pageLowerBound : entries[i - 1].key);
int keySize = entry.key.size();
int valueSize = entry.value.size();
// Minimal bytes needed to store this record IF all bytes could be borrowed from parent boundary
int minSpaceNeeded = valueSize + PrefixTree::Node::getMaxOverhead(i, entry.key.size(), entry.value.size()) + 2;
int maxSpaceNeeded = minSpaceNeeded + keySize - prefixLen;
debug_printf("Trying to add record %d of %lu (i=%d) klen %d vlen %d prefixLen %d minSpaceNeeded %d maxSpaceNeeded %d usedSoFar %d/%d '%s'\n",
i + 1, entries.size(), i, keySize, valueSize, prefixLen,
minSpaceNeeded, maxSpaceNeeded, compressedBytes, pageSize, entry.key.toHexString(15).c_str());
int spaceAvailable = pageSize - compressedBytes;
bool newUserKey = false; // TODO: Get this info for real
// Does it fit normally?
bool fits = spaceAvailable >= maxSpaceNeeded;
bool forced = false;
// If it doesn't fit, we're either ending the current page here or forcing the record to fit by making the parent boundary longer
if(!fits) {
// Can/should it be forced to fit by extending the parent boundary?
if(!newUserKey && spaceAvailable >= minSpaceNeeded) {
forced = true;
int keyBytesInPage = spaceAvailable - minSpaceNeeded;
// Update maxSpaceNeeded to what the record will actually use
maxSpaceNeeded = minSpaceNeeded + keyBytesInPage;
// Make an upper bound of at least all the bytes we can't fit in this page
int forcedLen = keySize - keyBytesInPage;
forcedBoundary = strinc(entry.key.substr(0, forcedLen));
StringRef next = (i + 1 == iEnd) ? upperBound : entries[i + 1].key;
// TODO: Determine the result of this comparison without creating the forced boundary using strinc first.
if(next < forcedBoundary) {
pageUpperBound = next;
}
else {
pageUpperBound = forcedBoundary;
}
debug_printf(" forcing keyBytesInPage %d forcedLen %d prefixLen %d boundary %s\n", keyBytesInPage, forcedLen, prefixLen, forcedBoundary.toHexString(15).c_str());
}
else {
if(minimalBoundaries) {
// Note that prefixLen is guaranteed to be < entry.key.size() because entries are in increasing order and cannot repeat.
int len = prefixLen + 1;
if(entry.key[prefixLen] == 0)
len = std::min(len + 1, entry.key.size());
pageUpperBound = entry.key.substr(0, len);
}
else {
pageUpperBound = entry.key;
}
}
}
// If the record fit normally or we forced it to then add it to the page set
if(fits || forced) {
kvBytes += keySize + valueSize;
compressedBytes += maxSpaceNeeded;
++i;
}
flush = !fits;
}
// If flush then write a page using records from start to i. It's guaranteed that pageUpperBound has been set above.
if(flush) {
end = i == iEnd; // i could have been moved above
int count = i - start;
debug_printf("Flushing page start=%d i=%d\nlower='%s'\nupper='%s'\n", start, i, pageLowerBound.toHexString().c_str(), pageUpperBound.toHexString().c_str());
ASSERT(pageLowerBound <= pageUpperBound);
for(int j = start; j < i; ++j) {
debug_printf(" %d: %s -> %s\n", j, entries[j].key.toHexString(15).c_str(), entries[j].value.toHexString(15).c_str());
}
Reference<IPage> page = newPageFn();
BTreePage *btpage = (BTreePage *)page->begin();
btpage->flags = newFlags;
btpage->kvBytes = kvBytes;
btpage->count = i - start;
int written = btpage->tree.build(&entries[start], &entries[i], pageLowerBound, pageUpperBound);
if(written > pageSize) {
fprintf(stderr, "ERROR: Wrote %d bytes to %d byte page. recs %d kvBytes %d compressed %d\n", written, pageSize, i - start, kvBytes, compressedBytes);
ASSERT(false);
}
pages.push_back({pageLowerBound, page});
// If the page upper bound isn't the upper bound passed into buildPages() then it must be written
// as an actual page boundary, which won't happen if we've reached the end of the records
// so in that case add a result page entry with the forced parent boundary and a null page.
// This is a "boundary-only" entry.
if(end && pageUpperBound != upperBound) {
debug_printf("Flushing final upper bound as empty page.\n");
pages.push_back({pageUpperBound, Reference<IPage>()});
}
start = i;
kvBytes = 0;
compressedBytes = 0;
pageLowerBound = pageUpperBound;
if(end)
break;
}
}
//debug_printf("buildPages: returning pages.size %lu, kvpairs %lu\n", pages.size(), kvPairs.size());
return pages;
}
// Internal key/value records represent either a cleared key at a version or a shard of a value of a key at a version.
// When constructing and packing these it is assumed that the key and value memory is being held elsewhere.
struct KeyVersionValueRef {
KeyVersionValueRef() : version(invalidVersion) {}
// Cleared key at version
KeyVersionValueRef(KeyRef key, Version ver, Optional<ValueRef> val = {})
: key(key), version(ver), value(val), valueIndex(0)
{
if(value.present())
valueTotalSize = value.get().size();
}
KeyVersionValueRef(Arena &a, const KeyVersionValueRef &toCopy) {
key = KeyRef(a, toCopy.key);
version = toCopy.version;
if(toCopy.value.present()) {
value = ValueRef(a, toCopy.value.get());
}
valueTotalSize = toCopy.valueTotalSize;
valueIndex = toCopy.valueIndex;
}
static inline Key searchKey(StringRef key, Version ver) {
Tuple t;
t.append(key);
t.append(ver);
Standalone<VectorRef<uint8_t>> packed = t.getData();
packed.append(packed.arena(), (const uint8_t *)"\xff", 1);
return Key(KeyRef(packed.begin(), packed.size()), packed.arena());
}
KeyRef key;
Version version;
int64_t valueTotalSize; // Total size of value, including all other KVV parts if multipart
int64_t valueIndex; // Index within reconstituted value of this part
Optional<ValueRef> value;
// Result undefined if value is not present
bool isMultiPart() const { return value.get().size() != valueTotalSize; }
bool valid() const { return version != invalidVersion; }
// Generate a kv shard from a complete kv
KeyVersionValueRef split(int start, int len) {
ASSERT(value.present());
KeyVersionValueRef r(key, version);
r.value = value.get().substr(start, len);
r.valueIndex = start;
r.valueTotalSize = valueTotalSize;
return r;
}
// Encode the record for writing to a btree page.
// If copyValue is false, the value is not copied into the returned arena.
//
// Encoded forms:
// userKey, version - the value is present and complete (which includes an empty value)
// userKey, version, valueSize=0 - the key was deleted as of this version
// userKey, version, valueSize>=0, valuePart - the value is present and spans multiple records
inline PrefixTree::Entry pack(bool copyValue = true) const {
Tuple t;
t.append(key);
t.append(version);
if(!value.present()) {
t.append(0);
}
else {
if(isMultiPart()) {
t.append(valueTotalSize);
t.append(valueIndex);
}
}
Key k = t.getDataAsStandalone();
ValueRef v;
if(value.present()) {
v = copyValue ? StringRef(k.arena(), value.get()) : value.get();
}
return PrefixTree::Entry({k, v}, k.arena());
}
// Supports partial/incomplete encoded sequences.
// Unpack an encoded key/value pair.
// Both key and value will be in the returned arena unless copyValue is false in which case
// the value will not be copied to the arena.
static Standalone<KeyVersionValueRef> unpack(KeyValueRef kv, bool copyValue = true) {
//debug_printf("Unpacking: '%s' -> '%s' \n", kv.key.toHexString(15).c_str(), kv.value.toHexString(15).c_str());
Standalone<KeyVersionValueRef> result;
if(kv.key.size() != 0) {
#if REDWOOD_DEBUG
try { Tuple t = Tuple::unpack(kv.key); } catch(Error &e) { debug_printf("UNPACK FAIL %s %s\n", kv.key.toHexString().c_str(), platform::get_backtrace().c_str()); }
#endif
Tuple k = Tuple::unpack(kv.key);
int s = k.size();
switch(s) {
case 4:
// Value shard
result.valueTotalSize = k.getInt(2);
result.valueIndex = k.getInt(3, true);
result.value = kv.value;
break;
case 3:
// Deleted or Complete value
result.valueIndex = 0;
result.valueTotalSize = k.getInt(2, true);
// If not a clear, set the value, otherwise it remains non-present
if(result.valueTotalSize != 0)
result.value = kv.value;
break;
default:
result.valueIndex = 0;
result.valueTotalSize = kv.value.size();
result.value = kv.value;
break;
};
if(s > 0) {
Key sk = k.getString(0);
result.arena().dependsOn(sk.arena());
result.key = sk;
if(s > 1) {
result.version = k.getInt(1, true);
}
}
}
if(copyValue && result.value.present()) {
result.value = StringRef(result.arena(), result.value.get());
}
return result;
}
static Standalone<KeyVersionValueRef> unpack(KeyRef k) {
return unpack(KeyValueRef(k, StringRef()));
}
std::string toString() const {
std::string r;
r += format("'%s' @%lld -> ", key.toHexString(15).c_str(), version);
r += value.present() ? format("'%s' %d/%d", value.get().toHexString(15).c_str(), valueIndex, valueTotalSize).c_str() : "<cleared>";
return r;
}
};
typedef Standalone<KeyVersionValueRef> KeyVersionValue;
#define NOT_IMPLEMENTED { UNSTOPPABLE_ASSERT(false); }
class VersionedBTree : public IVersionedStore {
public:
// The first possible internal record possible in the tree
static KeyVersionValueRef beginKVV;
// A record which is greater than the last possible record in the tree
static KeyVersionValueRef endKVV;
// The encoded key form of the above two things.
static Key beginKey;
static Key endKey;
virtual Future<Void> getError() NOT_IMPLEMENTED
virtual Future<Void> onClosed() NOT_IMPLEMENTED
virtual void dispose() NOT_IMPLEMENTED
virtual void close() NOT_IMPLEMENTED
virtual KeyValueStoreType getType() NOT_IMPLEMENTED
virtual bool supportsMutation(int op) NOT_IMPLEMENTED
virtual StorageBytes getStorageBytes() NOT_IMPLEMENTED
// Writes are provided in an ordered stream.
// A write is considered part of (a change leading to) the version determined by the previous call to setWriteVersion()
// A write shall not become durable until the following call to commit() begins, and shall be durable once the following call to commit() returns
virtual void set(KeyValueRef keyValue) {
SingleKeyMutationsByVersion &changes = insertMutationBoundary(keyValue.key)->second.startKeyMutations;
// Add the set if the changes set is empty or the last entry isn't a set to exactly the same value
if(changes.empty() || !changes.rbegin()->second.equalToSet(keyValue.value)) {
changes[m_writeVersion] = SingleKeyMutation(keyValue.value);
}
}
virtual void clear(KeyRangeRef range) {
MutationBufferT::iterator iBegin = insertMutationBoundary(range.begin);
MutationBufferT::iterator iEnd = insertMutationBoundary(range.end);
// For each boundary in the cleared range
while(iBegin != iEnd) {
RangeMutation &range = iBegin->second;
// Set the rangeClearedVersion if not set
if(!range.rangeClearVersion.present())
range.rangeClearVersion = m_writeVersion;
// Add a clear to the startKeyMutations map if it's empty or the last item is not a clear
if(range.startKeyMutations.empty() || !range.startKeyMutations.rbegin()->second.isClear())
range.startKeyMutations[m_writeVersion] = SingleKeyMutation();
++iBegin;
}
}
virtual void mutate(int op, StringRef param1, StringRef param2) NOT_IMPLEMENTED
// Versions [begin, end) no longer readable
virtual void forgetVersions(Version begin, Version end) NOT_IMPLEMENTED
virtual Future<Version> getLatestVersion() {
if(m_writeVersion != invalidVersion)
return m_writeVersion;
return m_pager->getLatestVersion();
}
Version getWriteVersion() {
return m_writeVersion;
}
Version getLastCommittedVersion() {
return m_lastCommittedVersion;
}
VersionedBTree(IPager *pager, std::string name, int target_page_size = -1)
: m_pager(pager),
m_writeVersion(invalidVersion),
m_pageSize(pager->getUsablePageSize()),
m_lastCommittedVersion(invalidVersion),
m_pBuffer(nullptr),
m_name(name)
{
if(target_page_size > 0 && target_page_size < m_pageSize)
m_pageSize = target_page_size;
m_init = init_impl(this);
m_latestCommit = m_init;
}
ACTOR static Future<Void> init_impl(VersionedBTree *self) {
self->m_root = 0;
state Version latest = wait(self->m_pager->getLatestVersion());
if(latest == 0) {
++latest;
Reference<IPage> page = self->m_pager->newPageBuffer();
writeEmptyPage(page, BTreePage::IS_LEAF, self->m_pageSize);
self->writePage(self->m_root, page, latest, StringRef(), StringRef());
self->m_pager->setLatestVersion(latest);
Void _ = wait(self->m_pager->commit());
}
self->m_lastCommittedVersion = latest;
return Void();
}
Future<Void> init() { return m_init; }
virtual ~VersionedBTree() {
m_init.cancel();
m_latestCommit.cancel();
}
// readAtVersion() may only be called on a version which has previously been passed to setWriteVersion() and never previously passed
// to forgetVersion. The returned results when violating this precondition are unspecified; the store is not required to be able to detect violations.
// The returned read cursor provides a consistent snapshot of the versioned store, corresponding to all the writes done with write versions less
// than or equal to the given version.
// If readAtVersion() is called on the *current* write version, the given read cursor MAY reflect subsequent writes at the same
// write version, OR it may represent a snapshot as of the call to readAtVersion().
virtual Reference<IStoreCursor> readAtVersion(Version v) {
// TODO: Use the buffer to return uncommitted data
// For now, only committed versions can be read.
ASSERT(v <= m_lastCommittedVersion);
return Reference<IStoreCursor>(new Cursor(v, m_pager, m_root));
}
// Must be nondecreasing
virtual void setWriteVersion(Version v) {
ASSERT(v > m_lastCommittedVersion);
// If there was no current mutation buffer, create one in the buffer map and update m_pBuffer
if(m_pBuffer == nullptr) {
// When starting a new mutation buffer its start version must be greater than the last write version
ASSERT(v > m_writeVersion);
m_pBuffer = &m_mutationBuffers[v];
// Create range representing the entire keyspace. This reduces edge cases to applying mutations
// because now all existing keys are within some range in the mutation map.
(*m_pBuffer)[beginKVV.key];
(*m_pBuffer)[endKVV.key];
}
else {
// It's OK to set the write version to the same version repeatedly so long as m_pBuffer is not null
ASSERT(v >= m_writeVersion);
}
m_writeVersion = v;
}
virtual Future<Void> commit() {
if(m_pBuffer == nullptr)
return m_latestCommit;
return commit_impl(this);
}
private:
void writePage(LogicalPageID id, Reference<IPage> page, Version ver, StringRef pageLowerBound, StringRef pageUpperBound) {
if(!page) {
ASSERT(id == 0);
return;
}
debug_printf("writePage(): %s\n", ((const BTreePage *)page->begin())->toString(true, id, ver, pageLowerBound, pageUpperBound).c_str());
m_pager->writePage(id, page, ver);
}
LogicalPageID m_root;
typedef std::pair<Key, LogicalPageID> KeyPagePairT;
typedef std::pair<Version, std::vector<KeyPagePairT>> VersionedKeyToPageSetT;
typedef std::vector<VersionedKeyToPageSetT> VersionedChildrenT;
// Represents a change to a single key - set, clear, or atomic op
struct SingleKeyMutation {
// Clear
SingleKeyMutation() : op(MutationRef::ClearRange) {}
// Set
SingleKeyMutation(Value val) : op(MutationRef::SetValue), value(val) {}
// Atomic Op
SingleKeyMutation(MutationRef::Type op, Value val) : op(op), value(val) {}
MutationRef::Type op;
Value value;
inline bool isClear() const { return op == MutationRef::ClearRange; }
inline bool isSet() const { return op == MutationRef::SetValue; }
inline bool isAtomicOp() const { return !isSet() && !isClear(); }
inline bool equalToSet(ValueRef val) { return isSet() && value == val; }
// The returned packed key will be added to arena, the value will just point to the SingleKeyMutation's memory
inline KeyVersionValueRef toKVV(KeyRef userKey, Version version) const {
// No point in serializing an atomic op, it needs to be coalesced to a real value.
ASSERT(!isAtomicOp());
if(isClear())
return KeyVersionValueRef(userKey, version);
return KeyVersionValueRef(userKey, version, value);
}
std::string toString() const {
return format("op=%d val='%s'", op, printable(value).c_str());
}
};
// Represents mutations on a single key and a possible clear to a range that begins
// immediately after that key
typedef std::map<Version, SingleKeyMutation> SingleKeyMutationsByVersion;
struct RangeMutation {
// Mutations for exactly the start key
SingleKeyMutationsByVersion startKeyMutations;
// A clear range version, if cleared, for the range starting immediately AFTER the start key
Optional<Version> rangeClearVersion;
// Returns true if this RangeMutation doesn't actually mutate anything
bool noChanges() const {
return !rangeClearVersion.present() && startKeyMutations.empty();
}
std::string toString() const {
std::string result;
result.append("rangeClearVersion: ");
if(rangeClearVersion.present())
result.append(format("%lld", rangeClearVersion.get()));
else
result.append("<not present>");
result.append(" startKeyMutations: ");
for(SingleKeyMutationsByVersion::value_type const &m : startKeyMutations)
result.append(format("[%lld => %s] ", m.first, m.second.toString().c_str()));
return result;
}
};
typedef std::map<Key, RangeMutation> MutationBufferT;
/* Mutation Buffer Overview
*
* MutationBuffer maps the start of a range to a RangeMutation. The end of the range is
* the next range start in the map.
*
* - The buffer starts out with keys '' and endKVV.key already populated.
*
* - When a new key is inserted into the buffer map, it is by definition
* splitting an existing range so it should take on the rangeClearVersion of
* the immediately preceding key which is the start of that range
*
* - Keys are inserted into the buffer map for every individual operation (set/clear/atomic)
* key and for both the start and end of a range clear.
*
* - To apply a single clear, add it to the individual ops only if the last entry is not also a clear.
*
* - To apply a range clear, after inserting the new range boundaries do the following to the start
* boundary and all successive boundaries < end
* - set the range clear version if not already set
* - add a clear to the startKeyMutations if the final entry is not a clear.
*
* - Note that there are actually TWO valid ways to represent
* set c = val1 at version 1
* clear c\x00 to z at version 2
* with this model. Either
* c = { rangeClearVersion = 2, startKeyMutations = { 1 => val1 }
* z = { rangeClearVersion = <not present>, startKeyMutations = {}
* OR
* c = { rangeClearVersion = <not present>, startKeyMutations = { 1 => val1 }
* c\x00 = { rangeClearVersion = 2, startKeyMutations = { 2 => <not present> }
* z = { rangeClearVersion = <not present>, startKeyMutations = {}
*
* This is because the rangeClearVersion applies to a range begining with the first
* key AFTER the start key, so that the logic for reading the start key is more simple
* as it only involves consulting startKeyMutations. When adding a clear range, the
* boundary key insert/split described above is valid, and is what is currently done,
* but it would also be valid to see if the last key before startKey is equal to
* keyBefore(startKey), and if so that mutation buffer boundary key can be used instead
* without adding an additional key to the buffer.
*/
void printMutationBuffer(MutationBufferT::const_iterator begin, MutationBufferT::const_iterator end) const {
#if REDWOOD_DEBUG
debug_printf("-------------------------------------\n");
debug_printf("BUFFER\n");
while(begin != end) {
debug_printf("'%s': %s\n", printable(begin->first).c_str(), begin->second.toString().c_str());
++begin;
}
debug_printf("-------------------------------------\n");
#endif
}
void printMutationBuffer(MutationBufferT *buf) const {
return printMutationBuffer(buf->begin(), buf->end());
}
// Find or create a mutation buffer boundary for bound and return an iterator to it
MutationBufferT::iterator insertMutationBoundary(Key boundary) {
ASSERT(m_pBuffer != nullptr);
// Find the first split point in buffer that is >= key
MutationBufferT::iterator ib = m_pBuffer->lower_bound(boundary);
// Since the initial state of the mutation buffer contains the range '' through
// the maximum possible key, our search had to have found something.
ASSERT(ib != m_pBuffer->end());
// If we found the boundary we are looking for, return its iterator
if(ib->first == boundary)
return ib;
// ib is our insert hint. Insert the new boundary and set ib to its entry
ib = m_pBuffer->insert(ib, {boundary, RangeMutation()});
// ib is certainly > begin() because it is guaranteed that the empty string
// boundary exists and the only way to have found that is to look explicitly
// for it in which case we would have returned above.
MutationBufferT::iterator iPrevious = ib;
--iPrevious;
if(iPrevious->second.rangeClearVersion.present()) {
ib->second.rangeClearVersion = iPrevious->second.rangeClearVersion;
ib->second.startKeyMutations[iPrevious->second.rangeClearVersion.get()] = SingleKeyMutation();
}
return ib;
}
void buildNewRoot(Version version, std::vector<BoundariesAndPage> &pages, std::vector<LogicalPageID> &logicalPageIDs) {
//debug_printf("buildNewRoot start %lu\n", pages.size());
// While there are multiple child pages for this version we must write new tree levels.
while(pages.size() > 1) {
std::vector<PrefixTree::EntryRef> childEntries;
for(int i=0; i<pages.size(); i++)
childEntries.emplace_back(pages[i].lowerBound, StringRef((unsigned char *)&logicalPageIDs[i], sizeof(uint32_t)));
int oldPages = pages.size();
pages = buildPages(false, beginKey, endKey, childEntries, 0, [=](){ return m_pager->newPageBuffer(); }, m_pageSize);
// If there isn't a reduction in page count then we'll build new root levels forever.
//ASSERT(pages.size() < oldPages);
debug_printf("Writing a new root level at version %lld with %lu children across %lu pages\n", version, childEntries.size(), pages.size());
// Allocate logical page ids for the new level
logicalPageIDs.clear();
// Only reuse root if there's one replacement page being written or if the subtree root is not the tree root
if(pages.size() == 1)
logicalPageIDs.push_back(m_root);
// Allocate enough pageIDs for all of the pages
for(int i=logicalPageIDs.size(); i<pages.size(); i++)
logicalPageIDs.push_back( pages[i].page ? m_pager->allocateLogicalPage() : 0);
for(int i=0; i<pages.size(); i++)
writePage( logicalPageIDs[i], pages[i].page, version, pages[i].lowerBound, (i == pages.size() - 1) ? endKey : pages[i + 1].lowerBound);
}
}
// Returns list of (version, list of (lower_bound, list of children) )
ACTOR static Future<VersionedChildrenT> commitSubtree(VersionedBTree *self, MutationBufferT *mutationBuffer, Reference<IPagerSnapshot> snapshot, LogicalPageID root, Key lowerBoundKey, Key upperBoundKey, Key upperBoundKeyForCursor) {
debug_printf("%p commitSubtree: root=%d lower='%s' upper='%s'\n", this, root, lowerBoundKey.toHexString().c_str(), upperBoundKey.toHexString().c_str());
// Decode the (likely truncate) upper and lower bound keys for this subtree.
state KeyVersionValue lowerBoundKVV = KeyVersionValue::unpack(lowerBoundKey);
state KeyVersionValue upperBoundKVV = KeyVersionValue::unpack(upperBoundKey);
// Find the slice of the mutation buffer that is relevant to this subtree
// TODO: Rather than two lower_bound searches, perhaps just compare each mutation to the upperBound key
state MutationBufferT::const_iterator iMutationBoundary = mutationBuffer->lower_bound(lowerBoundKVV.key);
state MutationBufferT::const_iterator iMutationBoundaryEnd = mutationBuffer->lower_bound(upperBoundKVV.key);
// If the lower bound key and the upper bound key are the same then there can't be any changes to
// this subtree since changes would happen after the upper bound key as the mutated versions would
// necessarily be higher.
if(lowerBoundKVV.key == upperBoundKVV.key) {
debug_printf("%p no changes, lower and upper bound keys are the same.\n", this);
return VersionedChildrenT({ {0,{{lowerBoundKey,root}}} });
}
// If the mutation buffer key found is greater than the lower bound key then go to the previous mutation
// buffer key because it may cover deletion of some keys at the start of this subtree.
if(iMutationBoundary != mutationBuffer->begin() && iMutationBoundary->first > lowerBoundKVV.key) {
--iMutationBoundary;
}
else {
// If the there are no mutations, we're done
if(iMutationBoundary == iMutationBoundaryEnd) {
debug_printf("%p no changes, mutation buffer start/end are the same\n", this);
return VersionedChildrenT({ {0,{{lowerBoundKey,root}}} });
}
}
// TODO: Check if entire subtree is erased and return no pages, also have the previous pages deleted as of
// the cleared version.
// Another way to have no mutations is to have a single mutation range cover this
// subtree but have no changes in it
MutationBufferT::const_iterator iMutationBoundaryNext = iMutationBoundary;
++iMutationBoundaryNext;
if(iMutationBoundaryNext == iMutationBoundaryEnd && iMutationBoundary->second.noChanges()) {
debug_printf("%p no changes because sole mutation range was empty\n", this);
return VersionedChildrenT({ {0,{{lowerBoundKey,root}}} });
}
Reference<const IPage> rawPage = wait(snapshot->getPhysicalPage(root));
BTreePage *page = (BTreePage *) rawPage->begin();
debug_printf("%p commitSubtree(): %s\n", this, page->toString(false, root, snapshot->getVersion(), lowerBoundKey, upperBoundKey).c_str());
PrefixTree::Cursor existingCursor = page->tree.getCursor(lowerBoundKey, upperBoundKeyForCursor);
bool existingCursorValid = existingCursor.moveFirst();
// Leaf Page
if(page->flags & BTreePage::IS_LEAF) {
VersionedChildrenT results;
std::vector<PrefixTree::EntryRef> merged;
Arena mergedArena;
debug_printf("%p MERGING EXISTING DATA WITH MUTATIONS:\n", this);
self->printMutationBuffer(iMutationBoundary, iMutationBoundaryEnd);
// It's a given that the mutation map is not empty so it's safe to do this
Key mutationRangeStart = iMutationBoundary->first;
// There will be multiple loops advancing existing cursor, existing KVV will track its current value
KeyVersionValue existing;
if(existingCursorValid) {
existing = KeyVersionValue::unpack(existingCursor.getKVRef());
}
// If replacement pages are written they will be at the minimum version seen in the mutations for this leaf
Version minVersion = invalidVersion;
// Now, process each mutation range and merge changes with existing data.
while(iMutationBoundary != iMutationBoundaryEnd) {
debug_printf("%p New mutation boundary: '%s': %s\n", this, printable(iMutationBoundary->first).c_str(), iMutationBoundary->second.toString().c_str());
SingleKeyMutationsByVersion::const_iterator iMutations;
// If the mutation boundary key is less than the lower bound key then skip startKeyMutations for
// this bounary, we're only processing this mutation range here to apply any clears to existing data.
if(iMutationBoundary->first < lowerBoundKVV.key)
iMutations = iMutationBoundary->second.startKeyMutations.end();
// If the mutation boundary key is the same as the page lowerBound key then start reading single
// key mutations at the first version greater than the lowerBoundKey version.
else if(iMutationBoundary->first == lowerBoundKVV.key)
iMutations = iMutationBoundary->second.startKeyMutations.upper_bound(lowerBoundKVV.version);
else
iMutations = iMutationBoundary->second.startKeyMutations.begin();
SingleKeyMutationsByVersion::const_iterator iMutationsEnd = iMutationBoundary->second.startKeyMutations.end();
// Output old versions of the mutation boundary key
while(existingCursorValid && existing.key == iMutationBoundary->first) {
// Don't copy the value because this page will stay in memory until after we've built new version(s) of it
merged.push_back(dependsOn(mergedArena, existingCursor.getKV(false)));
debug_printf("%p: Added %s [existing, boundary start]\n", this, KeyVersionValue::unpack(merged.back()).toString().c_str());
existingCursorValid = existingCursor.moveNext();
if(existingCursorValid)
existing = KeyVersionValue::unpack(existingCursor.getKVRef());
}
// TODO: If a mutation set is equal to the previous existing value of the key, maybe don't write it.
// Output mutations for the mutation boundary start key
while(iMutations != iMutationsEnd) {
const SingleKeyMutation &m = iMutations->second;
int maxPartSize = std::min(255, self->m_pageSize / 5);
if(m.isClear() || m.value.size() <= maxPartSize) {
if(iMutations->first < minVersion || minVersion == invalidVersion)
minVersion = iMutations->first;
// Don't copy the value because this page will stay in memory until after we've built new version(s) of it
merged.push_back(dependsOn(mergedArena, iMutations->second.toKVV(iMutationBoundary->first, iMutations->first).pack(false)));
debug_printf("%p: Added %s [mutation, boundary start]\n", this, KeyVersionValue::unpack(merged.back()).toString().c_str());
}
else {
if(iMutations->first < minVersion || minVersion == invalidVersion)
minVersion = iMutations->first;
int bytesLeft = m.value.size();
int start = 0;
KeyVersionValueRef whole(iMutationBoundary->first, iMutations->first, m.value);
while(bytesLeft > 0) {
int partSize = std::min(bytesLeft, maxPartSize);
// Don't copy the value chunk because this page will stay in memory until after we've built new version(s) of it
merged.push_back(dependsOn(mergedArena, whole.split(start, partSize).pack(false)));
bytesLeft -= partSize;
start += partSize;
debug_printf("%p: Added %s [mutation, boundary start]\n", this, KeyVersionValue::unpack(merged.back()).toString().c_str());
}
}
++iMutations;
}
// Get the clear version for this range, which is the last thing that we need from it,
Optional<Version> clearRangeVersion = iMutationBoundary->second.rangeClearVersion;
// Advance to the next boundary because we need to know the end key for the current range.
++iMutationBoundary;
debug_printf("%p Mutation range end: '%s'\n", this, printable(iMutationBoundary->first).c_str());
// Write existing keys which are less than the next mutation boundary key, clearing if needed.
while(existingCursorValid && existing.key < iMutationBoundary->first) {
merged.push_back(dependsOn(mergedArena, existingCursor.getKV(false)));
debug_printf("%p: Added %s [existing, middle]\n", this, KeyVersionValue::unpack(merged.back()).toString().c_str());
// Write a clear of this key if needed. A clear is required if clearRangeVersion is set and the next key is different
// than this one. Note that the next key might be the in our right sibling, we can use the page upperBound to get that.
existingCursorValid = existingCursor.moveNext();
KeyVersionValue nextEntry;
if(existingCursorValid)
nextEntry = KeyVersionValue::unpack(existingCursor.getKVRef());
else
nextEntry = upperBoundKVV;
if(clearRangeVersion.present() && existing.key != nextEntry.key) {
Version clearVersion = clearRangeVersion.get();
if(clearVersion < minVersion || minVersion == invalidVersion)
minVersion = clearVersion;
merged.push_back(dependsOn(mergedArena, KeyVersionValueRef(existing.key, clearVersion).pack(false)));
debug_printf("%p: Added %s [existing, middle clear]\n", this, KeyVersionValue::unpack(merged.back()).toString().c_str());
}
if(existingCursorValid)
existing = nextEntry;
}
}
// Write any remaining existing keys, which are not subject to clears as they are beyond the cleared range.
while(existingCursorValid) {
merged.push_back(dependsOn(mergedArena, existingCursor.getKV(false)));
debug_printf("%p: Added %s [existing, tail]\n", this, KeyVersionValue::unpack(merged.back()).toString().c_str());
existingCursorValid = existingCursor.moveNext();
if(existingCursorValid)
existing = KeyVersionValue::unpack(existingCursor.getKVRef());
}
debug_printf("%p Done merging mutations into existing leaf contents\n", this);
// No changes were actually made. This could happen if there is a clear which does not cover an entire leaf but also does
// not which turns out to not match any existing data in the leaf.
if(minVersion == invalidVersion) {
debug_printf("%p No changes were made during mutation merge\n", this);
return VersionedChildrenT({ {0,{{lowerBoundKey,root}}} });
}
// TODO: Make version and key splits based on contents of merged list
IPager *pager = self->m_pager;
std::vector<BoundariesAndPage> pages = buildPages(true, lowerBoundKey, upperBoundKey, merged, BTreePage::IS_LEAF, [pager](){ return pager->newPageBuffer(); }, self->m_pageSize);
// If there isn't still just a single page of data then return the previous lower bound and page ID that lead to this page to be used for version 0
if(pages.size() != 1) {
results.push_back( {0, {{lowerBoundKey, root}}} );
}
// For each IPage of data, assign a logical pageID.
std::vector<LogicalPageID> logicalPageIDs;
// Only reuse first page if only one page is being returned or if root is not the btree root.
if(pages.size() == 1 || root != self->m_root)
logicalPageIDs.push_back(root);
// Allocate enough pageIDs for all of the pages
for(int i=logicalPageIDs.size(); i<pages.size(); i++)
logicalPageIDs.push_back( pages[i].page ? self->m_pager->allocateLogicalPage() : 0);
if(pages.size() == 1)
minVersion = 0;
// Write each page using its assigned page ID
debug_printf("%p Writing %lu replacement pages for %d at version %lld\n", this, pages.size(), root, minVersion);
for(int i=0; i<pages.size(); i++)
self->writePage(logicalPageIDs[i], pages[i].page, minVersion, pages[i].lowerBound, (i == pages.size() - 1) ? upperBoundKey : pages[i + 1].lowerBound);
// If this commitSubtree() is operating on the root, write new levels if needed until until we're returning a single page
if(root == self->m_root) {
debug_printf("%p Building new root\n", this);
self->buildNewRoot(minVersion, pages, logicalPageIDs);
}
results.push_back({minVersion, {}});
for(int i=0; i<pages.size(); i++) {
// The lower bound of the first page is the lower bound of the subtree, not the first entry in the page
Key lowerBound = (i == 0) ? lowerBoundKey : pages[i].lowerBound;
debug_printf("%p Adding page to results: %s => %d\n", this, lowerBound.toHexString().c_str(), logicalPageIDs[i]);
results.back().second.push_back( {lowerBound, logicalPageIDs[i]} );
}
debug_printf("%p DONE.\n", this);
return results;
}
else {
// Internal Page
state std::vector<Future<VersionedChildrenT>> futureChildren;
state std::vector<LogicalPageID> childPageIDs;
bool first = true;
while(existingCursorValid) {
// The lower bound for the first child is lowerBoundKey
Key childLowerBound = first ? lowerBoundKey : existingCursor.getKey();
if(first)
first = false;
uint32_t pageID = *(uint32_t*)existingCursor.getValueRef().begin();
ASSERT(pageID != 0);
existingCursorValid = existingCursor.moveNext();
// Use this key as the upper bound for decoding the child page
Key childUpperBoundForDecode;
// Use this key as the upper bound for the mutation selection in the child page's merge
Key childUpperBound;
if(existingCursorValid) {
// If this is a boundary-only key then use it as the upper bound for decoding the child page but use
// this page's upper bound key as the range end for the mutations merge in the child page
if(existingCursor.getValueRef() == LiteralStringRef("\x00\x00\x00\x00")) {
childUpperBoundForDecode = existingCursor.getKey();
childUpperBound = upperBoundKey;
existingCursorValid = false;
}
else {
childUpperBoundForDecode = existingCursor.getKey();
childUpperBound = childUpperBoundForDecode;
}
}
else {
childUpperBoundForDecode = upperBoundKey;
childUpperBound = upperBoundKey;
}
debug_printf("lower '%s'\n", childLowerBound.toHexString().c_str());
debug_printf("upperForDecode '%s'\n", childUpperBoundForDecode.toHexString().c_str());
debug_printf("upper '%s'\n", childUpperBound.toHexString().c_str());
ASSERT(childLowerBound <= childUpperBound);
// TODO: Do mutation buffer lookup here, don't call commitSubtree if the slice is empty.
futureChildren.push_back(self->commitSubtree(self, mutationBuffer, snapshot, pageID, childLowerBound, childUpperBound, childUpperBoundForDecode));
childPageIDs.push_back(pageID);
}
Void _ = wait(waitForAll(futureChildren));
bool modified = false;
for(int i = 0; i < futureChildren.size(); ++i) {
const VersionedChildrenT &children = futureChildren[i].get();
if(children.size() != 1 || children[0].second.size() != 1) {
modified = true;
break;
}
}
if(!modified) {
debug_printf("%p not modified.\n", this);
return VersionedChildrenT({{0, {{lowerBoundKey, root}}}});
}
Version version = 0;
VersionedChildrenT result;
loop { // over version splits of this page
Version nextVersion = std::numeric_limits<Version>::max();
std::vector<PrefixTree::EntryRef> childEntries; // Logically std::vector<std::pair<std::string, LogicalPageID>> childEntries;
// For each Future<VersionedChildrenT>
debug_printf("%p creating replacement pages for id=%d at Version %lld\n", this, root, version);
// If we're writing version 0, there is a chance that we don't have to write ourselves, if there are no changes
bool modified = version != 0;
for(int i = 0; i < futureChildren.size(); ++i) {
LogicalPageID pageID = childPageIDs[i];
const VersionedChildrenT &children = futureChildren[i].get();
debug_printf("%p Versioned page set that replaced page %d: %lu versions\n", this, pageID, children.size());
for(auto &versionedPageSet : children) {
debug_printf("%p version: %lld\n", this, versionedPageSet.first);
for(auto &boundaryPage : versionedPageSet.second) {
debug_printf("%p '%s' -> %u\n", this, printable(boundaryPage.first).c_str(), boundaryPage.second);
}
}
// Find the first version greater than the current version we are writing
auto cv = std::upper_bound( children.begin(), children.end(), version, [](Version a, VersionedChildrenT::value_type const &b) { return a < b.first; } );
// If there are no versions before the one we found, just update nextVersion and continue.
if(cv == children.begin()) {
debug_printf("%p First version (%lld) in set is greater than current, setting nextVersion and continuing\n", this, cv->first);
nextVersion = std::min(nextVersion, cv->first);
debug_printf("%p curr %lld next %lld\n", this, version, nextVersion);
continue;
}
// If a version greater than the current version being written was found, update nextVersion
if(cv != children.end()) {
nextVersion = std::min(nextVersion, cv->first);
debug_printf("%p curr %lld next %lld\n", this, version, nextVersion);
}
// Go back one to the last version that was valid prior to or at the current version we are writing
--cv;
debug_printf("%p Using children for version %lld from this set, building version %lld\n", this, cv->first, version);
// If page count isn't 1 then the root is definitely modified
modified = modified || cv->second.size() != 1;
// Add the children at this version to the child entries list for the current version being built.
for (auto &childPage : cv->second) {
debug_printf("%p Adding child page '%s'\n", this, printable(childPage.first).c_str());
childEntries.emplace_back(childPage.first, StringRef((unsigned char *)&childPage.second, sizeof(uint32_t)));
}
}
debug_printf("%p Finished pass through futurechildren. childEntries=%lu version=%lld nextVersion=%lld\n", this, childEntries.size(), version, nextVersion);
if(modified) {
// TODO: Track split points across iterations of this loop, so that they don't shift unnecessarily and
// cause unnecessary path copying
IPager *pager = self->m_pager;
std::vector<BoundariesAndPage> pages = buildPages(false, lowerBoundKey, upperBoundKey, childEntries, 0, [pager](){ return pager->newPageBuffer(); }, self->m_pageSize);
// For each IPage of data, assign a logical pageID.
std::vector<LogicalPageID> logicalPageIDs;
// Only reuse first page if only one page is being returned or if root is not the btree root.
if(pages.size() == 1 || root != self->m_root)
logicalPageIDs.push_back(root);
// Allocate enough pageIDs for all of the pages
for(int i=logicalPageIDs.size(); i<pages.size(); i++)
logicalPageIDs.push_back( pages[i].page ? self->m_pager->allocateLogicalPage() : 0);
// Write each page using its assigned page ID
debug_printf("%p Writing %lu internal pages\n", this, pages.size());
for(int i=0; i<pages.size(); i++)
self->writePage( logicalPageIDs[i], pages[i].page, version, pages[i].lowerBound, (i == pages.size() - 1) ? upperBoundKey : pages[i + 1].lowerBound );
// If this commitSubtree() is operating on the root, write new levels if needed until until we're returning a single page
if(root == self->m_root)
self->buildNewRoot(version, pages, logicalPageIDs);
result.resize(result.size()+1);
result.back().first = version;
for(int i=0; i<pages.size(); i++)
result.back().second.push_back( {pages[i].lowerBound, logicalPageIDs[i]} );
if (result.size() > 1 && result.back().second == result.end()[-2].second) {
debug_printf("%p Output same as last version, popping it.\n", this);
result.pop_back();
}
}
else {
debug_printf("%p Version 0 has no changes\n", this);
result.push_back({0, {{lowerBoundKey, root}}});
}
if (nextVersion == std::numeric_limits<Version>::max())
break;
version = nextVersion;
}
debug_printf("%p DONE.\n", this);
return result;
}
}
ACTOR static Future<Void> commit_impl(VersionedBTree *self) {
state MutationBufferT *mutations = self->m_pBuffer;
// No more mutations are allowed to be written to this mutation buffer we will commit
// at m_writeVersion, which we must save locally because it could change during commit.
self->m_pBuffer = nullptr;
state Version writeVersion = self->m_writeVersion;
// The latest mutation buffer start version is the one we will now (or eventually) commit.
state Version mutationBufferStartVersion = self->m_mutationBuffers.rbegin()->first;
// Replace the lastCommit future with a new one and then wait on the old one
state Promise<Void> committed;
Future<Void> previousCommit = self->m_latestCommit;
self->m_latestCommit = committed.getFuture();
// Wait for the latest commit that started to be finished.
Void _ = wait(previousCommit);
debug_printf("%s: Beginning commit of version %lld\n", self->m_name.c_str(), writeVersion);
// Get the latest version from the pager, which is what we will read at
Version latestVersion = wait(self->m_pager->getLatestVersion());
debug_printf("%s: pager latestVersion %lld\n", self->m_name.c_str(), latestVersion);
self->printMutationBuffer(mutations);
VersionedChildrenT _ = wait(commitSubtree(self, mutations, self->m_pager->getReadSnapshot(latestVersion), self->m_root, beginKey, endKey, endKey));
self->m_pager->setLatestVersion(writeVersion);
debug_printf("%s: Committing pager %lld\n", self->m_name.c_str(), writeVersion);
Void _ = wait(self->m_pager->commit());
debug_printf("%s: Committed version %lld\n", self->m_name.c_str(), writeVersion);
// Now that everything is committed we must delete the mutation buffer.
// Our buffer's start version should be the oldest mutation buffer version in the map.
ASSERT(mutationBufferStartVersion == self->m_mutationBuffers.begin()->first);
self->m_mutationBuffers.erase(self->m_mutationBuffers.begin());
self->m_lastCommittedVersion = writeVersion;
committed.send(Void());
return Void();
}
IPager *m_pager;
MutationBufferT *m_pBuffer;
std::map<Version, MutationBufferT> m_mutationBuffers;
Version m_writeVersion;
Version m_lastCommittedVersion;
Future<Void> m_latestCommit;
int m_pageSize;
Future<Void> m_init;
std::string m_name;
// InternalCursor is for seeking to and iterating over the internal / low level records in the Btree.
// This records are versioned and they can represent deletions or partial values so they must be
// post processed to obtain keys returnable to the user.
class InternalCursor {
public:
InternalCursor() {}
InternalCursor(Reference<IPagerSnapshot> pages, LogicalPageID root) : m_pages(pages), m_root(root), outOfBound(0) {
m_path.reserve(6);
}
bool valid() const {
return (outOfBound == 0) && kvv.valid();
}
Future<Void> seekLessThanOrEqual(KeyRef key) {
return seekLessThanOrEqual_impl(this, key);
}
Future<Void> move(bool fwd) {
return move_impl(this, fwd);
}
Standalone<KeyVersionValueRef> kvv; // The decoded current internal record in the tree
std::string toString(const char *wrapPrefix = "") const {
std::string r;
r += format("InternalCursor(%p) ver=%lld oob=%d valid=%d", this, m_pages->getVersion(), outOfBound, valid());
r += format("\n%s KVV: %s", wrapPrefix, kvv.toString().c_str());
for(const PageEntryLocation &p : m_path) {
std::string cur = p.cursor.valid() ? format("'%s' -> '%s'", p.cursor.getKey().toHexString().c_str(), p.cursor.getValueRef().toHexString().c_str()) : "invalid";
r += format("\n%s Page %d (%d records, %d bytes) Cursor %s", wrapPrefix, p.pageNumber, p.btPage->count, p.btPage->kvBytes, cur.c_str());
}
return r;
}
private:
Reference<IPagerSnapshot> m_pages;
LogicalPageID m_root;
struct PageEntryLocation {
PageEntryLocation() {}
PageEntryLocation(Key lowerBound, Key upperBound, Reference<const IPage> page, LogicalPageID id)
: pageLowerBound(lowerBound), pageUpperBound(upperBound), page(page), pageNumber(id), btPage((BTreePage *)page->begin()), cursor(btPage->tree.getCursor(pageLowerBound, pageUpperBound))
{
}
Key getNextOrUpperBound() {
if(cursor.moveNext()) {
Key r = cursor.getKey();
cursor.movePrev();
return r;
}
return pageUpperBound;
}
bool isBoundaryOnlyRecord() const {
return !(btPage->flags & BTreePage::IS_LEAF) && cursor.getValueRef() == LiteralStringRef("\x00\x00\x00\x00");
}
Key pageLowerBound;
Key pageUpperBound;
Reference<const IPage> page;
BTreePage *btPage;
PrefixTree::Cursor cursor;
// For easier debugging
LogicalPageID pageNumber;
};
typedef std::vector<PageEntryLocation> TraversalPathT;
TraversalPathT m_path;
int outOfBound;
ACTOR static Future<Void> pushPage(InternalCursor *self, Key lowerBound, Key upperBound, LogicalPageID id) {
Reference<const IPage> rawPage = wait(self->m_pages->getPhysicalPage(id));
debug_printf("InternalCursor::pushPage() %s\n", ((const BTreePage *)rawPage->begin())->toString(false, id, self->m_pages->getVersion(), lowerBound, upperBound).c_str());
self->m_path.emplace_back(lowerBound, upperBound, rawPage, id);
return Void();
}
ACTOR static Future<Void> reset(InternalCursor *self) {
if(self->m_path.empty()) {
Void _ = wait(pushPage(self, beginKey, endKey, self->m_root));
}
else {
self->m_path.resize(1);
}
self->outOfBound = 0;
return Void();
}
ACTOR static Future<Void> seekLessThanOrEqual_impl(InternalCursor *self, KeyRef key) {
state TraversalPathT &path = self->m_path;
Void _ = wait(reset(self));
debug_printf("InternalCursor::seekLTE(%s): start %s\n", key.toHexString().c_str(), self->toString(" ").c_str());
loop {
state PageEntryLocation *p = &path.back();
if(p->btPage->count == 0) {
ASSERT(path.size() == 1); // This must be the root page.
self->outOfBound = -1;
self->kvv.version = invalidVersion;
debug_printf("InternalCursor::seekLTE(%s): Exit, root page empty. %s\n", key.toHexString().c_str(), self->toString(" ").c_str());
return Void();
}
state bool foundLTE = p->cursor.seekLessThanOrEqual(key);
debug_printf("InternalCursor::seekLTE(%s): Seek on path tail, result %d. %s\n", key.toHexString().c_str(), foundLTE, self->toString(" ").c_str());
if(p->btPage->flags & BTreePage::IS_LEAF) {
// It is possible for the current leaf key to be between the page's lower bound (in the parent page) and the
// first record in the leaf page, which means we must move backwards 1 step in the database to find the
// record < key, if such a record exists.
if(!foundLTE) {
Void _ = wait(self->move(false));
}
else {
// Found the target record
self->kvv = KeyVersionValue::unpack(p->cursor.getKVRef());
}
debug_printf("InternalCursor::seekLTE(%s): Exit, Found leaf page. %s\n", key.toHexString().c_str(), self->toString(" ").c_str());
return Void();
}
else {
// We don't have to check foundLTE here because if it's false then cursor will be at the first record in the page.
// TODO: It would, however, be more efficient to check foundLTE and if false move to the previous sibling page.
// But the page should NOT be empty so let's assert that the cursor is valid.
ASSERT(p->cursor.valid());
// If we found a boundary-only record, there must be a record before it so go to that one since the seek is LTE
if(p->isBoundaryOnlyRecord())
ASSERT(p->cursor.movePrev());
state LogicalPageID newPage = (LogicalPageID)*(uint32_t *)p->cursor.getValueRef().begin();
debug_printf("InternalCursor::seekLTE(%s): Found internal page, going to page %d. %s\n",
key.toHexString().c_str(), newPage, self->toString(" ").c_str());
Void _ = wait(pushPage(self, p->cursor.getKey(), p->getNextOrUpperBound(), newPage));
}
}
}
// Move one 'internal' key/value/version/valueindex/value record.
// Iterating with this function will "see" all parts of all values and clears at all versions (that is, within the cursor's version of btree pages)
ACTOR static Future<Void> move_impl(InternalCursor *self, bool fwd) {
state TraversalPathT &path = self->m_path;
state const char *dir = fwd ? "forward" : "backward";
debug_printf("InternalCursor::move(%s) start %s\n", dir, self->toString(" ").c_str());
// If cursor was out of bound, adjust out of boundness by 1 in the correct direction
if(self->outOfBound != 0) {
self->outOfBound += fwd ? 1 : -1;
// If we appear to be inbounds, see if we're off the other end of the db or if the page cursor is valid.
if(self->outOfBound == 0) {
if(!path.empty() && path.back().cursor.valid()) {
self->kvv = KeyVersionValue::unpack(path.back().cursor.getKVRef());
}
else {
self->outOfBound = fwd ? 1 : -1;
}
}
debug_printf("InternalCursor::move(%s) was out of bound, exiting %s\n", dir, self->toString(" ").c_str());
return Void();
}
int i = path.size();
// Find the closest path part to the end where the index can be moved in the correct direction.
while(--i >= 0) {
PrefixTree::Cursor &c = path[i].cursor;
bool success = fwd ? c.moveNext() : c.movePrev();
// For the forward direction, check for boundary-only records on internal pages and treat as failure
if(success && fwd && path[i].isBoundaryOnlyRecord()) {
success = false;
}
if(success) {
debug_printf("InternalCursor::move(%s) Move successful on path index %d\n", dir, i);
path.resize(i + 1);
break;
} else {
debug_printf("InternalCursor::move(%s) Move failed on path index %d\n", dir, i);
}
}
// If no path part could be moved without going out of range then the
// new cursor position is either before the first record or after the last.
// Leave the path steps in place and set outOfBound to 1 or -1 based on fwd.
// This makes the cursor not valid() but a move in the opposite direction
// will make it valid again, pointing to the previous target record.
if(i < 0) {
self->outOfBound = fwd ? 1 : -1;
debug_printf("InternalCursor::move(%s) Passed an end of the database %s\n", dir, self->toString(" ").c_str());
return Void();
}
// We were able to advance the cursor on one of the pages in the page traversal path, so now traverse down to leaf level
state PageEntryLocation *p = &(path.back());
debug_printf("InternalCursor::move(%s): Descending if needed to find a leaf\n", dir);
// Now we must traverse downward if needed until we are at a leaf level.
// Each movement down will start on the far left or far right depending on fwd
while(!(p->btPage->flags & BTreePage::IS_LEAF)) {
// A boundary-only entry is guaranteed to be the last entry in the page and also not the first, so back up one to the useful end of the page.
if(!fwd && p->isBoundaryOnlyRecord())
ASSERT(p->cursor.movePrev());
// Get the page that the path's last entry points to
LogicalPageID childPageID = (LogicalPageID)*(uint32_t *)p->cursor.getValueRef().begin();
Void _ = wait(pushPage(self, p->cursor.getKey(), p->getNextOrUpperBound(), childPageID));
p = &(path.back());
// No page traversed to in this manner should be empty.
ASSERT(p->btPage->count != 0);
// Go to the first or last entry in the page depending on traversal direction
if(fwd)
p->cursor.moveFirst();
else
p->cursor.moveLast();
debug_printf("InternalCursor::move(%s) Descended one level %s\n", dir, self->toString(" ").c_str());
}
// Found the target record, unpack it
ASSERT(p->cursor.valid());
self->kvv = KeyVersionValue::unpack(p->cursor.getKVRef());
debug_printf("InternalCursor::move(%s) Exiting %s\n", dir, self->toString(" ").c_str());
return Void();
}
};
// Cursor is for reading and interating over user visible KV pairs at a specific version
class Cursor : public IStoreCursor, public ReferenceCounted<Cursor>, public NonCopyable {
public:
Cursor(Version version, IPager *pager, LogicalPageID root)
: m_version(version), m_pagerSnapshot(pager->getReadSnapshot(version)), m_icursor(m_pagerSnapshot, root) {
}
virtual ~Cursor() {}
virtual Future<Void> findEqual(KeyRef key) { return find_impl(Reference<Cursor>::addRef(this), key, true, 0); }
virtual Future<Void> findFirstEqualOrGreater(KeyRef key, bool needValue, int prefetchNextBytes) { return find_impl(Reference<Cursor>::addRef(this), key, needValue, 1); }
virtual Future<Void> findLastLessOrEqual(KeyRef key, bool needValue, int prefetchPriorBytes) { return find_impl(Reference<Cursor>::addRef(this), key, needValue, -1); }
virtual Future<Void> next(bool needValue) { return next_impl(Reference<Cursor>::addRef(this), needValue); }
virtual Future<Void> prev(bool needValue) { return prev_impl(Reference<Cursor>::addRef(this), needValue); }
virtual bool isValid() {
return m_kv.present();
}
virtual KeyRef getKey() {
return m_kv.get().key;
}
//virtual StringRef getCompressedKey() = 0;
virtual ValueRef getValue() {
return m_kv.get().value;
}
virtual void invalidateReturnedStrings() {
m_pagerSnapshot->invalidateReturnedPages();
}
void addref() { ReferenceCounted<Cursor>::addref(); }
void delref() { ReferenceCounted<Cursor>::delref(); }
std::string toString(const char *wrapPrefix = "") const {
std::string r;
r += format("Cursor(%p) ver: %lld key: %s value: %s", this, m_version,
(m_kv.present() ? m_kv.get().key.printable().c_str() : "<np>"),
(m_kv.present() ? m_kv.get().value.printable().c_str() : ""));
r += format("\n%s InternalCursor: %s", wrapPrefix, m_icursor.toString(format("%s ", wrapPrefix).c_str()).c_str());
return r;
}
private:
Version m_version;
Reference<IPagerSnapshot> m_pagerSnapshot;
InternalCursor m_icursor;
Optional<KeyValueRef> m_kv; // The current user-level key/value in the tree
Arena m_arena;
// find key in tree closest to or equal to key (at this cursor's version)
// for less than or equal use cmp < 0
// for greater than or equal use cmp > 0
// for equal use cmp == 0
ACTOR static Future<Void> find_impl(Reference<Cursor> self, KeyRef key, bool needValue, int cmp) {
state InternalCursor &icur = self->m_icursor;
// Search for the last key at or before (key, version, \xff)
state Key target = KeyVersionValueRef::searchKey(key, self->m_version);
self->m_kv = Optional<KeyValueRef>();
Void _ = wait(icur.seekLessThanOrEqual(target));
debug_printf("find%sE('%s'): %s\n", cmp > 0 ? "GT" : (cmp == 0 ? "" : "LT"), target.toHexString(15).c_str(), icur.toString().c_str());
// If we found the target key, return it as it is valid for any cmp option
if(icur.valid() && icur.kvv.value.present() && icur.kvv.key == key) {
debug_printf("Reading full kv pair starting from: %s\n", icur.kvv.toString().c_str());
Void _ = wait(self->readFullKVPair(self));
return Void();
}
// FindEqual, so if we're still here we didn't find it.
if(cmp == 0) {
return Void();
}
// FindEqualOrGreaterThan, so if we're here we have to go to the next present record at the target version.
if(cmp > 0) {
// icur is at a record < key, possibly before the start of the tree so move forward at least once.
loop {
Void _ = wait(icur.move(true));
if(!icur.valid() || icur.kvv.key > key)
break;
}
// Get the next present key at the target version. Handles invalid cursor too.
Void _ = wait(self->next(needValue));
}
else if(cmp < 0) {
// Move to previous present kv pair at the target version
Void _ = wait(self->prev(needValue));
}
return Void();
}
ACTOR static Future<Void> next_impl(Reference<Cursor> self, bool needValue) {
// TODO: use needValue
state InternalCursor &i = self->m_icursor;
debug_printf("Cursor::next(): cursor %s\n", i.toString().c_str());
// Make sure we are one record past the last user key
if(self->m_kv.present()) {
while(i.valid() && i.kvv.key <= self->m_kv.get().key) {
debug_printf("Cursor::next(): Advancing internal cursor to get passed previous returned user key. cursor %s\n", i.toString().c_str());
Void _ = wait(i.move(true));
}
}
state Version v = self->m_pagerSnapshot->getVersion();
state InternalCursor iLast;
while(1) {
iLast = i;
if(!i.valid())
break;
Void _ = wait(i.move(true));
// If the previous cursor position was a set at a version at or before v and the new cursor position
// is not valid or a newer version of the same key or a different key, then get the full record
// for the previous cursor position
if(iLast.kvv.version <= v
&& iLast.kvv.value.present()
&& (
!i.valid()
|| i.kvv.key != iLast.kvv.key
|| i.kvv.version > v
)
) {
// Assume that next is the most likely next move, so save the one-too-far cursor position.
std::swap(i, iLast);
// readFullKVPair will have to go backwards to read the value
Void _ = wait(readFullKVPair(self));
std::swap(i, iLast);
return Void();
}
}
self->m_kv = Optional<KeyValueRef>();
return Void();
}
ACTOR static Future<Void> prev_impl(Reference<Cursor> self, bool needValue) {
// TODO: use needValue
state InternalCursor &i = self->m_icursor;
debug_printf("Cursor::prev(): cursor %s\n", i.toString().c_str());
// Make sure we are one record before the last user key
if(self->m_kv.present()) {
while(i.valid() && i.kvv.key >= self->m_kv.get().key) {
Void _ = wait(i.move(false));
}
}
state Version v = self->m_pagerSnapshot->getVersion();
while(i.valid()) {
// Once we reach a present value at or before v, return or skip it.
if(i.kvv.version <= v) {
// If it's present, return it
if(i.kvv.value.present()) {
Void _ = wait(readFullKVPair(self));
return Void();
}
// Value wasn't present as of the latest version <= v, so move backward to a new key
state Key clearedKey = i.kvv.key;
while(1) {
Void _ = wait(i.move(false));
if(!i.valid() || i.kvv.key != clearedKey)
break;
}
}
else {
Void _ = wait(i.move(false));
}
}
self->m_kv = Optional<KeyValueRef>();
return Void();
}
// Read all of the current value, if it is split across multiple kv pairs, and set m_kv.
// m_current must be at either the first or the last value part.
ACTOR static Future<Void> readFullKVPair(Reference<Cursor> self) {
state KeyVersionValue &kvv = self->m_icursor.kvv;
state KeyValueRef &kv = (self->m_kv = KeyValueRef()).get();
ASSERT(kvv.value.present());
// Set the key and cursor arena to the arena containing that key
self->m_arena = kvv.arena();
kv.key = kvv.key;
// Unsplit value
if(!kvv.isMultiPart()) {
kv.value = kvv.value.get();
debug_printf("readFullKVPair: Unsplit, exit. %s\n", self->toString(" ").c_str());
}
else {
// Figure out if we should go forward or backward to find all the parts
state bool fwd = kvv.valueIndex == 0;
ASSERT(fwd || kvv.valueIndex + kvv.value.get().size() == kvv.valueTotalSize);
debug_printf("readFullKVPair: Split, fwd %d totalsize %lld %s\n", fwd, kvv.valueTotalSize, self->toString(" ").c_str());
// Allocate space for the entire value in the same arena as the key
state int bytesLeft = kvv.valueTotalSize;
kv.value = makeString(bytesLeft, self->m_arena);
while(1) {
debug_printf("readFullKVPair: Adding chunk start %lld len %d total %lld dir %d\n", kvv.valueIndex, kvv.value.get().size(), kvv.valueTotalSize, fwd);
int partSize = kvv.value.get().size();
memcpy(mutateString(kv.value) + kvv.valueIndex, kvv.value.get().begin(), partSize);
bytesLeft -= partSize;
if(bytesLeft == 0)
break;
ASSERT(bytesLeft > 0);
Void _ = wait(self->m_icursor.move(fwd));
ASSERT(self->m_icursor.valid());
}
}
return Void();
}
};
};
KeyVersionValueRef VersionedBTree::beginKVV(StringRef(), 0, StringRef());
KeyVersionValueRef VersionedBTree::endKVV(LiteralStringRef("\xff\xff\xff\xff"), std::numeric_limits<int>::max(), StringRef());
Key VersionedBTree::beginKey(beginKVV.pack().key);
Key VersionedBTree::endKey(endKVV.pack().key);
ACTOR template<class T>
Future<T> catchError(Promise<Void> error, Future<T> f) {
try {
T result = wait(f);
return result;
} catch(Error &e) {
if(error.canBeSet())
error.sendError(e);
throw;
}
}
class KeyValueStoreRedwoodUnversioned : public IKeyValueStore {
public:
KeyValueStoreRedwoodUnversioned(std::string filePrefix, UID logID) : m_filePrefix(filePrefix) {
// TODO: These implementation-specific things should really be passed in as arguments, and this class should
// be an IKeyValueStore implementation that wraps IVersionedStore.
m_pager = new IndirectShadowPager(filePrefix);
m_tree = new VersionedBTree(m_pager, filePrefix, m_pager->getUsablePageSize());
m_init = catchError(m_error, init_impl(this));
}
virtual Future<Void> init() {
return m_init;
}
ACTOR Future<Void> init_impl(KeyValueStoreRedwoodUnversioned *self) {
Void _ = wait(self->m_tree->init());
Version v = wait(self->m_tree->getLatestVersion());
self->m_tree->setWriteVersion(v + 1);
return Void();
}
ACTOR void shutdown(KeyValueStoreRedwoodUnversioned *self, bool dispose) {
TraceEvent(SevInfo, "RedwoodShutdown").detail("FilePrefix", self->m_filePrefix).detail("Dispose", dispose);
self->m_init.cancel();
delete self->m_tree;
Future<Void> closedFuture = self->m_pager->onClosed();
if(dispose)
self->m_pager->dispose();
else
self->m_pager->close();
Void _ = wait(closedFuture);
self->m_closed.send(Void());
if(self->m_error.canBeSet()) {
self->m_error.send(Never());
}
TraceEvent(SevInfo, "RedwoodShutdownComplete").detail("FilePrefix", self->m_filePrefix).detail("Dispose", dispose);
delete self;
}
virtual void close() {
shutdown(this, false);
}
virtual void dispose() {
shutdown(this, true);
}
virtual Future< Void > onClosed() {
return m_closed.getFuture();
}
Future<Void> commit(bool sequential = false) {
Future<Void> c = m_tree->commit();
m_tree->setWriteVersion(m_tree->getWriteVersion() + 1);
return catchError(m_error, c);
}
virtual KeyValueStoreType getType() {
return KeyValueStoreType::SSD_REDWOOD_V1;
}
virtual StorageBytes getStorageBytes() {
return m_pager->getStorageBytes();
}
virtual Future< Void > getError() { return m_error.getFuture(); };
void clear(KeyRangeRef range, const Arena* arena = 0) {
m_tree->clear(range);
}
virtual void set( KeyValueRef keyValue, const Arena* arena = NULL ) {
//printf("SET write version %lld %s\n", m_tree->getWriteVersion(), printable(keyValue).c_str());
m_tree->set(keyValue);
}
ACTOR static Future< Standalone< VectorRef< KeyValueRef > > > readRange_impl(KeyValueStoreRedwoodUnversioned *self, KeyRangeRef keys, int rowLimit, int byteLimit) {
Void _ = wait(self->m_init);
state Standalone<VectorRef<KeyValueRef>> result;
state int accumulatedBytes = 0;
ASSERT( byteLimit > 0 );
state Reference<IStoreCursor> cur = self->m_tree->readAtVersion(self->m_tree->getLastCommittedVersion());
state Version readVersion = self->m_tree->getLastCommittedVersion();
if(rowLimit >= 0) {
Void _ = wait(cur->findFirstEqualOrGreater(keys.begin, true, 0));
while(cur->isValid() && cur->getKey() < keys.end) {
KeyValueRef kv(KeyRef(result.arena(), cur->getKey()), ValueRef(result.arena(), cur->getValue()));
accumulatedBytes += kv.expectedSize();
result.push_back(result.arena(), kv);
if(--rowLimit == 0 || accumulatedBytes >= byteLimit)
break;
Void _ = wait(cur->next(true));
}
} else {
Void _ = wait(cur->findLastLessOrEqual(keys.end, true, 0));
if(cur->isValid() && cur->getKey() == keys.end)
Void _ = wait(cur->prev(true));
while(cur->isValid() && cur->getKey() >= keys.begin) {
KeyValueRef kv(KeyRef(result.arena(), cur->getKey()), ValueRef(result.arena(), cur->getValue()));
accumulatedBytes += kv.expectedSize();
result.push_back(result.arena(), kv);
if(--rowLimit == 0 || accumulatedBytes >= byteLimit)
break;
Void _ = wait(cur->prev(true));
}
}
return result;
}
virtual Future< Standalone< VectorRef< KeyValueRef > > > readRange(KeyRangeRef keys, int rowLimit = 1<<30, int byteLimit = 1<<30) {
return catchError(m_error, readRange_impl(this, keys, rowLimit, byteLimit));
}
ACTOR static Future< Optional<Value> > readValue_impl(KeyValueStoreRedwoodUnversioned *self, KeyRef key, Optional< UID > debugID) {
Void _ = wait(self->m_init);
state Reference<IStoreCursor> cur = self->m_tree->readAtVersion(self->m_tree->getLastCommittedVersion());
state Version readVersion = self->m_tree->getLastCommittedVersion();
Void _ = wait(cur->findEqual(key));
if(cur->isValid()) {
return cur->getValue();
}
return Optional<Value>();
}
virtual Future< Optional< Value > > readValue(KeyRef key, Optional< UID > debugID = Optional<UID>()) {
return catchError(m_error, readValue_impl(this, key, debugID));
}
ACTOR static Future< Optional<Value> > readValuePrefix_impl(KeyValueStoreRedwoodUnversioned *self, KeyRef key, int maxLength, Optional< UID > debugID) {
Void _ = wait(self->m_init);
state Reference<IStoreCursor> cur = self->m_tree->readAtVersion(self->m_tree->getLastCommittedVersion());
Void _ = wait(cur->findEqual(key));
if(cur->isValid()) {
Value v = cur->getValue();
int len = std::min(v.size(), maxLength);
return Value(cur->getValue().substr(0, len));
}
return Optional<Value>();
}
virtual Future< Optional< Value > > readValuePrefix(KeyRef key, int maxLength, Optional< UID > debugID = Optional<UID>()) {
return catchError(m_error, readValuePrefix_impl(this, key, maxLength, debugID));
}
virtual ~KeyValueStoreRedwoodUnversioned() {
};
private:
std::string m_filePrefix;
IPager *m_pager;
VersionedBTree *m_tree;
Future<Void> m_init;
Promise<Void> m_closed;
Promise<Void> m_error;
};
IKeyValueStore* keyValueStoreRedwoodV1( std::string const& filename, UID logID) {
return new KeyValueStoreRedwoodUnversioned(filename, logID);
}
KeyValue randomKV(int keySize = 10, int valueSize = 5) {
int kLen = g_random->randomInt(1, keySize);
int vLen = g_random->randomInt(0, valueSize);
KeyValue kv;
kv.key = makeString(kLen, kv.arena());
kv.value = makeString(vLen, kv.arena());
for(int i = 0; i < kLen; ++i)
mutateString(kv.key)[i] = (uint8_t)g_random->randomInt('a', 'm');
for(int i = 0; i < vLen; ++i)
mutateString(kv.value)[i] = (uint8_t)g_random->randomInt('n', 'z');
return kv;
}
ACTOR Future<int> verifyRandomRange(VersionedBTree *btree, Version v, std::map<std::pair<std::string, Version>, Optional<std::string>> *written) {
state int errors = 0;
state Key start = randomKV().key;
state Key end = randomKV().key;
if(end <= start)
end = keyAfter(start);
debug_printf("VerifyRange '%s' to '%s' @%lld\n", printable(start).c_str(), printable(end).c_str(), v);
state std::map<std::pair<std::string, Version>, Optional<std::string>>::const_iterator i = written->lower_bound(std::make_pair(start.toString(), 0));
state std::map<std::pair<std::string, Version>, Optional<std::string>>::const_iterator iEnd = written->upper_bound(std::make_pair(end.toString(), 0));
state std::map<std::pair<std::string, Version>, Optional<std::string>>::const_iterator iLast;
state Reference<IStoreCursor> cur = btree->readAtVersion(v);
// Randomly use the cursor for something else first.
if(g_random->coinflip()) {
debug_printf("VerifyRange: Dummy seek\n");
state Key randomKey = randomKV().key;
Void _ = wait(g_random->coinflip() ? cur->findFirstEqualOrGreater(randomKey, true, 0) : cur->findLastLessOrEqual(randomKey, true, 0));
}
debug_printf("VerifyRange: Actual seek\n");
Void _ = wait(cur->findFirstEqualOrGreater(start, true, 0));
state std::vector<KeyValue> results;
while(cur->isValid() && cur->getKey() < end) {
// Find the next written kv pair that would be present at this version
while(1) {
iLast = i;
if(i == iEnd)
break;
++i;
if(iLast->first.second <= v
&& iLast->second.present()
&& (
i == iEnd
|| i->first.first != iLast->first.first
|| i->first.second > v
)
)
break;
}
if(iLast == iEnd) {
errors += 1;
printf("VerifyRange(@%lld, %s, %s) ERROR: Tree key '%s' vs nothing in written map.\n", v, start.toString().c_str(), end.toString().c_str(), cur->getKey().toString().c_str());
break;
}
if(cur->getKey() != iLast->first.first) {
errors += 1;
printf("VerifyRange(@%lld, %s, %s) ERROR: Tree key '%s' vs written '%s'\n", v, start.toString().c_str(), end.toString().c_str(), cur->getKey().toString().c_str(), iLast->first.first.c_str());
break;
}
if(cur->getValue() != iLast->second.get()) {
errors += 1;
printf("VerifyRange(@%lld, %s, %s) ERROR: Tree key '%s' has tree value '%s' vs written '%s'\n", v, start.toString().c_str(), end.toString().c_str(), cur->getKey().toString().c_str(), cur->getValue().toString().c_str(), iLast->second.get().c_str());
break;
}
results.push_back(KeyValue(KeyValueRef(cur->getKey(), cur->getValue())));
Void _ = wait(cur->next(true));
}
// Make sure there are no further written kv pairs that would be present at this version.
while(1) {
iLast = i;
if(i == iEnd)
break;
++i;
if(iLast->first.second <= v
&& iLast->second.present()
&& (
i == iEnd
|| i->first.first != iLast->first.first
|| i->first.second > v
)
)
break;
}
if(iLast != iEnd) {
errors += 1;
printf("VerifyRange(@%lld, %s, %s) ERROR: Tree range ended but written has @%lld '%s'\n", v, start.toString().c_str(), end.toString().c_str(), iLast->first.second, iLast->first.first.c_str());
}
debug_printf("VerifyRangeReverse '%s' to '%s' @%lld\n", printable(start).c_str(), printable(end).c_str(), v);
// Randomly use a new cursor for the revere range read
if(g_random->coinflip()) {
cur = btree->readAtVersion(v);
}
// Now read the range from the tree in reverse order and compare to the saved results
Void _ = wait(cur->findLastLessOrEqual(end, true, 0));
if(cur->isValid() && cur->getKey() == end)
Void _ = wait(cur->prev(true));
state std::vector<KeyValue>::const_reverse_iterator r = results.rbegin();
while(cur->isValid() && cur->getKey() >= start) {
if(r == results.rend()) {
errors += 1;
printf("VerifyRangeReverse(@%lld, %s, %s) ERROR: Tree key '%s' vs nothing in written map.\n", v, start.toString().c_str(), end.toString().c_str(), cur->getKey().toString().c_str());
break;
}
if(cur->getKey() != r->key) {
errors += 1;
printf("VerifyRangeReverse(@%lld, %s, %s) ERROR: Tree key '%s' vs written '%s'\n", v, start.toString().c_str(), end.toString().c_str(), cur->getKey().toString().c_str(), r->key.toString().c_str());
break;
}
if(cur->getValue() != r->value) {
errors += 1;
printf("VerifyRangeReverse(@%lld, %s, %s) ERROR: Tree key '%s' has tree value '%s' vs written '%s'\n", v, start.toString().c_str(), end.toString().c_str(), cur->getKey().toString().c_str(), cur->getValue().toString().c_str(), r->value.toString().c_str());
break;
}
++r;
Void _ = wait(cur->prev(true));
}
if(r != results.rend()) {
errors += 1;
printf("VerifyRangeReverse(@%lld, %s, %s) ERROR: Tree range ended but written has '%s'\n", v, start.toString().c_str(), end.toString().c_str(), r->key.toString().c_str());
}
if(errors > 0)
throw internal_error();
return errors;
}
static void nullWaitHandler( const boost::system::error_code& ) {}
TEST_CASE("/redwood/correctness") {
state bool useDisk = true;
state std::string pagerFile = "unittest_pageFile";
state IPager *pager;
if(useDisk)
pager = new IndirectShadowPager(pagerFile);
else
pager = createMemoryPager();
state int pageSize = 100; //g_random->coinflip() ? pager->getUsablePageSize() : g_random->randomInt(200, 400);
state VersionedBTree *btree = new VersionedBTree(pager, pagerFile, pageSize);
Void _ = wait(btree->init());
state int maxCommits = 10;
state int maxVersionsPerCommit = 4;
state int maxChangesPerVersion = 5;
// We must be able to fit at least two any two keys plus overhead in a page to prevent
// a situation where the tree cannot be grown upward with decreasing level size.
// TODO: Handle arbitrarily large keys
state int maxKeySize = pageSize / 3;
ASSERT(maxKeySize > 0);
state int maxValueSize = pageSize * 10;
printf("Using page size %d, max key size %d, max value size %d\n", pageSize, maxKeySize, maxValueSize);
state std::map<std::pair<std::string, Version>, Optional<std::string>> written;
state std::set<Key> keys;
state Version lastVer = wait(btree->getLatestVersion());
printf("Starting from version: %lld\n", lastVer);
state Version version = lastVer + 1;
state int commits = 1 + g_random->randomInt(0, maxCommits);
//printf("Will do %d commits\n", commits);
state double insertTime = 0;
state int64_t keyBytesInserted = 0;
state int64_t ValueBytesInserted = 0;
while(commits--) {
state double startTime = now();
int versions = g_random->randomInt(1, maxVersionsPerCommit);
debug_printf(" Commit will have %d versions\n", versions);
while(versions--) {
++version;
btree->setWriteVersion(version);
int changes = g_random->randomInt(0, maxChangesPerVersion);
debug_printf(" Version %lld will have %d changes\n", version, changes);
while(changes--) {
if(g_random->random01() < .10) {
// Delete a random range
Key start = randomKV().key;
Key end = randomKV().key;
if(end <= start)
end = keyAfter(start);
KeyRangeRef range(start, end);
debug_printf(" Clear '%s' to '%s' @%lld\n", start.toString().c_str(), end.toString().c_str(), version);
auto w = keys.lower_bound(start);
auto wEnd = keys.lower_bound(end);
while(w != wEnd) {
debug_printf(" Clearing key '%s' @%lld\n", w->toString().c_str(), version);
written[std::make_pair(w->toString(), version)] = Optional<std::string>();
++w;
}
btree->clear(range);
}
else {
KeyValue kv = randomKV(maxKeySize, maxValueSize);
keyBytesInserted += kv.key.size();
ValueBytesInserted += kv.value.size();
debug_printf(" Set '%s' -> '%s' @%lld\n", kv.key.toString().c_str(), kv.value.toString().c_str(), version);
btree->set(kv);
written[std::make_pair(kv.key.toString(), version)] = kv.value.toString();
keys.insert(kv.key);
}
}
}
Void _ = wait(btree->commit());
// Check that all writes can be read at their written versions
state std::map<std::pair<std::string, Version>, Optional<std::string>>::const_iterator i = written.cbegin();
state std::map<std::pair<std::string, Version>, Optional<std::string>>::const_iterator iEnd = written.cend();
state int errors = 0;
insertTime += now() - startTime;
printf("Checking changes committed thus far.\n");
if(useDisk && g_random->random01() < .1) {
printf("Reopening disk btree\n");
delete btree;
Future<Void> closedFuture = pager->onClosed();
pager->close();
Void _ = wait(closedFuture);
pager = new IndirectShadowPager(pagerFile);
btree = new VersionedBTree(pager, pagerFile, pageSize);
Void _ = wait(btree->init());
Version v = wait(btree->getLatestVersion());
ASSERT(v == version);
}
// Read back every key at every version set or cleared and verify the result.
while(i != iEnd) {
state std::string key = i->first.first;
state Version ver = i->first.second;
state Optional<std::string> val = i->second;
state Reference<IStoreCursor> cur = btree->readAtVersion(ver);
debug_printf("Verifying @%lld '%s'\n", ver, key.c_str());
Void _ = wait(cur->findEqual(key));
if(val.present()) {
if(!(cur->isValid() && cur->getKey() == key && cur->getValue() == val.get())) {
++errors;
if(!cur->isValid())
printf("Verify ERROR: key_not_found: '%s' -> '%s' @%lld\n", key.c_str(), val.get().c_str(), ver);
else if(cur->getKey() != key)
printf("Verify ERROR: key_incorrect: found '%s' expected '%s' @%lld\n", cur->getKey().toString().c_str(), key.c_str(), ver);
else if(cur->getValue() != val.get())
printf("Verify ERROR: value_incorrect: for '%s' found '%s' expected '%s' @%lld\n", cur->getKey().toString().c_str(), cur->getValue().toString().c_str(), val.get().c_str(), ver);
}
} else {
if(cur->isValid() && cur->getKey() == key) {
++errors;
printf("Verify ERROR: cleared_key_found: '%s' -> '%s' @%lld\n", key.c_str(), cur->getValue().toString().c_str(), ver);
}
}
++i;
}
// For every version written thus far, range read a random range and verify the results.
state Version iVersion = lastVer;
while(iVersion < version) {
int e = wait(verifyRandomRange(btree, iVersion, &written));
errors += e;
++iVersion;
}
printf("%d sets, %d errors\n", (int)written.size(), errors);
if(errors != 0)
throw internal_error();
printf("Inserted %lld bytes (%lld key, %lld value) in %f seconds.\n", keyBytesInserted + ValueBytesInserted, keyBytesInserted, ValueBytesInserted, insertTime);
}
printf("Inserted %lld bytes (%lld key, %lld value) in %f seconds.\n", keyBytesInserted + ValueBytesInserted, keyBytesInserted, ValueBytesInserted, insertTime);
Future<Void> closedFuture = pager->onClosed();
pager->close();
Void _ = wait(closedFuture);
return Void();
}
TEST_CASE("/redwood/performance/set") {
state IPager *pager = new IndirectShadowPager("unittest_pageFile");
state VersionedBTree *btree = new VersionedBTree(pager, "unittest_pageFile");
Void _ = wait(btree->init());
state int nodeCount = 100000;
state int maxChangesPerVersion = 100;
state int versions = 5000;
int maxKeySize = 50;
int maxValueSize = 500;
state std::string key(maxKeySize, 'k');
state std::string value(maxKeySize, 'v');
state int64_t kvBytes = 0;
state int records = 0;
state double startTime = now();
while(--versions) {
Version lastVer = wait(btree->getLatestVersion());
state Version version = lastVer + 1;
btree->setWriteVersion(version);
int changes = g_random->randomInt(0, maxChangesPerVersion);
while(changes--) {
KeyValue kv;
// Change first 4 bytes of key to an int
*(uint32_t *)key.data() = g_random->randomInt(0, nodeCount);
kv.key = StringRef((uint8_t *)key.data(), g_random->randomInt(10, key.size()));
kv.value = StringRef((uint8_t *)value.data(), g_random->randomInt(0, value.size()));
btree->set(kv);
kvBytes += kv.key.size() + kv.value.size();
++records;
}
if(g_random->random01() < .01) {
Void _ = wait(btree->commit());
double elapsed = now() - startTime;
printf("Committed (cumulative) %lld bytes in %d records in %f seconds, %.2f MB/s\n", kvBytes, records, elapsed, kvBytes / elapsed / 1e6);
}
}
Void _ = wait(btree->commit());
Future<Void> closedFuture = pager->onClosed();
pager->close();
Void _ = wait(closedFuture);
double elapsed = now() - startTime;
printf("Wrote (final) %lld bytes in %d records in %f seconds, %.2f MB/s\n", kvBytes, records, elapsed, kvBytes / elapsed / 1e6);
return Void();
}