foundationdb/fdbserver/workloads/SkewedReadWrite.actor.cpp

392 lines
15 KiB
C++

/*
* ReadWrite.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <boost/lexical_cast.hpp>
#include <utility>
#include <vector>
#include "fdbrpc/ContinuousSample.h"
#include "fdbclient/NativeAPI.actor.h"
#include "fdbserver/TesterInterface.actor.h"
#include "fdbserver/WorkerInterface.actor.h"
#include "fdbserver/workloads/workloads.actor.h"
#include "fdbserver/workloads/BulkSetup.actor.h"
#include "fdbserver/workloads/ReadWriteWorkload.actor.h"
#include "fdbclient/ReadYourWrites.h"
#include "flow/TDMetric.actor.h"
#include "fdbclient/RunTransaction.actor.h"
#include "flow/actorcompiler.h" // This must be the last #include.
struct SkewedReadWriteWorkload : ReadWriteCommon {
// server based hot traffic setting
int skewRound = 0; // skewDuration = ceil(testDuration / skewRound)
double hotServerFraction = 0, hotServerShardFraction = 1.0; // set > 0 to issue hot key based on shard map
double hotServerReadFrac, hotServerWriteFrac; // hot many traffic goes to hot servers
double hotReadWriteServerOverlap; // the portion of intersection of write and hot server
// hot server state
typedef std::vector<std::pair<int64_t, int64_t>> IndexRangeVec;
// keyForIndex generate key from index. So for a shard range, recording the start and end is enough
std::vector<std::pair<UID, IndexRangeVec>> serverShards; // storage server and the shards it owns
std::map<UID, StorageServerInterface> serverInterfaces;
int hotServerCount = 0, currentHotRound = -1;
SkewedReadWriteWorkload(WorkloadContext const& wcx) : ReadWriteCommon(wcx) {
descriptionString = getOption(options, "description"_sr, "SkewedReadWrite"_sr);
hotServerFraction = getOption(options, "hotServerFraction"_sr, 0.2);
hotServerShardFraction = getOption(options, "hotServerShardFraction"_sr, 1.0);
hotReadWriteServerOverlap = getOption(options, "hotReadWriteServerOverlap"_sr, 0.0);
skewRound = getOption(options, "skewRound"_sr, 1);
hotServerReadFrac = getOption(options, "hotServerReadFrac"_sr, 0.8);
hotServerWriteFrac = getOption(options, "hotServerWriteFrac"_sr, 0.0);
ASSERT((hotServerReadFrac >= hotServerFraction || hotServerWriteFrac >= hotServerFraction) && skewRound > 0);
}
std::string description() const override { return descriptionString.toString(); }
Future<Void> start(Database const& cx) override { return _start(cx, this); }
void debugPrintServerShards() const {
std::cout << std::hex;
for (auto it : this->serverShards) {
std::cout << serverInterfaces.at(it.first).address().toString() << ": [";
for (auto p : it.second) {
std::cout << "[" << p.first << "," << p.second << "], ";
}
std::cout << "] \n";
}
}
// for each boundary except the last one in boundaries, found the first existed key generated from keyForIndex as
// beginIdx, found the last existed key generated from keyForIndex the endIdx.
ACTOR static Future<IndexRangeVec> convertKeyBoundaryToIndexShard(Database cx,
SkewedReadWriteWorkload* self,
Standalone<VectorRef<KeyRef>> boundaries) {
state IndexRangeVec res;
state int i = 0;
for (; i < boundaries.size() - 1; ++i) {
KeyRangeRef currentShard = KeyRangeRef(boundaries[i], boundaries[i + 1]);
// std::cout << currentShard.toString() << "\n";
std::vector<RangeResult> ranges = wait(runRYWTransaction(
cx, [currentShard](Reference<ReadYourWritesTransaction> tr) -> Future<std::vector<RangeResult>> {
std::vector<Future<RangeResult>> f;
f.push_back(tr->getRange(currentShard, 1, Snapshot::False, Reverse::False));
f.push_back(tr->getRange(currentShard, 1, Snapshot::False, Reverse::True));
return getAll(f);
}));
ASSERT(ranges[0].size() == 1 && ranges[1].size() == 1);
res.emplace_back(self->indexForKey(ranges[0][0].key), self->indexForKey(ranges[1][0].key));
}
ASSERT(res.size() == boundaries.size() - 1);
return res;
}
ACTOR static Future<Void> updateServerShards(Database cx, SkewedReadWriteWorkload* self) {
state Future<RangeResult> serverList =
runRYWTransaction(cx, [](Reference<ReadYourWritesTransaction> tr) -> Future<RangeResult> {
tr->setOption(FDBTransactionOptions::READ_SYSTEM_KEYS);
return tr->getRange(serverListKeys, CLIENT_KNOBS->TOO_MANY);
});
state RangeResult range =
wait(runRYWTransaction(cx, [](Reference<ReadYourWritesTransaction> tr) -> Future<RangeResult> {
tr->setOption(FDBTransactionOptions::READ_SYSTEM_KEYS);
return tr->getRange(serverKeysRange, CLIENT_KNOBS->TOO_MANY);
}));
wait(success(serverList));
// decode server interfaces
self->serverInterfaces.clear();
for (int i = 0; i < serverList.get().size(); i++) {
auto ssi = decodeServerListValue(serverList.get()[i].value);
self->serverInterfaces.emplace(ssi.id(), ssi);
}
// clear self->serverShards
self->serverShards.clear();
// leftEdge < workloadBegin < workloadEnd
Key workloadBegin = self->keyForIndex(0), workloadEnd = self->keyForIndex(self->nodeCount);
Key leftEdge(allKeys.begin);
std::vector<UID> leftServer; // left server owns the range [leftEdge, workloadBegin)
KeyRangeRef workloadRange(workloadBegin, workloadEnd);
state std::map<Key, std::vector<UID>> beginServers; // begin index to server ID
for (auto kv = range.begin(); kv != range.end(); kv++) {
if (serverHasKey(kv->value)) {
auto [id, key] = serverKeysDecodeServerBegin(kv->key);
if (workloadRange.contains(key)) {
beginServers[key].push_back(id);
} else if (workloadBegin > key && key > leftEdge) { // update left boundary
leftEdge = key;
leftServer.clear();
}
if (key == leftEdge) {
leftServer.push_back(id);
}
}
}
ASSERT(beginServers.size() == 0 || beginServers.begin()->first >= workloadBegin);
// handle the left boundary
if (beginServers.size() == 0 || beginServers.begin()->first > workloadBegin) {
beginServers[workloadBegin] = leftServer;
}
Standalone<VectorRef<KeyRef>> keyBegins;
for (auto p = beginServers.begin(); p != beginServers.end(); ++p) {
keyBegins.push_back(keyBegins.arena(), p->first);
}
// deep count because wait below will destruct workloadEnd
keyBegins.push_back_deep(keyBegins.arena(), workloadEnd);
IndexRangeVec indexShards = wait(convertKeyBoundaryToIndexShard(cx, self, keyBegins));
ASSERT(beginServers.size() == indexShards.size());
// sort shard begin idx
// build self->serverShards, starting from the left shard
std::map<UID, IndexRangeVec> serverShards;
int i = 0;
for (auto p = beginServers.begin(); p != beginServers.end(); ++p) {
for (int j = 0; j < p->second.size(); ++j) {
serverShards[p->second[j]].emplace_back(indexShards[i]);
}
++i;
}
// self->serverShards is ordered by UID
for (auto it : serverShards) {
self->serverShards.emplace_back(it);
}
// if (self->clientId == 0) {
// self->debugPrintServerShards();
// }
return Void();
}
ACTOR template <class Trans>
Future<Void> readOp(Trans* tr, std::vector<int64_t> keys, SkewedReadWriteWorkload* self, bool shouldRecord) {
if (!keys.size())
return Void();
std::vector<Future<Void>> readers;
for (int op = 0; op < keys.size(); op++) {
++self->totalReadsMetric;
readers.push_back(self->logLatency(tr->get(self->keyForIndex(keys[op])), shouldRecord));
}
wait(waitForAll(readers));
return Void();
}
void startReadWriteClients(Database cx, std::vector<Future<Void>>& clients) {
clientBegin = now();
for (int c = 0; c < actorCount; c++) {
Future<Void> worker;
if (useRYW)
worker =
randomReadWriteClient<ReadYourWritesTransaction>(cx, this, actorCount / transactionsPerSecond, c);
else
worker = randomReadWriteClient<Transaction>(cx, this, actorCount / transactionsPerSecond, c);
clients.push_back(worker);
}
}
ACTOR static Future<Void> _start(Database cx, SkewedReadWriteWorkload* self) {
state std::vector<Future<Void>> clients;
if (self->enableReadLatencyLogging)
clients.push_back(self->tracePeriodically());
wait(updateServerShards(cx, self));
for (self->currentHotRound = 0; self->currentHotRound < self->skewRound; ++self->currentHotRound) {
self->setHotServers();
self->startReadWriteClients(cx, clients);
wait(timeout(waitForAll(clients), self->testDuration / self->skewRound, Void()));
clients.clear();
wait(delay(5.0));
wait(updateServerShards(cx, self));
}
return Void();
}
// calculate hot server count
void setHotServers() {
hotServerCount = ceil(hotServerFraction * serverShards.size());
std::cout << "Choose " << hotServerCount << "/" << serverShards.size() << "/" << serverInterfaces.size()
<< " hot servers: [";
int begin = currentHotRound * hotServerCount;
for (int i = 0; i < hotServerCount; ++i) {
int idx = (begin + i) % serverShards.size();
std::cout << serverInterfaces.at(serverShards[idx].first).address().toString() << ",";
}
std::cout << "]\n";
}
int64_t getRandomKeyFromHotServer(bool hotServerRead = true) {
ASSERT(hotServerCount > 0);
int begin = currentHotRound * hotServerCount;
if (!hotServerRead) {
begin += hotServerCount * (1.0 - hotReadWriteServerOverlap); // calculate non-overlap part offset
}
int idx = deterministicRandom()->randomInt(begin, begin + hotServerCount) % serverShards.size();
int shardMax = std::min(serverShards[idx].second.size(),
(size_t)ceil(serverShards[idx].second.size() * hotServerShardFraction));
int shardIdx = deterministicRandom()->randomInt(0, shardMax);
return deterministicRandom()->randomInt64(serverShards[idx].second[shardIdx].first,
serverShards[idx].second[shardIdx].second + 1);
}
int64_t getRandomKey(uint64_t nodeCount, bool hotServerRead = true) {
auto random = deterministicRandom()->random01();
if (hotServerFraction > 0) {
if ((hotServerRead && random < hotServerReadFrac) || (!hotServerRead && random < hotServerWriteFrac)) {
return getRandomKeyFromHotServer(hotServerRead);
}
}
return deterministicRandom()->randomInt64(0, nodeCount);
}
ACTOR template <class Trans>
Future<Void> randomReadWriteClient(Database cx, SkewedReadWriteWorkload* self, double delay, int clientIndex) {
state double startTime = now();
state double lastTime = now();
state double GRVStartTime;
state UID debugID;
loop {
wait(poisson(&lastTime, delay));
state double tstart = now();
state bool aTransaction = deterministicRandom()->random01() > self->alpha;
state std::vector<int64_t> keys;
state std::vector<Value> values;
state std::vector<KeyRange> extra_ranges;
int reads = aTransaction ? self->readsPerTransactionA : self->readsPerTransactionB;
state int writes = aTransaction ? self->writesPerTransactionA : self->writesPerTransactionB;
for (int op = 0; op < reads; op++)
keys.push_back(self->getRandomKey(self->nodeCount));
values.reserve(writes);
for (int op = 0; op < writes; op++)
values.push_back(self->randomValue());
state Trans tr(cx);
if (tstart - self->clientBegin > self->debugTime &&
tstart - self->clientBegin <= self->debugTime + self->debugInterval) {
debugID = deterministicRandom()->randomUniqueID();
tr.debugTransaction(debugID);
g_traceBatch.addEvent("TransactionDebug", debugID.first(), "ReadWrite.randomReadWriteClient.Before");
} else {
debugID = UID();
}
self->transactionSuccessMetric->retries = 0;
self->transactionSuccessMetric->commitLatency = -1;
loop {
try {
GRVStartTime = now();
self->transactionFailureMetric->startLatency = -1;
double grvLatency = now() - GRVStartTime;
self->transactionSuccessMetric->startLatency = grvLatency * 1e9;
self->transactionFailureMetric->startLatency = grvLatency * 1e9;
if (self->shouldRecord())
self->GRVLatencies.addSample(grvLatency);
state double readStart = now();
wait(self->readOp(&tr, keys, self, self->shouldRecord()));
double readLatency = now() - readStart;
if (self->shouldRecord())
self->fullReadLatencies.addSample(readLatency);
if (!writes)
break;
for (int op = 0; op < writes; op++)
tr.set(self->keyForIndex(self->getRandomKey(self->nodeCount, false), false), values[op]);
state double commitStart = now();
wait(tr.commit());
double commitLatency = now() - commitStart;
self->transactionSuccessMetric->commitLatency = commitLatency * 1e9;
if (self->shouldRecord())
self->commitLatencies.addSample(commitLatency);
break;
} catch (Error& e) {
self->transactionFailureMetric->errorCode = e.code();
self->transactionFailureMetric->log();
wait(tr.onError(e));
++self->transactionSuccessMetric->retries;
++self->totalRetriesMetric;
if (self->shouldRecord())
++self->retries;
}
}
if (debugID != UID())
g_traceBatch.addEvent("TransactionDebug", debugID.first(), "ReadWrite.randomReadWriteClient.After");
tr = Trans();
double transactionLatency = now() - tstart;
self->transactionSuccessMetric->totalLatency = transactionLatency * 1e9;
self->transactionSuccessMetric->log();
if (self->shouldRecord()) {
if (aTransaction)
++self->aTransactions;
else
++self->bTransactions;
self->latencies.addSample(transactionLatency);
}
}
}
};
WorkloadFactory<SkewedReadWriteWorkload> SkewedReadWriteWorkloadFactory("SkewedReadWrite");
TEST_CASE("/KVWorkload/methods/ParseKeyForIndex") {
WorkloadContext wcx;
wcx.clientId = 1;
wcx.clientCount = 1;
wcx.sharedRandomNumber = 1;
auto wk = SkewedReadWriteWorkload(wcx);
for (int i = 0; i < 1000; ++i) {
auto idx = deterministicRandom()->randomInt64(0, wk.nodeCount);
Key k = wk.keyForIndex(idx);
auto parse = wk.indexForKey(k);
// std::cout << parse << " " << idx << "\n";
ASSERT(parse == idx);
}
for (int i = 0; i < 1000; ++i) {
auto idx = deterministicRandom()->randomInt64(0, wk.nodeCount);
Key k = wk.keyForIndex(idx, true);
auto parse = wk.indexForKey(k, true);
ASSERT(parse == idx);
}
return Void();
}