foundationdb/fdbserver/workloads/ReadAfterWrite.actor.cpp

126 lines
4.7 KiB
C++

/*
* ReadAfterWrite.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <vector>
#include "fdbclient/NativeAPI.actor.h"
#include "fdbserver/workloads/workloads.actor.h"
#include "flow/genericactors.actor.h"
#include "flow/actorcompiler.h" // This must be the last #include.
static constexpr int SAMPLE_SIZE = 10000;
// If the log->storage propagation delay is longer than 1 second, then it's likely that our read
// will see a `future_version` error from the storage server. We need to retry the read until
// a value is returned, or a different error is thrown.
ACTOR Future<double> latencyOfRead(Transaction* tr, Key k) {
state double start = timer();
loop {
try {
wait(success(tr->get(k)));
break;
} catch (Error& e) {
if (e.code() == error_code_future_version) {
continue;
}
throw;
}
}
return timer() - start;
}
// Measure the latency of a storage server making a committed value available for reading.
struct ReadAfterWriteWorkload : KVWorkload {
double testDuration;
ContinuousSample<double> propagationLatency;
ReadAfterWriteWorkload(WorkloadContext const& wcx) : KVWorkload(wcx), propagationLatency(SAMPLE_SIZE) {
testDuration = getOption(options, "testDuration"_sr, 10.0);
}
std::string description() const override { return "ReadAfterWriteWorkload"; }
Future<Void> setup(Database const& cx) override { return Void(); }
ACTOR static Future<Void> benchmark(Database cx, ReadAfterWriteWorkload* self) {
loop {
state Key key = self->getRandomKey();
state Transaction writeTr(cx);
state Transaction baselineReadTr(cx);
state Transaction afterWriteTr(cx);
try {
state Version readVersion = wait(writeTr.getReadVersion());
// We do a read in this writeTransaction only to enforce that `readVersion` is already on a storage
// server after we commit. Its existence or non-existence is irrelevant. We write back the exact same
// value (or clear the key, if empty) so that the database state is not mutated. This means this
// workload can be paired with any other workload, and it won't affect any results.
Optional<Value> value = wait(writeTr.get(key));
if (value.present()) {
writeTr.set(key, value.get());
} else {
writeTr.clear(key);
}
wait(writeTr.commit());
Version commitVersion = writeTr.getCommittedVersion();
baselineReadTr.setVersion(readVersion);
afterWriteTr.setVersion(commitVersion);
state double baselineLatency = 0;
state double afterWriteLatency = 0;
wait(store(baselineLatency, latencyOfRead(&baselineReadTr, key)) &&
store(afterWriteLatency, latencyOfRead(&afterWriteTr, key)));
// By reading the same key at two different versions, we should be able to measure the latency of the
// network, the storage server overhead, and the propagation delay, and then with our baseline read,
// subtract out the network and the storage server overhead, leaving only the propagation delay.
self->propagationLatency.addSample(std::max<double>(afterWriteLatency - baselineLatency, 0));
} catch (Error& e) {
wait(writeTr.onError(e));
}
}
}
Future<Void> start(Database const& cx) override { return _start(cx, this); }
ACTOR Future<Void> _start(Database cx, ReadAfterWriteWorkload* self) {
state Future<Void> lifetime = benchmark(cx, self);
wait(delay(self->testDuration));
return Void();
}
Future<bool> check(Database const& cx) override { return true; }
void getMetrics(std::vector<PerfMetric>& m) override {
m.emplace_back("Mean Latency (ms)", 1000 * propagationLatency.mean(), Averaged::True);
m.emplace_back("Median Latency (ms, averaged)", 1000 * propagationLatency.median(), Averaged::True);
m.emplace_back("90% Latency (ms, averaged)", 1000 * propagationLatency.percentile(0.90), Averaged::True);
m.emplace_back("99% Latency (ms, averaged)", 1000 * propagationLatency.percentile(0.99), Averaged::True);
m.emplace_back("Max Latency (ms, averaged)", 1000 * propagationLatency.max(), Averaged::True);
}
};
WorkloadFactory<ReadAfterWriteWorkload> ReadAfterWriteWorkloadFactory("ReadAfterWrite");