foundationdb/fdbserver/workloads/WatchesSameKeyCorrectness.a...

246 lines
7.3 KiB
C++

/*
* WatchesSameKeyCorrectness.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2021 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "fdbrpc/ContinuousSample.h"
#include "fdbclient/ReadYourWrites.h"
#include "fdbclient/NativeAPI.actor.h"
#include "fdbserver/TesterInterface.actor.h"
#include "flow/DeterministicRandom.h"
#include "fdbserver/workloads/workloads.actor.h"
#include "flow/actorcompiler.h" // This must be the last #include.
struct WatchesSameKeyWorkload : TestWorkload {
int numWatches;
std::vector<Future<Void>> cases;
WatchesSameKeyWorkload(WorkloadContext const& wcx)
: TestWorkload(wcx)
{
numWatches = getOption( options, LiteralStringRef("numWatches"), 3 );
}
std::string description() const override { return "WatchesSameKeyCorrectness"; }
Future<Void> setup(Database const& cx) override {
cases.push_back( case1(cx, LiteralStringRef("foo1"), this) );
cases.push_back( case2(cx, LiteralStringRef("foo2"), this) );
cases.push_back( case3(cx, LiteralStringRef("foo3"), this) );
cases.push_back( case4(cx, LiteralStringRef("foo4"), this) );
cases.push_back( case5(cx, LiteralStringRef("foo5"), this) );
return Void();
}
Future<Void> start(Database const& cx) override {
return waitForAll( cases );
}
Future<bool> check(Database const& cx) override {
bool ok = true;
for( int i = 0; i < cases.size(); i++ ) {
if ( cases[i].isError() ) ok = false;
}
cases.clear();
return ok;
}
ACTOR static Future<Void> setKeyRandomValue(Database cx, Key key, Optional<Value> val) {
state ReadYourWritesTransaction tr(cx);
loop {
try {
if (!val.present()) val = Value(deterministicRandom()->randomUniqueID().toString());
tr.set(key, val.get());
wait(tr.commit());
return Void();
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
ACTOR static Future<Optional<Value>> getValue(Database cx, Key key) {
state ReadYourWritesTransaction tr(cx);
loop {
try {
Optional<Value> val = wait(tr.get(key));
return val;
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
ACTOR static Future<Future<Void>> watchKey(Database cx, Key key) {
state ReadYourWritesTransaction tr(cx);
loop {
try {
state Future<Void> watchFuture = tr.watch(key);
wait(tr.commit());
return watchFuture;
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
ACTOR static Future<Void> case1(Database cx, Key key, WatchesSameKeyWorkload* self) {
/**
* Tests case 2 in the design doc:
* - we get a watch that has the same value as a key in the watch map
* */
state ReadYourWritesTransaction tr(cx);
loop {
try {
state std::vector<Future<Void>> watchFutures;
state int i;
for ( i = 0; i < self->numWatches; i++ ) {
watchFutures.push_back(tr.watch(key));
}
wait(tr.commit());
wait( setKeyRandomValue(cx, key, Optional<Value>()) );
for ( i = 0; i < watchFutures.size(); i++) {
wait( watchFutures[i] );
}
return Void();
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
ACTOR static Future<Void> case2(Database cx, Key key, WatchesSameKeyWorkload* self) {
/**
* Tests case 3 in the design doc:
* - we get a watch that has a different value than the key in the map but the version is larger
* */
state ReadYourWritesTransaction tr(cx);
loop {
try {
state std::vector<Future<Void>> watchFutures;
state Future<Void> watch1 = wait(watchKey(cx, key));
state int i;
state Value val = Value( deterministicRandom()->randomUniqueID().toString() );
tr.set(key, val);
for ( i = 0; i < self->numWatches; i++ ) {
watchFutures.push_back(tr.watch(key));
}
wait ( tr.commit() );
wait( watch1 );
wait( setKeyRandomValue(cx, key, Optional<Value>()) );
for ( i = 0; i < watchFutures.size(); i++) {
wait( watchFutures[i] );
}
return Void();
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
ACTOR static Future<Void> case3(Database cx, Key key, WatchesSameKeyWorkload* self) {
/**
* Tests case 2 for the storage server response:
* - i.e ABA but when the storage server responds the future count == 1 so we do nothing (no refire)
* */
state ReadYourWritesTransaction tr(cx);
loop {
try {
wait ( setKeyRandomValue(cx, key, Optional<Value>()) );
state Optional<Value> val = wait( getValue(cx, key) );
state Future<Void> watch1 = wait(watchKey(cx, key));
wait ( setKeyRandomValue(cx, key, Optional<Value>()) );
tr.set(key, val.get());
state Future<Void> watch2 = tr.watch(key);
wait( tr.commit() );
watch1.cancel();
watch2.cancel();
return Void();
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
ACTOR static Future<Void> case4(Database cx, Key key, WatchesSameKeyWorkload* self) {
/**
* Tests case 3 for the storage server response:
* - i.e ABA but when the storage server responds the future count > 1 so we refire request to SS
* */
state ReadYourWritesTransaction tr(cx);
loop {
try {
wait ( setKeyRandomValue(cx, key, Optional<Value>()) );
state Optional<Value> val = wait( getValue(cx, key) );
state Future<Void> watch1 = wait(watchKey(cx, key));
wait ( setKeyRandomValue(cx, key, Optional<Value>()) );
tr.set(key, val.get());
state Future<Void> watch2 = tr.watch(key);
wait( tr.commit() );
wait( setKeyRandomValue(cx, key, Optional<Value>()) );
wait( watch1 );
wait( watch2 );
return Void();
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
ACTOR static Future<Void> case5(Database cx, Key key, WatchesSameKeyWorkload* self) {
/**
* Tests case 5 in the design doc:
* - i.e values of watches are different but versions are the same
* */
state ReadYourWritesTransaction tr1(cx);
state ReadYourWritesTransaction tr2(cx);
loop {
try {
state Value val1 = Value( deterministicRandom()->randomUniqueID().toString() );
state Value val2 = Value( deterministicRandom()->randomUniqueID().toString() );
tr1.setOption( FDBTransactionOptions::NEXT_WRITE_NO_WRITE_CONFLICT_RANGE );
tr2.setOption( FDBTransactionOptions::NEXT_WRITE_NO_WRITE_CONFLICT_RANGE );
tr1.set(key, val1);
tr2.set(key, val2);
state Future<Void> watch1 = tr1.watch(key);
state Future<Void> watch2 = tr2.watch(key);
wait( tr1.commit() && tr2.commit() );
wait( watch1 || watch2 ); // since we enter case 5 at least one of the watches should be fired
wait( setKeyRandomValue(cx, key, Optional<Value>()) );
wait( watch1 && watch2 );
return Void();
} catch (Error& e) {
wait(tr1.onError(e) && tr2.onError(e));
}
}
}
void getMetrics(vector<PerfMetric>& m) override {}
};
WorkloadFactory<WatchesSameKeyWorkload> WatchesSameKeyWorkloadFactory("WatchesSameKeyCorrectness");