foundationdb/flow/FastAlloc.cpp

618 lines
18 KiB
C++

/*
* FastAlloc.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "flow/FastAlloc.h"
#include "flow/ThreadPrimitives.h"
#include "flow/Trace.h"
#include "flow/Error.h"
#include "flow/Knobs.h"
#include "flow/UnitTest.h"
#include "crc32/crc32c.h"
#include "flow/flow.h"
#include <atomic>
#include <cstdint>
#include <unordered_map>
//#ifdef WIN32
//#include <windows.h>
//#undef min
//#undef max
//#endif
#ifdef __linux__
#include <sys/mman.h>
#include <linux/mman.h>
#endif
#ifdef __FreeBSD__
#include <sys/mman.h>
#endif
#define FAST_ALLOCATOR_DEBUG 0
#ifdef _MSC_VER
// warning 4073 warns about "initializers put in library initialization area", which is our intent
#pragma warning(disable : 4073)
#pragma init_seg(lib)
#define INIT_SEG
#elif defined(__INTEL_COMPILER)
// intel compiler ignored INIT_SEG for thread local variables
#define INIT_SEG
#elif defined(__GNUG__)
#ifdef __linux__
#define INIT_SEG __attribute__((init_priority(1000)))
#elif defined(__FreeBSD__)
#define INIT_SEG __attribute__((init_priority(1000)))
#elif defined(__APPLE__)
#pragma message "init_priority is not supported on this platform; will this be a problem?"
#define INIT_SEG
#else
#error Where am I?
#endif
#else
#error Port me? (init_seg(lib))
#endif
template <int Size>
INIT_SEG thread_local typename FastAllocator<Size>::ThreadDataInit FastAllocator<Size>::threadDataInit;
template <int Size>
typename FastAllocator<Size>::ThreadData& FastAllocator<Size>::threadData() noexcept {
static thread_local ThreadData threadData;
return threadData;
}
#ifdef VALGRIND
template <int Size>
unsigned long FastAllocator<Size>::vLock = 1;
// valgrindPrecise controls some extra instrumentation that causes valgrind to run more slowly but give better
// diagnostics. Set the environment variable FDB_VALGRIND_PRECISE to enable. valgrindPrecise must never change the
// behavior of the program itself, so when you find a memory error in simulation without valgrindPrecise enabled, you
// can rerun it with FDB_VALGRIND_PRECISE set, make yourself a coffee, and come back to a nicer diagnostic (you probably
// want to pass --track-origins=yes to valgrind as well!)
//
// Currently valgrindPrecise replaces FastAllocator::allocate with malloc, and FastAllocator::release with free.
// This improves diagnostics for fast-allocated memory. The main thing it improves is the case where you free a buffer
// and then allocate a buffer again - with FastAllocator you'll get the same buffer back, and so uses of the freed
// pointer either won't be noticed or will be counted as use of uninitialized memory instead of use after free.
//
// valgrindPrecise also enables extra instrumentation for Arenas, so you can
// catch things like buffer overflows in arena-allocated memory more easily
// (valgrind otherwise wouldn't know that memory used for Arena bookkeeping
// should only be accessed within certain Arena routines.) Unfortunately the
// current Arena contract requires some allocations to be adjacent, so we can't
// insert redzones between arena allocations, but we can at least catch buffer
// overflows if it's the most recently allocated memory from an Arena.
bool valgrindPrecise() {
static bool result = std::getenv("FDB_VALGRIND_PRECISE");
return result;
}
#endif
template <int Size>
void* FastAllocator<Size>::freelist = nullptr;
std::atomic<int64_t> g_hugeArenaMemory(0);
double hugeArenaLastLogged = 0;
std::map<std::string, std::pair<int, int64_t>> hugeArenaTraces;
void hugeArenaSample(int size) {
if (TraceEvent::isNetworkThread()) {
auto& info = hugeArenaTraces[platform::get_backtrace()];
info.first++;
info.second += size;
if (now() - hugeArenaLastLogged > FLOW_KNOBS->HUGE_ARENA_LOGGING_INTERVAL) {
for (auto& it : hugeArenaTraces) {
TraceEvent("HugeArenaSample")
.detail("Count", it.second.first)
.detail("Size", it.second.second)
.detail("Backtrace", it.first);
}
hugeArenaLastLogged = now();
hugeArenaTraces.clear();
}
}
}
#ifdef ALLOC_INSTRUMENTATION
INIT_SEG std::map<const char*, AllocInstrInfo> allocInstr;
INIT_SEG std::unordered_map<int64_t, std::pair<uint32_t, size_t>> memSample;
INIT_SEG std::unordered_map<uint32_t, BackTraceAccount> backTraceLookup;
INIT_SEG ThreadSpinLock memLock;
const size_t SAMPLE_BYTES = 1e7;
template <int Size>
volatile int32_t FastAllocator<Size>::pageCount;
thread_local bool memSample_entered = false;
#endif
#ifdef ALLOC_INSTRUMENTATION_STDOUT
thread_local bool inRecordAllocation = false;
#endif
void recordAllocation(void* ptr, size_t size) {
#ifdef ALLOC_INSTRUMENTATION_STDOUT
if (inRecordAllocation)
return;
inRecordAllocation = true;
std::string trace = platform::get_backtrace();
printf("Alloc\t%p\t%d\t%s\n", ptr, size, trace.c_str());
inRecordAllocation = false;
#endif
#ifdef ALLOC_INSTRUMENTATION
if (memSample_entered)
return;
memSample_entered = true;
if (((double)rand()) / RAND_MAX < ((double)size) / SAMPLE_BYTES) {
void* buffer[100];
#if defined(__linux__)
int nptrs = backtrace(buffer, 100);
#elif defined(_WIN32)
// We could be using fourth parameter to get a hash, but we'll do this
// in a unified way between platforms
int nptrs = CaptureStackBackTrace(1, 100, buffer, nullptr);
#else
#error Instrumentation not supported on this platform
#endif
uint32_t a = 0;
if (nptrs > 0) {
a = crc32c_append(0xfdbeefdb, reinterpret_cast<uint8_t*>(buffer), nptrs * sizeof(void*));
}
double countDelta = std::max(1.0, ((double)SAMPLE_BYTES) / size);
size_t sizeDelta = std::max(SAMPLE_BYTES, size);
ThreadSpinLockHolder holder(memLock);
auto it = backTraceLookup.find(a);
if (it == backTraceLookup.end()) {
auto& bt = backTraceLookup[a];
bt.backTrace = new std::vector<void*>();
for (int j = 0; j < nptrs; j++) {
bt.backTrace->push_back(buffer[j]);
}
bt.totalSize = sizeDelta;
bt.count = countDelta;
bt.sampleCount = 1;
} else {
it->second.totalSize += sizeDelta;
it->second.count += countDelta;
it->second.sampleCount++;
}
memSample[(int64_t)ptr] = std::make_pair(a, size);
}
memSample_entered = false;
#endif
}
void recordDeallocation(void* ptr) {
#ifdef ALLOC_INSTRUMENTATION_STDOUT
if (inRecordAllocation)
return;
printf("Dealloc\t%p\n", ptr);
inRecordAllocation = false;
#endif
#ifdef ALLOC_INSTRUMENTATION
if (memSample_entered) // could this lead to deallocations not being recorded?
return;
memSample_entered = true;
{
ThreadSpinLockHolder holder(memLock);
auto it = memSample.find((int64_t)ptr);
if (it == memSample.end()) {
memSample_entered = false;
return;
}
auto bti = backTraceLookup.find(it->second.first);
ASSERT(bti != backTraceLookup.end());
size_t sizeDelta = std::max(SAMPLE_BYTES, it->second.second);
double countDelta = std::max(1.0, ((double)SAMPLE_BYTES) / it->second.second);
bti->second.totalSize -= sizeDelta;
bti->second.count -= countDelta;
bti->second.sampleCount--;
memSample.erase(it);
}
memSample_entered = false;
#endif
}
template <int Size>
struct FastAllocator<Size>::GlobalData {
CRITICAL_SECTION mutex;
std::vector<void*> magazines; // These magazines are always exactly magazine_size ("full")
std::vector<std::pair<int, void*>>
partial_magazines; // Magazines that are not "full" and their counts. Only created by releaseThreadMagazines().
std::atomic<long long> totalMemory;
long long partialMagazineUnallocatedMemory;
std::atomic<long long> activeThreads;
GlobalData() : totalMemory(0), partialMagazineUnallocatedMemory(0), activeThreads(0) {
InitializeCriticalSection(&mutex);
}
};
template <int Size>
long long FastAllocator<Size>::getTotalMemory() {
return globalData()->totalMemory.load();
}
// This does not include memory held by various threads that's available for allocation
template <int Size>
long long FastAllocator<Size>::getApproximateMemoryUnused() {
EnterCriticalSection(&globalData()->mutex);
long long unused =
globalData()->magazines.size() * magazine_size * Size + globalData()->partialMagazineUnallocatedMemory;
LeaveCriticalSection(&globalData()->mutex);
return unused;
}
template <int Size>
long long FastAllocator<Size>::getActiveThreads() {
return globalData()->activeThreads.load();
}
#if FAST_ALLOCATOR_DEBUG
static int64_t getSizeCode(int i) {
switch (i) {
case 16:
return 1;
case 32:
return 2;
case 64:
return 3;
case 96:
return 4;
case 128:
return 5;
case 256:
return 6;
case 512:
return 7;
case 1024:
return 8;
case 2048:
return 9;
case 4096:
return 10;
case 8192:
return 11;
default:
return 12;
}
}
#endif
template <int Size>
void* FastAllocator<Size>::allocate() {
#if defined(USE_GPERFTOOLS) || defined(ADDRESS_SANITIZER)
// Some usages of FastAllocator require 4096 byte alignment.
return aligned_alloc(Size >= 4096 ? 4096 : alignof(void*), Size);
#endif
#if VALGRIND
if (valgrindPrecise()) {
// Some usages of FastAllocator require 4096 byte alignment
return aligned_alloc(Size >= 4096 ? 4096 : alignof(void*), Size);
}
#endif
#if FASTALLOC_THREAD_SAFE
ThreadData& thr = threadData();
if (!thr.freelist) {
ASSERT(thr.count == 0);
if (thr.alternate) {
thr.freelist = thr.alternate;
thr.alternate = nullptr;
thr.count = magazine_size;
} else {
getMagazine();
}
}
--thr.count;
void* p = thr.freelist;
#if VALGRIND
VALGRIND_MAKE_MEM_DEFINED(p, sizeof(void*));
#endif
thr.freelist = *(void**)p;
ASSERT(!thr.freelist == (thr.count == 0)); // freelist is empty if and only if count is 0
// check( p, true );
#else
void* p = freelist;
if (!p)
getMagazine();
#if VALGRIND
VALGRIND_MAKE_MEM_DEFINED(p, sizeof(void*));
#endif
freelist = *(void**)p;
#endif
#if VALGRIND
VALGRIND_MALLOCLIKE_BLOCK(p, Size, 0, 0);
#endif
#if defined(ALLOC_INSTRUMENTATION) || defined(ALLOC_INSTRUMENTATION_STDOUT)
recordAllocation(p, Size);
#endif
return p;
}
template <int Size>
void FastAllocator<Size>::release(void* ptr) {
#if defined(USE_GPERFTOOLS) || defined(ADDRESS_SANITIZER)
return aligned_free(ptr);
#endif
#if VALGRIND
if (valgrindPrecise()) {
return aligned_free(ptr);
}
#endif
#if FASTALLOC_THREAD_SAFE
ThreadData& thr = threadData();
if (thr.count == magazine_size) {
if (thr.alternate) // Two full magazines, return one
releaseMagazine(thr.alternate);
thr.alternate = thr.freelist;
thr.freelist = nullptr;
thr.count = 0;
}
ASSERT(!thr.freelist == (thr.count == 0)); // freelist is empty if and only if count is 0
#if VALGRIND
VALGRIND_MAKE_MEM_DEFINED(ptr, sizeof(void*));
#endif
++thr.count;
*(void**)ptr = thr.freelist;
// check(ptr, false);
thr.freelist = ptr;
#else
*(void**)ptr = freelist;
freelist = ptr;
#endif
#if VALGRIND
VALGRIND_FREELIKE_BLOCK(ptr, 0);
#endif
#if defined(ALLOC_INSTRUMENTATION) || defined(ALLOC_INSTRUMENTATION_STDOUT)
recordDeallocation(ptr);
#endif
}
template <int Size>
void FastAllocator<Size>::check(void* ptr, bool alloc) {
#if FAST_ALLOCATOR_DEBUG
// if (ptr == (void*)0x400200180)
// printf("%c%p\n", alloc?'+':'-', ptr);
// Check for pointers that aren't part of this FastAllocator
if (ptr < (void*)(((getSizeCode(Size) << 11) + 0) * magazine_size * Size) ||
ptr > (void*)(((getSizeCode(Size) << 11) + 4000) * magazine_size * Size) || (int64_t(ptr) & (Size - 1))) {
printf("Bad ptr: %p\n", ptr);
abort();
}
// Redundant freelist pointers to detect outright smashing of the freelist
if (alloc) {
if (*((void**)ptr + 1) != *(void**)ptr) {
printf("Freelist corruption? %p %p\n", *(void**)ptr, *((void**)ptr + 1));
abort();
}
*((void**)ptr + 1) = (void*)0;
} else {
*((void**)ptr + 1) = *(void**)ptr;
}
// Track allocated/free status in a completely separate data structure to detect double frees
int i = (int)((int64_t)ptr - ((getSizeCode(Size) << 11) + 0) * magazine_size * Size) / Size;
static std::vector<bool> isFreed;
if (!alloc) {
if (i + 1 > isFreed.size())
isFreed.resize(i + 1, false);
if (isFreed[i]) {
printf("Double free: %p\n", ptr);
abort();
}
isFreed[i] = true;
} else {
if (i + 1 > isFreed.size()) {
printf("Allocate beyond end: %p\n", ptr);
abort();
}
if (!isFreed[i]) {
printf("Allocate non-freed: %p\n", ptr);
abort();
}
isFreed[i] = false;
}
#endif
}
template <int Size>
FastAllocator<Size>::ThreadData::ThreadData() {
globalData()->activeThreads.fetch_add(1);
freelist = nullptr;
alternate = nullptr;
count = 0;
}
template <int Size>
void FastAllocator<Size>::getMagazine() {
ThreadData& thr = threadData();
ASSERT(!thr.freelist && !thr.alternate && thr.count == 0);
EnterCriticalSection(&globalData()->mutex);
if (globalData()->magazines.size()) {
void* m = globalData()->magazines.back();
globalData()->magazines.pop_back();
LeaveCriticalSection(&globalData()->mutex);
thr.freelist = m;
thr.count = magazine_size;
return;
} else if (globalData()->partial_magazines.size()) {
std::pair<int, void*> p = globalData()->partial_magazines.back();
globalData()->partial_magazines.pop_back();
globalData()->partialMagazineUnallocatedMemory -= p.first * Size;
LeaveCriticalSection(&globalData()->mutex);
thr.freelist = p.second;
thr.count = p.first;
return;
}
globalData()->totalMemory.fetch_add(magazine_size * Size);
LeaveCriticalSection(&globalData()->mutex);
// Allocate a new page of data from the system allocator
#ifdef ALLOC_INSTRUMENTATION
interlockedIncrement(&pageCount);
#endif
void** block = nullptr;
#if FAST_ALLOCATOR_DEBUG
#ifdef WIN32
static int alt = 0;
alt++;
block = (void**)VirtualAllocEx(GetCurrentProcess(),
(void*)(((getSizeCode(Size) << 11) + alt) * magazine_size * Size),
magazine_size * Size,
MEM_COMMIT | MEM_RESERVE,
PAGE_READWRITE);
#else
static int alt = 0;
alt++;
void* desiredBlock = (void*)(((getSizeCode(Size) << 11) + alt) * magazine_size * Size);
block =
(void**)mmap(desiredBlock, magazine_size * Size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
ASSERT(block == desiredBlock);
#endif
#else
// FIXME: We should be able to allocate larger magazine sizes here if we
// detect that the underlying system supports hugepages. Using hugepages
// with smaller-than-2MiB magazine sizes strands memory. See issue #909.
#if !DEBUG_DETERMINISM
if (FLOW_KNOBS && g_allocation_tracing_disabled == 0 &&
nondeterministicRandom()->random01() < (magazine_size * Size) / FLOW_KNOBS->FAST_ALLOC_LOGGING_BYTES) {
++g_allocation_tracing_disabled;
TraceEvent("GetMagazineSample").detail("Size", Size).backtrace();
--g_allocation_tracing_disabled;
}
#endif
block = (void**)::allocate(magazine_size * Size, /*allowLargePages*/ false, /*includeGuardPages*/ true);
#endif
// void** block = new void*[ magazine_size * PSize ];
for (int i = 0; i < magazine_size - 1; i++) {
block[i * PSize + 1] = block[i * PSize] = &block[(i + 1) * PSize];
check(&block[i * PSize], false);
}
block[(magazine_size - 1) * PSize + 1] = block[(magazine_size - 1) * PSize] = nullptr;
check(&block[(magazine_size - 1) * PSize], false);
thr.freelist = block;
thr.count = magazine_size;
}
template <int Size>
void FastAllocator<Size>::releaseMagazine(void* mag) {
EnterCriticalSection(&globalData()->mutex);
globalData()->magazines.push_back(mag);
LeaveCriticalSection(&globalData()->mutex);
}
template <int Size>
FastAllocator<Size>::ThreadData::~ThreadData() {
EnterCriticalSection(&globalData()->mutex);
if (freelist) {
ASSERT_ABORT(count > 0 && count <= magazine_size);
globalData()->partial_magazines.emplace_back(count, freelist);
globalData()->partialMagazineUnallocatedMemory += count * Size;
}
if (alternate) {
globalData()->magazines.push_back(alternate);
}
globalData()->activeThreads.fetch_add(-1);
LeaveCriticalSection(&globalData()->mutex);
count = 0;
alternate = nullptr;
freelist = nullptr;
}
int64_t getTotalUnusedAllocatedMemory() {
int64_t unusedMemory = 0;
unusedMemory += FastAllocator<16>::getApproximateMemoryUnused();
unusedMemory += FastAllocator<32>::getApproximateMemoryUnused();
unusedMemory += FastAllocator<64>::getApproximateMemoryUnused();
unusedMemory += FastAllocator<96>::getApproximateMemoryUnused();
unusedMemory += FastAllocator<128>::getApproximateMemoryUnused();
unusedMemory += FastAllocator<256>::getApproximateMemoryUnused();
unusedMemory += FastAllocator<512>::getApproximateMemoryUnused();
unusedMemory += FastAllocator<1024>::getApproximateMemoryUnused();
unusedMemory += FastAllocator<2048>::getApproximateMemoryUnused();
unusedMemory += FastAllocator<4096>::getApproximateMemoryUnused();
unusedMemory += FastAllocator<8192>::getApproximateMemoryUnused();
unusedMemory += FastAllocator<16384>::getApproximateMemoryUnused();
return unusedMemory;
}
template class FastAllocator<16>;
template class FastAllocator<32>;
template class FastAllocator<64>;
template class FastAllocator<96>;
template class FastAllocator<128>;
template class FastAllocator<256>;
template class FastAllocator<512>;
template class FastAllocator<1024>;
template class FastAllocator<2048>;
template class FastAllocator<4096>;
template class FastAllocator<8192>;
template class FastAllocator<16384>;
#ifdef USE_JEMALLOC
#include <jemalloc/jemalloc.h>
TEST_CASE("/jemalloc/4k_aligned_usable_size") {
void* ptr;
try {
// Check that we can allocate 4k aligned up to 16k with no internal
// fragmentation
for (int i = 1; i < 4; ++i) {
ptr = aligned_alloc(4096, i * 4096);
ASSERT_EQ(malloc_usable_size(ptr), i * 4096);
aligned_free(ptr);
ptr = nullptr;
}
// Also check that we can allocate magazines with no internal
// fragmentation, should we decide to do that.
ptr = aligned_alloc(4096, kFastAllocMagazineBytes);
ASSERT_EQ(malloc_usable_size(ptr), kFastAllocMagazineBytes);
aligned_free(ptr);
ptr = nullptr;
} catch (...) {
aligned_free(ptr);
throw;
}
return Void();
}
#endif