foundationdb/fdbserver/workloads/RYWPerformance.actor.cpp

310 lines
9.8 KiB
C++

/*
* RYWPerformance.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "flow/actorcompiler.h"
#include "fdbrpc/ContinuousSample.h"
#include "fdbclient/NativeAPI.h"
#include "fdbserver/TesterInterface.h"
#include "fdbclient/ReadYourWrites.h"
#include "workloads.h"
struct RYWPerformanceWorkload : TestWorkload {
int keyBytes, nodes, ranges;
RYWPerformanceWorkload(WorkloadContext const& wcx)
: TestWorkload(wcx)
{
nodes = getOption( options, LiteralStringRef("nodes"), 10000 );
ranges = getOption( options, LiteralStringRef("ranges"), 10 );
keyBytes = std::max( getOption( options, LiteralStringRef("keyBytes"), 16 ), 16 );
}
virtual std::string description() { return "RYWPerformance"; }
virtual Future<Void> setup( Database const& cx ) {
if( clientId == 0 )
return _setup( cx, this );
return Void();
}
ACTOR Future<Void> _setup( Database cx, RYWPerformanceWorkload* self ) {
state Transaction tr(cx);
loop {
try {
for(int i = 0; i < self->nodes; i++) tr.set(self->keyForIndex(i), LiteralStringRef("bar"));
Void _ = wait( tr.commit() );
break;
} catch (Error& e) {
Void _ = wait( tr.onError(e) );
}
}
return Void();
}
virtual Future<Void> start( Database const& cx ) {
if( clientId == 0 )
return _start( cx, this );
return Void();
}
ACTOR static Future<Void> fillCache( ReadYourWritesTransaction *tr, RYWPerformanceWorkload* self, int type ) {
state int i;
if( type == 0 ) {
for( i = 0; i < self->nodes; i++ ) {
tr->set( self->keyForIndex(i), LiteralStringRef("foo"));
}
} else if( type == 1 ) {
std::vector<Future<Optional<Value>>> gets;
for( i = 0; i < self->nodes; i++ ) {
gets.push_back( tr->get( self->keyForIndex(i) ) );
}
Void _ = wait( waitForAll(gets) );
} else if( type == 2 ) {
std::vector<Future<Optional<Value>>> gets;
for( i = 0; i < self->nodes; i++ ) {
gets.push_back( tr->get( self->keyForIndex(i) ) );
}
Void _ = wait( waitForAll(gets) );
for( i = 0; i < self->nodes; i++ ) {
tr->set( self->keyForIndex(i), LiteralStringRef("foo"));
}
} else if( type == 3 ) {
std::vector<Future<Optional<Value>>> gets;
for( i = 0; i < self->nodes; i+=2 ) {
gets.push_back( tr->get( self->keyForIndex(i) ) );
}
Void _ = wait( waitForAll(gets) );
for( i = 1; i < self->nodes; i+=2 ) {
tr->set( self->keyForIndex(i), LiteralStringRef("foo"));
}
} else if( type == 4 ) {
Standalone<RangeResultRef> _ = wait( tr->getRange(KeyRangeRef(self->keyForIndex(0),self->keyForIndex(self->nodes)),self->nodes ));
} else if( type == 5 ) {
Standalone<RangeResultRef> _ = wait( tr->getRange(KeyRangeRef(self->keyForIndex(0),self->keyForIndex(self->nodes)),self->nodes ));
for( i = 0; i < self->nodes; i++ ) {
tr->set( self->keyForIndex(i), LiteralStringRef("foo"));
}
} else if( type == 6 ) {
Standalone<RangeResultRef> _ = wait( tr->getRange(KeyRangeRef(self->keyForIndex(0),self->keyForIndex(self->nodes)),self->nodes ));
for( i = 0; i < self->nodes; i+= 2 ) {
tr->set( self->keyForIndex(i), LiteralStringRef("foo"));
}
} else if( type == 7 ) {
Standalone<RangeResultRef> _ = wait( tr->getRange(KeyRangeRef(self->keyForIndex(0),self->keyForIndex(self->nodes)),self->nodes ));
for( i = 0; i < self->nodes; i++ ) {
tr->clear( self->keyForIndex(i) );
}
} else if( type == 8 ) {
Standalone<RangeResultRef> _ = wait( tr->getRange(KeyRangeRef(self->keyForIndex(0),self->keyForIndex(self->nodes)),self->nodes ));
for( i = 0; i < self->nodes; i += 2 ) {
tr->clear( KeyRangeRef( self->keyForIndex(i), self->keyForIndex(i+1) ) );
}
} else if( type == 9 ) {
std::vector<Future<Standalone<RangeResultRef>>> gets;
for( i = 0; i < self->nodes; i++ ) {
gets.push_back( tr->getRange(KeyRangeRef(self->keyForIndex(i),self->keyForIndex(i+2)),self->nodes ) );
}
Void _ = wait( waitForAll(gets) );
} else if( type == 10 ) {
std::vector<Future<Standalone<RangeResultRef>>> gets;
for( i = 0; i < self->nodes; i++ ) {
gets.push_back( tr->getRange(KeyRangeRef(self->keyForIndex(i),self->keyForIndex(i+2)),self->nodes ) );
}
Void _ = wait( waitForAll(gets) );
for( i = 0; i < self->nodes; i++ ) {
tr->set( self->keyForIndex(i), LiteralStringRef("foo"));
}
} else if( type == 11 ) {
std::vector<Future<Standalone<RangeResultRef>>> gets;
for( i = 0; i < self->nodes; i++ ) {
gets.push_back( tr->getRange(KeyRangeRef(self->keyForIndex(i),self->keyForIndex(i+2)),self->nodes ) );
}
Void _ = wait( waitForAll(gets) );
for( i = 0; i < self->nodes; i+= 2 ) {
tr->set( self->keyForIndex(i), LiteralStringRef("foo"));
}
} else if( type == 12 ) {
std::vector<Future<Standalone<RangeResultRef>>> gets;
for( i = 0; i < self->nodes; i++ ) {
gets.push_back( tr->getRange(KeyRangeRef(self->keyForIndex(i),self->keyForIndex(i+2)),self->nodes ) );
}
Void _ = wait( waitForAll(gets) );
for( i = 0; i < self->nodes; i++ ) {
tr->clear( self->keyForIndex(i) );
}
} else if( type == 13 ) {
std::vector<Future<Standalone<RangeResultRef>>> gets;
for( i = 0; i < self->nodes; i++ ) {
gets.push_back( tr->getRange(KeyRangeRef(self->keyForIndex(i),self->keyForIndex(i+2)),self->nodes ) );
}
Void _ = wait( waitForAll(gets) );
for( i = 0; i < self->nodes; i += 2 ) {
tr->clear( KeyRangeRef( self->keyForIndex(i), self->keyForIndex(i+1) ) );
}
}
return Void();
}
ACTOR static Future<Void> test_get_single( Database cx, RYWPerformanceWorkload* self, int cacheType ) {
state int i;
state ReadYourWritesTransaction tr( cx );
loop {
try {
Void _ = wait( self->fillCache(&tr, self, cacheType) );
state double startTime = timer();
for( i = 0; i < self->nodes; i++ ) {
Optional<Value> _ = wait( tr.get(self->keyForIndex(self->nodes/2)));
}
fprintf(stderr, "%f", self->nodes / (timer() - startTime));
return Void();
} catch( Error &e ) {
Void _ = wait( tr.onError(e) );
}
}
}
ACTOR static Future<Void> test_get_many_sequential( Database cx, RYWPerformanceWorkload* self, int cacheType ) {
state int i;
state ReadYourWritesTransaction tr( cx );
loop {
try {
Void _ = wait( self->fillCache(&tr, self, cacheType) );
state double startTime = timer();
for( i = 0; i < self->nodes; i++ ) {
Optional<Value> _ = wait( tr.get(self->keyForIndex(i)));
}
fprintf(stderr, "%f", self->nodes / (timer() - startTime));
return Void();
} catch( Error &e ) {
Void _ = wait( tr.onError(e) );
}
}
}
ACTOR static Future<Void> test_get_range_basic( Database cx, RYWPerformanceWorkload* self, int cacheType ) {
state int i;
state ReadYourWritesTransaction tr( cx );
loop {
try {
Void _ = wait( self->fillCache(&tr, self, cacheType) );
state double startTime = timer();
for( i = 0; i < self->ranges; i++ ) {
Standalone<RangeResultRef> _ = wait( tr.getRange(KeyRangeRef(self->keyForIndex(0),self->keyForIndex(self->nodes)),self->nodes ));
}
fprintf(stderr, "%f", self->ranges / (timer() - startTime));
return Void();
} catch( Error &e ) {
Void _ = wait( tr.onError(e) );
}
}
}
ACTOR static Future<Void> test_interleaved_sets_gets( Database cx, RYWPerformanceWorkload* self, int cacheType ) {
state int i;
state ReadYourWritesTransaction tr( cx );
loop {
try {
Void _ = wait( self->fillCache(&tr, self, cacheType) );
tr.set( self->keyForIndex(self->nodes/2), self->keyForIndex(self->nodes) );
state double startTime = timer();
for( i = 0; i < self->nodes; i++ ) {
Optional<Value> _ = wait( tr.get(self->keyForIndex(self->nodes/2)) );
tr.set( self->keyForIndex(self->nodes/2), self->keyForIndex(i) );
}
fprintf(stderr, "%f", self->nodes / (timer() - startTime));
return Void();
} catch( Error &e ) {
Void _ = wait( tr.onError(e) );
}
}
}
ACTOR static Future<Void> _start( Database cx, RYWPerformanceWorkload* self ) {
state int i;
fprintf(stderr, "test_get_single, ");
for( i = 0; i < 14; i++ ) {
Void _ = wait( self->test_get_single( cx, self, i ) );
if( i == 13 ) fprintf(stderr, "\n");
else fprintf(stderr, ", ");
}
fprintf(stderr, "test_get_many_sequential, ");
for( i = 0; i < 14; i++ ) {
Void _ = wait( self->test_get_many_sequential( cx, self, i ) );
if( i == 13 ) fprintf(stderr, "\n");
else fprintf(stderr, ", ");
}
fprintf(stderr, "test_get_range_basic, ");
for( i = 4; i < 14; i++ ) {
Void _ = wait( self->test_get_range_basic( cx, self, i ) );
if( i == 13 ) fprintf(stderr, "\n");
else fprintf(stderr, ", ");
}
fprintf(stderr, "test_interleaved_sets_gets, ");
for( i = 0; i < 14; i++ ) {
Void _ = wait( self->test_interleaved_sets_gets( cx, self, i ) );
if( i == 13 ) fprintf(stderr, "\n");
else fprintf(stderr, ", ");
}
return Void();
}
virtual Future<bool> check( Database const& cx ) {
return true;
}
virtual void getMetrics( vector<PerfMetric>& m ) {
}
Key keyForIndex( uint64_t index ) {
Key result = makeString( keyBytes );
uint8_t* data = mutateString( result );
memset(data, '.', keyBytes);
double d = double(index) / nodes;
emplaceIndex( data, 0, *(int64_t*)&d );
return result;
}
};
WorkloadFactory<RYWPerformanceWorkload> RYWPerformanceWorkloadFactory("RYWPerformance");