foundationdb/fdbserver/workloads/SelectorCorrectness.actor.cpp

217 lines
8.3 KiB
C++

/*
* SelectorCorrectness.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "flow/actorcompiler.h"
#include "fdbclient/NativeAPI.h"
#include "fdbserver/TesterInterface.h"
#include "fdbclient/ReadYourWrites.h"
#include "workloads.h"
struct SelectorCorrectnessWorkload : TestWorkload {
int minOperationsPerTransaction,maxOperationsPerTransaction,maxKeySpace,maxOffset;
bool testReadYourWrites;
double testDuration;
vector<Future<Void>> clients;
PerfIntCounter transactions, retries;
SelectorCorrectnessWorkload(WorkloadContext const& wcx)
: TestWorkload(wcx), transactions("Transactions"), retries("Retries") {
minOperationsPerTransaction = getOption( options, LiteralStringRef("minOperationsPerTransaction"), 10 );
maxOperationsPerTransaction = getOption( options, LiteralStringRef("minOperationsPerTransaction"), 50 );
maxKeySpace = getOption( options, LiteralStringRef("maxKeySpace"), 10 );
maxOffset = getOption( options, LiteralStringRef("maxOffset"), 20 );
testReadYourWrites = getOption( options, LiteralStringRef("testReadYourWrites"), true );
testDuration = getOption( options, LiteralStringRef("testDuration"), 10.0 );
}
virtual std::string description() { return "SelectorCorrectness"; }
virtual Future<Void> setup( Database const& cx ) {
return SelectorCorrectnessSetup( cx->clone(), this );
}
virtual Future<Void> start( Database const& cx ) {
clients.push_back(
timeout(
SelectorCorrectnessClient( cx->clone(), this), testDuration, Void()) );
return delay(testDuration);
}
virtual Future<bool> check( Database const& cx ) {
clients.clear();
return true;
}
virtual void getMetrics( vector<PerfMetric>& m ) {
m.push_back( transactions.getMetric() );
m.push_back( retries.getMetric() );
}
ACTOR Future<Void> SelectorCorrectnessSetup( Database cx, SelectorCorrectnessWorkload* self ) {
state Value myValue = StringRef(format( "%010d", g_random->randomInt( 0, 10000000 ) ));
state Transaction tr(cx);
if(!self->testReadYourWrites) {
loop {
try {
for(int i = 0; i < self->maxKeySpace; i+=2) tr.set(StringRef(format( "%010d", i ) ),myValue);
Void _ = wait( tr.commit() );
break;
} catch (Error& e) {
Void _ = wait( tr.onError(e) );
}
}
} else {
loop {
try {
for(int i = 0; i < self->maxKeySpace; i+=4)
tr.set(StringRef(format( "%010d", i ) ),myValue);
for(int i = 2; i < self->maxKeySpace; i+=4)
if(g_random->random01() > 0.5)
tr.set(StringRef(format( "%010d", i ) ),myValue);
Void _ = wait( tr.commit() );
break;
} catch (Error& e) {
Void _ = wait( tr.onError(e) );
}
}
}
return Void();
}
ACTOR Future<Void> SelectorCorrectnessClient(
Database cx, SelectorCorrectnessWorkload *self) {
state int i;
state int j;
state std::string myKeyA;
state std::string myKeyB;
state Value myValue;
state bool onEqualA;
state bool onEqualB;
state int offsetA;
state int offsetB;
state Standalone<StringRef> maxKey;
state bool reverse;
maxKey = Standalone<StringRef>(format( "%010d", self->maxKeySpace + 1 ));
loop {
state Transaction tr(cx);
state ReadYourWritesTransaction trRYOW(cx);
trRYOW.setOption(FDBTransactionOptions::READ_SYSTEM_KEYS);
if( self->testReadYourWrites ) {
myValue = StringRef(format( "%010d", g_random->randomInt( 0, 10000000 ) ));
for(int i = 2; i < self->maxKeySpace; i+=4)
trRYOW.set(StringRef(format( "%010d", i ) ),myValue);
for(int i = 0; i < self->maxKeySpace; i+=4)
if(g_random->random01() > 0.5)
trRYOW.set(StringRef(format( "%010d", i ) ),myValue);
}
try {
for(i = 0; i < g_random->randomInt(self->minOperationsPerTransaction,self->maxOperationsPerTransaction+1); i++) {
j = g_random->randomInt(0,2);
if( j < 1 ) {
state int searchInt = g_random->randomInt( 0, self->maxKeySpace );
myKeyA = format( "%010d", searchInt );
if(self->testReadYourWrites) {
Optional<Value> getTest = wait(trRYOW.get(StringRef(myKeyA)));
if( (searchInt%2==0 && !getTest.present()) || (searchInt%2==1 && getTest.present())) {
TraceEvent(SevError, "RanSelTestFailure").detail("Reason", "Value not present").detail("KeyA",myKeyA);
}
} else {
Optional<Value> getTest = wait(tr.get(StringRef(myKeyA)));
if( (searchInt%2==0 && !getTest.present()) || (searchInt%2==1 && getTest.present())) {
TraceEvent(SevError, "RanSelTestFailure").detail("Reason", "Value not present").detail("KeyA",myKeyA);
}
}
} else {
int a = g_random->randomInt( 2, self->maxKeySpace );
int b = g_random->randomInt( 2, 2*self->maxKeySpace );
int abmax = std::max(a,b);
int abmin = std::min(a,b)-1;
myKeyA = format( "%010d", abmin );
myKeyB = format( "%010d", abmax );
onEqualA = g_random->randomInt( 0, 2 ) != 0;
onEqualB = g_random->randomInt( 0, 2 ) != 0;
offsetA = 1;//-1*g_random->randomInt( 0, self->maxOffset );
offsetB = g_random->randomInt( 1, self->maxOffset );
reverse = g_random->random01() > 0.5 ? false : true;
//TraceEvent("RYOWgetRange").detail("KeyA", myKeyA).detail("KeyB", myKeyB).detail("OnEqualA",onEqualA).detail("OnEqualB",onEqualB).detail("OffsetA",offsetA).detail("OffsetB",offsetB).detail("Direction",direction);
state int expectedSize = (std::min( abmax + 2*offsetB - (abmax%2==1 ? 1 : (onEqualB ? 0 : 2)), self->maxKeySpace ) - ( std::max( abmin + 2*offsetA - (abmin%2==1 ? 1 : (onEqualA ? 0 : 2)), 0 ) ))/2;
if(self->testReadYourWrites) {
Standalone<RangeResultRef> getRangeTest = wait( trRYOW.getRange(KeySelectorRef(StringRef(myKeyA),onEqualA,offsetA),KeySelectorRef(StringRef(myKeyB),onEqualB,offsetB), 2*(self->maxKeySpace+self->maxOffset), false, reverse ) );
int trueSize = 0;
while(trueSize < getRangeTest.size() && getRangeTest[ !reverse ? trueSize : getRangeTest.size() - trueSize - 1 ].key < maxKey) trueSize++;
if( trueSize != expectedSize ) {
std::string outStr = "";
for(int k = 0; k < trueSize; k++) {
std::string keyStr = printable(getRangeTest[!reverse ? k : getRangeTest.size() - k - 1].key);
outStr = outStr + keyStr + " ";
}
TraceEvent(SevError, "RanSelTestFailure").detail("Reason", "The getRange results did not match expected size").detail("Size", trueSize).detail("Expected",expectedSize).detail("Data",outStr).detail("DataSize", getRangeTest.size());
}
} else {
Standalone<RangeResultRef> getRangeTest = wait( tr.getRange(KeySelectorRef(StringRef(myKeyA),onEqualA,offsetA),KeySelectorRef(StringRef(myKeyB),onEqualB,offsetB), 2*(self->maxKeySpace+self->maxOffset), false, reverse ) );
int trueSize = 0;
while(trueSize < getRangeTest.size() && getRangeTest[ !reverse ? trueSize : getRangeTest.size() - trueSize - 1 ].key < maxKey) trueSize++;
if( trueSize != expectedSize ) {
std::string outStr = "";
for(int k = 0; k < trueSize; k++) {
std::string keyStr = printable(getRangeTest[!reverse ? k : getRangeTest.size() - k - 1].key);
outStr = outStr + keyStr + " ";
}
TraceEvent(SevError, "RanSelTestFailure").detail("Reason", "The getRange results did not match expected size").detail("Size", trueSize).detail("Expected",expectedSize).detail("Data",outStr).detail("DataSize", getRangeTest.size());
}
}
}
}
tr.reset();
trRYOW.reset();
++self->transactions;
} catch (Error& e) {
Void _ = wait( trRYOW.onError(e) );
trRYOW.reset();
++self->retries;
}
}
}
};
WorkloadFactory<SelectorCorrectnessWorkload> SelectorCorrectnessWorkloadFactory("SelectorCorrectness");