foundationdb/fdbclient/NativeAPI.actor.cpp

5655 lines
220 KiB
C++

/*
* NativeAPI.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "fdbclient/NativeAPI.actor.h"
#include <algorithm>
#include <iterator>
#include <regex>
#include <unordered_set>
#include <tuple>
#include <utility>
#include <vector>
#include "fdbclient/FDBTypes.h"
#include "fdbrpc/FailureMonitor.h"
#include "fdbrpc/MultiInterface.h"
#include "fdbclient/Atomic.h"
#include "fdbclient/ClusterInterface.h"
#include "fdbclient/CoordinationInterface.h"
#include "fdbclient/DatabaseContext.h"
#include "fdbclient/GlobalConfig.actor.h"
#include "fdbclient/JsonBuilder.h"
#include "fdbclient/KeyRangeMap.h"
#include "fdbclient/Knobs.h"
#include "fdbclient/ManagementAPI.actor.h"
#include "fdbclient/CommitProxyInterface.h"
#include "fdbclient/MonitorLeader.h"
#include "fdbclient/MutationList.h"
#include "fdbclient/ReadYourWrites.h"
#include "fdbclient/SpecialKeySpace.actor.h"
#include "fdbclient/StorageServerInterface.h"
#include "fdbclient/SystemData.h"
#include "fdbclient/versions.h"
#include "fdbrpc/LoadBalance.h"
#include "fdbrpc/Net2FileSystem.h"
#include "fdbrpc/simulator.h"
#include "flow/Arena.h"
#include "flow/ActorCollection.h"
#include "flow/DeterministicRandom.h"
#include "flow/Error.h"
#include "flow/IRandom.h"
#include "flow/flow.h"
#include "flow/genericactors.actor.h"
#include "flow/Knobs.h"
#include "flow/Platform.h"
#include "flow/SystemMonitor.h"
#include "flow/TLSConfig.actor.h"
#include "flow/Tracing.h"
#include "flow/UnitTest.h"
#include "flow/serialize.h"
#ifdef WIN32
#define WIN32_LEAN_AND_MEAN
#include <Windows.h>
#undef min
#undef max
#else
#include <time.h>
#endif
#include "flow/actorcompiler.h" // This must be the last #include.
extern const char* getSourceVersion();
using std::max;
using std::min;
using std::pair;
namespace {
template <class Interface, class Request>
Future<REPLY_TYPE(Request)> loadBalance(
DatabaseContext* ctx,
const Reference<LocationInfo> alternatives,
RequestStream<Request> Interface::*channel,
const Request& request = Request(),
TaskPriority taskID = TaskPriority::DefaultPromiseEndpoint,
bool atMostOnce = false, // if true, throws request_maybe_delivered() instead of retrying automatically
QueueModel* model = nullptr) {
if (alternatives->hasCaches) {
return loadBalance(alternatives->locations(), channel, request, taskID, atMostOnce, model);
}
return fmap(
[ctx](auto const& res) {
if (res.cached) {
ctx->updateCache.trigger();
}
return res;
},
loadBalance(alternatives->locations(), channel, request, taskID, atMostOnce, model));
}
} // namespace
NetworkOptions networkOptions;
TLSConfig tlsConfig(TLSEndpointType::CLIENT);
// The default values, TRACE_DEFAULT_ROLL_SIZE and TRACE_DEFAULT_MAX_LOGS_SIZE are located in Trace.h.
NetworkOptions::NetworkOptions()
: localAddress(""), clusterFile(""), traceDirectory(Optional<std::string>()), traceRollSize(TRACE_DEFAULT_ROLL_SIZE),
traceMaxLogsSize(TRACE_DEFAULT_MAX_LOGS_SIZE), traceLogGroup("default"), traceFormat("xml"),
traceClockSource("now"), runLoopProfilingEnabled(false),
supportedVersions(new ReferencedObject<Standalone<VectorRef<ClientVersionRef>>>()) {}
static const Key CLIENT_LATENCY_INFO_PREFIX = LiteralStringRef("client_latency/");
static const Key CLIENT_LATENCY_INFO_CTR_PREFIX = LiteralStringRef("client_latency_counter/");
Reference<StorageServerInfo> StorageServerInfo::getInterface(DatabaseContext* cx,
StorageServerInterface const& ssi,
LocalityData const& locality) {
auto it = cx->server_interf.find(ssi.id());
if (it != cx->server_interf.end()) {
if (it->second->interf.getValue.getEndpoint().token != ssi.getValue.getEndpoint().token) {
if (it->second->interf.locality == ssi.locality) {
// FIXME: load balance holds pointers to individual members of the interface, and this assignment will
// swap out the object they are
// pointing to. This is technically correct, but is very unnatural. We may want to refactor load
// balance to take an AsyncVar<Reference<Interface>> so that it is notified when the interface
// changes.
it->second->interf = ssi;
} else {
it->second->notifyContextDestroyed();
Reference<StorageServerInfo> loc(new StorageServerInfo(cx, ssi, locality));
cx->server_interf[ssi.id()] = loc.getPtr();
return loc;
}
}
return Reference<StorageServerInfo>::addRef(it->second);
}
Reference<StorageServerInfo> loc(new StorageServerInfo(cx, ssi, locality));
cx->server_interf[ssi.id()] = loc.getPtr();
return loc;
}
void StorageServerInfo::notifyContextDestroyed() {
cx = nullptr;
}
StorageServerInfo::~StorageServerInfo() {
if (cx) {
auto it = cx->server_interf.find(interf.id());
if (it != cx->server_interf.end())
cx->server_interf.erase(it);
cx = nullptr;
}
}
std::string printable(const VectorRef<KeyValueRef>& val) {
std::string s;
for (int i = 0; i < val.size(); i++)
s = s + printable(val[i].key) + format(":%d ", val[i].value.size());
return s;
}
std::string printable(const KeyValueRef& val) {
return printable(val.key) + format(":%d ", val.value.size());
}
std::string printable(const VectorRef<StringRef>& val) {
std::string s;
for (int i = 0; i < val.size(); i++)
s = s + printable(val[i]) + " ";
return s;
}
std::string printable(const StringRef& val) {
return val.printable();
}
std::string printable(const std::string& str) {
return StringRef(str).printable();
}
std::string printable(const KeyRangeRef& range) {
return printable(range.begin) + " - " + printable(range.end);
}
std::string printable(const VectorRef<KeyRangeRef>& val) {
std::string s;
for (int i = 0; i < val.size(); i++)
s = s + printable(val[i]) + " ";
return s;
}
int unhex(char c) {
if (c >= '0' && c <= '9')
return c - '0';
if (c >= 'a' && c <= 'f')
return c - 'a' + 10;
if (c >= 'A' && c <= 'F')
return c - 'A' + 10;
UNREACHABLE();
}
std::string unprintable(std::string const& val) {
std::string s;
for (int i = 0; i < val.size(); i++) {
char c = val[i];
if (c == '\\') {
if (++i == val.size())
ASSERT(false);
if (val[i] == '\\') {
s += '\\';
} else if (val[i] == 'x') {
if (i + 2 >= val.size())
ASSERT(false);
s += char((unhex(val[i + 1]) << 4) + unhex(val[i + 2]));
i += 2;
} else
ASSERT(false);
} else
s += c;
}
return s;
}
void DatabaseContext::validateVersion(Version version) {
// Version could be 0 if the INITIALIZE_NEW_DATABASE option is set. In that case, it is illegal to perform any
// reads. We throw client_invalid_operation because the caller didn't directly set the version, so the
// version_invalid error might be confusing.
if (version == 0) {
throw client_invalid_operation();
}
if (switchable && version < minAcceptableReadVersion) {
TEST(true); // Attempted to read a version lower than any this client has seen from the current cluster
throw transaction_too_old();
}
ASSERT(version > 0 || version == latestVersion);
}
void validateOptionValue(Optional<StringRef> value, bool shouldBePresent) {
if (shouldBePresent && !value.present())
throw invalid_option_value();
if (!shouldBePresent && value.present() && value.get().size() > 0)
throw invalid_option_value();
}
void dumpMutations(const MutationListRef& mutations) {
for (auto m = mutations.begin(); m; ++m) {
switch (m->type) {
case MutationRef::SetValue:
printf(" '%s' := '%s'\n", printable(m->param1).c_str(), printable(m->param2).c_str());
break;
case MutationRef::AddValue:
printf(" '%s' += '%s'", printable(m->param1).c_str(), printable(m->param2).c_str());
break;
case MutationRef::ClearRange:
printf(" Clear ['%s','%s')\n", printable(m->param1).c_str(), printable(m->param2).c_str());
break;
default:
printf(" Unknown mutation %d('%s','%s')\n",
m->type,
printable(m->param1).c_str(),
printable(m->param2).c_str());
break;
}
}
}
template <>
void addref(DatabaseContext* ptr) {
ptr->addref();
}
template <>
void delref(DatabaseContext* ptr) {
ptr->delref();
}
ACTOR Future<Void> databaseLogger(DatabaseContext* cx) {
state double lastLogged = 0;
loop {
wait(delay(CLIENT_KNOBS->SYSTEM_MONITOR_INTERVAL, TaskPriority::FlushTrace));
TraceEvent ev("TransactionMetrics", cx->dbId);
ev.detail("Elapsed", (lastLogged == 0) ? 0 : now() - lastLogged)
.detail("Cluster",
cx->getConnectionFile() ? cx->getConnectionFile()->getConnectionString().clusterKeyName().toString()
: "")
.detail("Internal", cx->internal);
cx->cc.logToTraceEvent(ev);
ev.detail("MeanLatency", cx->latencies.mean())
.detail("MedianLatency", cx->latencies.median())
.detail("Latency90", cx->latencies.percentile(0.90))
.detail("Latency98", cx->latencies.percentile(0.98))
.detail("MaxLatency", cx->latencies.max())
.detail("MeanRowReadLatency", cx->readLatencies.mean())
.detail("MedianRowReadLatency", cx->readLatencies.median())
.detail("MaxRowReadLatency", cx->readLatencies.max())
.detail("MeanGRVLatency", cx->GRVLatencies.mean())
.detail("MedianGRVLatency", cx->GRVLatencies.median())
.detail("MaxGRVLatency", cx->GRVLatencies.max())
.detail("MeanCommitLatency", cx->commitLatencies.mean())
.detail("MedianCommitLatency", cx->commitLatencies.median())
.detail("MaxCommitLatency", cx->commitLatencies.max())
.detail("MeanMutationsPerCommit", cx->mutationsPerCommit.mean())
.detail("MedianMutationsPerCommit", cx->mutationsPerCommit.median())
.detail("MaxMutationsPerCommit", cx->mutationsPerCommit.max())
.detail("MeanBytesPerCommit", cx->bytesPerCommit.mean())
.detail("MedianBytesPerCommit", cx->bytesPerCommit.median())
.detail("MaxBytesPerCommit", cx->bytesPerCommit.max());
cx->latencies.clear();
cx->readLatencies.clear();
cx->GRVLatencies.clear();
cx->commitLatencies.clear();
cx->mutationsPerCommit.clear();
cx->bytesPerCommit.clear();
lastLogged = now();
}
}
struct TrInfoChunk {
ValueRef value;
Key key;
};
ACTOR static Future<Void> transactionInfoCommitActor(Transaction* tr, std::vector<TrInfoChunk>* chunks) {
state const Key clientLatencyAtomicCtr = CLIENT_LATENCY_INFO_CTR_PREFIX.withPrefix(fdbClientInfoPrefixRange.begin);
state int retryCount = 0;
loop {
try {
tr->reset();
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr->setOption(FDBTransactionOptions::LOCK_AWARE);
state Future<Standalone<StringRef>> vstamp = tr->getVersionstamp();
int64_t numCommitBytes = 0;
for (auto& chunk : *chunks) {
tr->atomicOp(chunk.key, chunk.value, MutationRef::SetVersionstampedKey);
numCommitBytes += chunk.key.size() + chunk.value.size() -
4; // subtract number of bytes of key that denotes verstion stamp index
}
tr->atomicOp(clientLatencyAtomicCtr, StringRef((uint8_t*)&numCommitBytes, 8), MutationRef::AddValue);
wait(tr->commit());
return Void();
} catch (Error& e) {
retryCount++;
if (retryCount == 10)
throw;
wait(tr->onError(e));
}
}
}
ACTOR static Future<Void> delExcessClntTxnEntriesActor(Transaction* tr, int64_t clientTxInfoSizeLimit) {
state const Key clientLatencyName = CLIENT_LATENCY_INFO_PREFIX.withPrefix(fdbClientInfoPrefixRange.begin);
state const Key clientLatencyAtomicCtr = CLIENT_LATENCY_INFO_CTR_PREFIX.withPrefix(fdbClientInfoPrefixRange.begin);
TraceEvent(SevInfo, "DelExcessClntTxnEntriesCalled");
loop {
try {
tr->reset();
tr->setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr->setOption(FDBTransactionOptions::LOCK_AWARE);
Optional<Value> ctrValue = wait(tr->get(KeyRef(clientLatencyAtomicCtr), true));
if (!ctrValue.present()) {
TraceEvent(SevInfo, "NumClntTxnEntriesNotFound");
return Void();
}
state int64_t txInfoSize = 0;
ASSERT(ctrValue.get().size() == sizeof(int64_t));
memcpy(&txInfoSize, ctrValue.get().begin(), ctrValue.get().size());
if (txInfoSize < clientTxInfoSizeLimit)
return Void();
int getRangeByteLimit = (txInfoSize - clientTxInfoSizeLimit) < CLIENT_KNOBS->TRANSACTION_SIZE_LIMIT
? (txInfoSize - clientTxInfoSizeLimit)
: CLIENT_KNOBS->TRANSACTION_SIZE_LIMIT;
GetRangeLimits limit(GetRangeLimits::ROW_LIMIT_UNLIMITED, getRangeByteLimit);
Standalone<RangeResultRef> txEntries =
wait(tr->getRange(KeyRangeRef(clientLatencyName, strinc(clientLatencyName)), limit));
state int64_t numBytesToDel = 0;
KeyRef endKey;
for (auto& kv : txEntries) {
endKey = kv.key;
numBytesToDel += kv.key.size() + kv.value.size();
if (txInfoSize - numBytesToDel <= clientTxInfoSizeLimit)
break;
}
if (numBytesToDel) {
tr->clear(KeyRangeRef(txEntries[0].key, strinc(endKey)));
TraceEvent(SevInfo, "DeletingExcessCntTxnEntries").detail("BytesToBeDeleted", numBytesToDel);
int64_t bytesDel = -numBytesToDel;
tr->atomicOp(clientLatencyAtomicCtr, StringRef((uint8_t*)&bytesDel, 8), MutationRef::AddValue);
wait(tr->commit());
}
if (txInfoSize - numBytesToDel <= clientTxInfoSizeLimit)
return Void();
} catch (Error& e) {
wait(tr->onError(e));
}
}
}
// Delref and addref self to give self a chance to get destroyed.
ACTOR static Future<Void> refreshTransaction(DatabaseContext* self, Transaction* tr) {
*tr = Transaction();
wait(delay(0)); // Give ourselves the chance to get cancelled if self was destroyed
*tr = Transaction(Database(Reference<DatabaseContext>::addRef(self)));
return Void();
}
// The reason for getting a pointer to DatabaseContext instead of a reference counted object is because reference
// counting will increment reference count for DatabaseContext which holds the future of this actor. This creates a
// cyclic reference and hence this actor and Database object will not be destroyed at all.
ACTOR static Future<Void> clientStatusUpdateActor(DatabaseContext* cx) {
state const std::string clientLatencyName =
CLIENT_LATENCY_INFO_PREFIX.withPrefix(fdbClientInfoPrefixRange.begin).toString();
state Transaction tr;
state std::vector<TrInfoChunk> commitQ;
state int txBytes = 0;
loop {
// Need to make sure that we eventually destroy tr. We can't rely on getting cancelled to do this because of
// the cyclic reference to self.
wait(refreshTransaction(cx, &tr));
try {
ASSERT(cx->clientStatusUpdater.outStatusQ.empty());
cx->clientStatusUpdater.inStatusQ.swap(cx->clientStatusUpdater.outStatusQ);
// Split Transaction Info into chunks
state std::vector<TrInfoChunk> trChunksQ;
for (auto& entry : cx->clientStatusUpdater.outStatusQ) {
auto& bw = entry.second;
int64_t value_size_limit = BUGGIFY
? deterministicRandom()->randomInt(1e3, CLIENT_KNOBS->VALUE_SIZE_LIMIT)
: CLIENT_KNOBS->VALUE_SIZE_LIMIT;
int num_chunks = (bw.getLength() + value_size_limit - 1) / value_size_limit;
std::string random_id = deterministicRandom()->randomAlphaNumeric(16);
std::string user_provided_id = entry.first.size() ? entry.first + "/" : "";
for (int i = 0; i < num_chunks; i++) {
TrInfoChunk chunk;
BinaryWriter chunkBW(Unversioned());
chunkBW << bigEndian32(i + 1) << bigEndian32(num_chunks);
chunk.key = KeyRef(clientLatencyName + std::string(10, '\x00') + "/" + random_id + "/" +
chunkBW.toValue().toString() + "/" + user_provided_id + std::string(4, '\x00'));
int32_t pos = littleEndian32(clientLatencyName.size());
memcpy(mutateString(chunk.key) + chunk.key.size() - sizeof(int32_t), &pos, sizeof(int32_t));
if (i == num_chunks - 1) {
chunk.value = ValueRef(static_cast<uint8_t*>(bw.getData()) + (i * value_size_limit),
bw.getLength() - (i * value_size_limit));
} else {
chunk.value =
ValueRef(static_cast<uint8_t*>(bw.getData()) + (i * value_size_limit), value_size_limit);
}
trChunksQ.push_back(std::move(chunk));
}
}
// Commit the chunks splitting into different transactions if needed
state int64_t dataSizeLimit =
BUGGIFY ? deterministicRandom()->randomInt(200e3, 1.5 * CLIENT_KNOBS->TRANSACTION_SIZE_LIMIT)
: 0.8 * CLIENT_KNOBS->TRANSACTION_SIZE_LIMIT;
state std::vector<TrInfoChunk>::iterator tracking_iter = trChunksQ.begin();
ASSERT(commitQ.empty() && (txBytes == 0));
loop {
state std::vector<TrInfoChunk>::iterator iter = tracking_iter;
txBytes = 0;
commitQ.clear();
try {
while (iter != trChunksQ.end()) {
if (iter->value.size() + iter->key.size() + txBytes > dataSizeLimit) {
wait(transactionInfoCommitActor(&tr, &commitQ));
tracking_iter = iter;
commitQ.clear();
txBytes = 0;
}
commitQ.push_back(*iter);
txBytes += iter->value.size() + iter->key.size();
++iter;
}
if (!commitQ.empty()) {
wait(transactionInfoCommitActor(&tr, &commitQ));
commitQ.clear();
txBytes = 0;
}
break;
} catch (Error& e) {
if (e.code() == error_code_transaction_too_large) {
dataSizeLimit /= 2;
ASSERT(dataSizeLimit >= CLIENT_KNOBS->VALUE_SIZE_LIMIT + CLIENT_KNOBS->KEY_SIZE_LIMIT);
} else {
TraceEvent(SevWarnAlways, "ClientTrInfoErrorCommit").error(e).detail("TxBytes", txBytes);
commitQ.clear();
txBytes = 0;
throw;
}
}
}
cx->clientStatusUpdater.outStatusQ.clear();
wait(GlobalConfig::globalConfig().onInitialized());
double sampleRate = GlobalConfig::globalConfig().get<double>(fdbClientInfoTxnSampleRate,
std::numeric_limits<double>::infinity());
double clientSamplingProbability =
std::isinf(sampleRate) ? CLIENT_KNOBS->CSI_SAMPLING_PROBABILITY : sampleRate;
int64_t sizeLimit = GlobalConfig::globalConfig().get<int64_t>(fdbClientInfoTxnSizeLimit, -1);
int64_t clientTxnInfoSizeLimit = sizeLimit == -1 ? CLIENT_KNOBS->CSI_SIZE_LIMIT : sizeLimit;
if (!trChunksQ.empty() && deterministicRandom()->random01() < clientSamplingProbability)
wait(delExcessClntTxnEntriesActor(&tr, clientTxnInfoSizeLimit));
wait(delay(CLIENT_KNOBS->CSI_STATUS_DELAY));
} catch (Error& e) {
if (e.code() == error_code_actor_cancelled) {
throw;
}
cx->clientStatusUpdater.outStatusQ.clear();
TraceEvent(SevWarnAlways, "UnableToWriteClientStatus").error(e);
wait(delay(10.0));
}
}
}
ACTOR static Future<Void> monitorProxiesChange(Reference<AsyncVar<ClientDBInfo>> clientDBInfo,
AsyncTrigger* triggerVar) {
state vector<CommitProxyInterface> curCommitProxies;
state vector<GrvProxyInterface> curGrvProxies;
curCommitProxies = clientDBInfo->get().commitProxies;
curGrvProxies = clientDBInfo->get().grvProxies;
loop {
wait(clientDBInfo->onChange());
if (clientDBInfo->get().commitProxies != curCommitProxies || clientDBInfo->get().grvProxies != curGrvProxies) {
curCommitProxies = clientDBInfo->get().commitProxies;
curGrvProxies = clientDBInfo->get().grvProxies;
triggerVar->trigger();
}
}
}
void updateLocationCacheWithCaches(DatabaseContext* self,
const std::map<UID, StorageServerInterface>& removed,
const std::map<UID, StorageServerInterface>& added) {
// TODO: this needs to be more clever in the future
auto ranges = self->locationCache.ranges();
for (auto iter = ranges.begin(); iter != ranges.end(); ++iter) {
if (iter->value() && iter->value()->hasCaches) {
auto& val = iter->value();
std::vector<Reference<ReferencedInterface<StorageServerInterface>>> interfaces;
interfaces.reserve(val->size() - removed.size() + added.size());
for (int i = 0; i < val->size(); ++i) {
const auto& interf = (*val)[i];
if (removed.count(interf->interf.id()) == 0) {
interfaces.emplace_back(interf);
}
}
for (const auto& p : added) {
interfaces.push_back(makeReference<ReferencedInterface<StorageServerInterface>>(p.second));
}
iter->value() = makeReference<LocationInfo>(interfaces, true);
}
}
}
Reference<LocationInfo> addCaches(const Reference<LocationInfo>& loc,
const std::vector<Reference<ReferencedInterface<StorageServerInterface>>>& other) {
std::vector<Reference<ReferencedInterface<StorageServerInterface>>> interfaces;
interfaces.reserve(loc->size() + other.size());
for (int i = 0; i < loc->size(); ++i) {
interfaces.emplace_back((*loc)[i]);
}
interfaces.insert(interfaces.end(), other.begin(), other.end());
return makeReference<LocationInfo>(interfaces, true);
}
ACTOR Future<Void> updateCachedRanges(DatabaseContext* self, std::map<UID, StorageServerInterface>* cacheServers) {
state Transaction tr;
state Value trueValue = storageCacheValue(std::vector<uint16_t>{ 0 });
state Value falseValue = storageCacheValue(std::vector<uint16_t>{});
try {
loop {
// Need to make sure that we eventually destroy tr. We can't rely on getting cancelled to do this because of
// the cyclic reference to self.
tr = Transaction();
wait(delay(0)); // Give ourselves the chance to get cancelled if self was destroyed
wait(brokenPromiseToNever(self->updateCache.onTrigger())); // brokenPromiseToNever because self might get
// destroyed elsewhere while we're waiting here.
tr = Transaction(Database(Reference<DatabaseContext>::addRef(self)));
tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr.setOption(FDBTransactionOptions::READ_LOCK_AWARE);
try {
Standalone<RangeResultRef> range = wait(tr.getRange(storageCacheKeys, CLIENT_KNOBS->TOO_MANY));
ASSERT(!range.more);
std::vector<Reference<ReferencedInterface<StorageServerInterface>>> cacheInterfaces;
cacheInterfaces.reserve(cacheServers->size());
for (const auto& p : *cacheServers) {
cacheInterfaces.push_back(makeReference<ReferencedInterface<StorageServerInterface>>(p.second));
}
bool currCached = false;
KeyRef begin, end;
for (const auto& kv : range) {
// These booleans have to flip consistently
ASSERT(currCached == (kv.value == falseValue));
if (kv.value == trueValue) {
begin = kv.key.substr(storageCacheKeys.begin.size());
currCached = true;
} else {
currCached = false;
end = kv.key.substr(storageCacheKeys.begin.size());
KeyRangeRef cachedRange{ begin, end };
auto ranges = self->locationCache.containedRanges(cachedRange);
KeyRef containedRangesBegin, containedRangesEnd, prevKey;
if (!ranges.empty()) {
containedRangesBegin = ranges.begin().range().begin;
}
for (auto iter = ranges.begin(); iter != ranges.end(); ++iter) {
containedRangesEnd = iter->range().end;
if (iter->value() && !iter->value()->hasCaches) {
iter->value() = addCaches(iter->value(), cacheInterfaces);
}
}
auto iter = self->locationCache.rangeContaining(begin);
if (iter->value() && !iter->value()->hasCaches) {
if (end >= iter->range().end) {
Key endCopy = iter->range().end; // Copy because insertion invalidates iterator
self->locationCache.insert(KeyRangeRef{ begin, endCopy },
addCaches(iter->value(), cacheInterfaces));
} else {
self->locationCache.insert(KeyRangeRef{ begin, end },
addCaches(iter->value(), cacheInterfaces));
}
}
iter = self->locationCache.rangeContainingKeyBefore(end);
if (iter->value() && !iter->value()->hasCaches) {
Key beginCopy = iter->range().begin; // Copy because insertion invalidates iterator
self->locationCache.insert(KeyRangeRef{ beginCopy, end },
addCaches(iter->value(), cacheInterfaces));
}
}
}
wait(delay(2.0)); // we want to wait at least some small amount of time before
// updating this list again
} catch (Error& e) {
wait(tr.onError(e));
}
}
} catch (Error& e) {
TraceEvent(SevError, "UpdateCachedRangesFailed").error(e);
throw;
}
}
// The reason for getting a pointer to DatabaseContext instead of a reference counted object is because reference
// counting will increment reference count for DatabaseContext which holds the future of this actor. This creates a
// cyclic reference and hence this actor and Database object will not be destroyed at all.
ACTOR Future<Void> monitorCacheList(DatabaseContext* self) {
state Transaction tr;
state std::map<UID, StorageServerInterface> cacheServerMap;
state Future<Void> updateRanges = updateCachedRanges(self, &cacheServerMap);
// if no caches are configured, we don't want to run this actor at all
// so we just wait for the first trigger from a storage server
wait(self->updateCache.onTrigger());
try {
loop {
// Need to make sure that we eventually destroy tr. We can't rely on getting cancelled to do this because of
// the cyclic reference to self.
wait(refreshTransaction(self, &tr));
try {
Standalone<RangeResultRef> cacheList =
wait(tr.getRange(storageCacheServerKeys, CLIENT_KNOBS->TOO_MANY));
ASSERT(!cacheList.more);
bool hasChanges = false;
std::map<UID, StorageServerInterface> allCacheServers;
for (auto kv : cacheList) {
auto ssi = BinaryReader::fromStringRef<StorageServerInterface>(kv.value, IncludeVersion());
allCacheServers.emplace(ssi.id(), ssi);
}
std::map<UID, StorageServerInterface> newCacheServers;
std::map<UID, StorageServerInterface> deletedCacheServers;
std::set_difference(allCacheServers.begin(),
allCacheServers.end(),
cacheServerMap.begin(),
cacheServerMap.end(),
std::insert_iterator<std::map<UID, StorageServerInterface>>(
newCacheServers, newCacheServers.begin()));
std::set_difference(cacheServerMap.begin(),
cacheServerMap.end(),
allCacheServers.begin(),
allCacheServers.end(),
std::insert_iterator<std::map<UID, StorageServerInterface>>(
deletedCacheServers, deletedCacheServers.begin()));
hasChanges = !(newCacheServers.empty() && deletedCacheServers.empty());
if (hasChanges) {
updateLocationCacheWithCaches(self, deletedCacheServers, newCacheServers);
}
cacheServerMap = std::move(allCacheServers);
wait(delay(5.0));
} catch (Error& e) {
wait(tr.onError(e));
}
}
} catch (Error& e) {
TraceEvent(SevError, "MonitorCacheListFailed").error(e);
throw;
}
}
ACTOR static Future<HealthMetrics> getHealthMetricsActor(DatabaseContext* cx, bool detailed) {
if (now() - cx->healthMetricsLastUpdated < CLIENT_KNOBS->AGGREGATE_HEALTH_METRICS_MAX_STALENESS) {
if (detailed) {
return cx->healthMetrics;
} else {
HealthMetrics result;
result.update(cx->healthMetrics, false, false);
return result;
}
}
state bool sendDetailedRequest =
detailed && now() - cx->detailedHealthMetricsLastUpdated > CLIENT_KNOBS->DETAILED_HEALTH_METRICS_MAX_STALENESS;
loop {
choose {
when(wait(cx->onProxiesChanged())) {}
when(GetHealthMetricsReply rep = wait(basicLoadBalance(cx->getGrvProxies(false),
&GrvProxyInterface::getHealthMetrics,
GetHealthMetricsRequest(sendDetailedRequest)))) {
cx->healthMetrics.update(rep.healthMetrics, detailed, true);
if (detailed) {
cx->healthMetricsLastUpdated = now();
cx->detailedHealthMetricsLastUpdated = now();
return cx->healthMetrics;
} else {
cx->healthMetricsLastUpdated = now();
HealthMetrics result;
result.update(cx->healthMetrics, false, false);
return result;
}
}
}
}
}
Future<HealthMetrics> DatabaseContext::getHealthMetrics(bool detailed = false) {
return getHealthMetricsActor(this, detailed);
}
void DatabaseContext::registerSpecialKeySpaceModule(SpecialKeySpace::MODULE module,
SpecialKeySpace::IMPLTYPE type,
std::unique_ptr<SpecialKeyRangeReadImpl>&& impl) {
specialKeySpace->registerKeyRange(module, type, impl->getKeyRange(), impl.get());
specialKeySpaceModules.push_back(std::move(impl));
}
ACTOR Future<Standalone<RangeResultRef>> getWorkerInterfaces(Reference<ClusterConnectionFile> clusterFile);
ACTOR Future<Optional<Value>> getJSON(Database db);
struct WorkerInterfacesSpecialKeyImpl : SpecialKeyRangeReadImpl {
Future<Standalone<RangeResultRef>> getRange(ReadYourWritesTransaction* ryw, KeyRangeRef kr) const override {
if (ryw->getDatabase().getPtr() && ryw->getDatabase()->getConnectionFile()) {
Key prefix = Key(getKeyRange().begin);
return map(getWorkerInterfaces(ryw->getDatabase()->getConnectionFile()),
[prefix = prefix, kr = KeyRange(kr)](const Standalone<RangeResultRef>& in) {
Standalone<RangeResultRef> result;
for (const auto& [k_, v] : in) {
auto k = k_.withPrefix(prefix);
if (kr.contains(k))
result.push_back_deep(result.arena(), KeyValueRef(k, v));
}
std::sort(result.begin(), result.end(), KeyValueRef::OrderByKey{});
return result;
});
} else {
return Standalone<RangeResultRef>();
}
}
explicit WorkerInterfacesSpecialKeyImpl(KeyRangeRef kr) : SpecialKeyRangeReadImpl(kr) {}
};
struct SingleSpecialKeyImpl : SpecialKeyRangeReadImpl {
Future<Standalone<RangeResultRef>> getRange(ReadYourWritesTransaction* ryw, KeyRangeRef kr) const override {
ASSERT(kr.contains(k));
return map(f(ryw), [k = k](Optional<Value> v) {
Standalone<RangeResultRef> result;
if (v.present()) {
result.push_back_deep(result.arena(), KeyValueRef(k, v.get()));
}
return result;
});
}
SingleSpecialKeyImpl(KeyRef k, const std::function<Future<Optional<Value>>(ReadYourWritesTransaction*)>& f)
: SpecialKeyRangeReadImpl(singleKeyRange(k)), k(k), f(f) {}
private:
Key k;
std::function<Future<Optional<Value>>(ReadYourWritesTransaction*)> f;
};
class HealthMetricsRangeImpl : public SpecialKeyRangeAsyncImpl {
public:
explicit HealthMetricsRangeImpl(KeyRangeRef kr);
Future<Standalone<RangeResultRef>> getRange(ReadYourWritesTransaction* ryw, KeyRangeRef kr) const override;
};
static Standalone<RangeResultRef> healthMetricsToKVPairs(const HealthMetrics& metrics, KeyRangeRef kr) {
Standalone<RangeResultRef> result;
if (CLIENT_BUGGIFY)
return result;
if (kr.contains(LiteralStringRef("\xff\xff/metrics/health/aggregate")) && metrics.worstStorageDurabilityLag != 0) {
json_spirit::mObject statsObj;
statsObj["batch_limited"] = metrics.batchLimited;
statsObj["tps_limit"] = metrics.tpsLimit;
statsObj["worst_storage_durability_lag"] = metrics.worstStorageDurabilityLag;
statsObj["limiting_storage_durability_lag"] = metrics.limitingStorageDurabilityLag;
statsObj["worst_storage_queue"] = metrics.worstStorageQueue;
statsObj["limiting_storage_queue"] = metrics.limitingStorageQueue;
statsObj["worst_log_queue"] = metrics.worstTLogQueue;
std::string statsString =
json_spirit::write_string(json_spirit::mValue(statsObj), json_spirit::Output_options::raw_utf8);
ValueRef bytes(result.arena(), statsString);
result.push_back(result.arena(), KeyValueRef(LiteralStringRef("\xff\xff/metrics/health/aggregate"), bytes));
}
// tlog stats
{
int phase = 0; // Avoid comparing twice per loop iteration
for (const auto& [uid, logStats] : metrics.tLogQueue) {
StringRef k{
StringRef(uid.toString()).withPrefix(LiteralStringRef("\xff\xff/metrics/health/log/"), result.arena())
};
if (phase == 0 && k >= kr.begin) {
phase = 1;
}
if (phase == 1) {
if (k < kr.end) {
json_spirit::mObject statsObj;
statsObj["log_queue"] = logStats;
std::string statsString =
json_spirit::write_string(json_spirit::mValue(statsObj), json_spirit::Output_options::raw_utf8);
ValueRef bytes(result.arena(), statsString);
result.push_back(result.arena(), KeyValueRef(k, bytes));
} else {
break;
}
}
}
}
// Storage stats
{
int phase = 0; // Avoid comparing twice per loop iteration
for (const auto& [uid, storageStats] : metrics.storageStats) {
StringRef k{ StringRef(uid.toString())
.withPrefix(LiteralStringRef("\xff\xff/metrics/health/storage/"), result.arena()) };
if (phase == 0 && k >= kr.begin) {
phase = 1;
}
if (phase == 1) {
if (k < kr.end) {
json_spirit::mObject statsObj;
statsObj["storage_durability_lag"] = storageStats.storageDurabilityLag;
statsObj["storage_queue"] = storageStats.storageQueue;
statsObj["cpu_usage"] = storageStats.cpuUsage;
statsObj["disk_usage"] = storageStats.diskUsage;
std::string statsString =
json_spirit::write_string(json_spirit::mValue(statsObj), json_spirit::Output_options::raw_utf8);
ValueRef bytes(result.arena(), statsString);
result.push_back(result.arena(), KeyValueRef(k, bytes));
} else {
break;
}
}
}
}
return result;
}
ACTOR static Future<Standalone<RangeResultRef>> healthMetricsGetRangeActor(ReadYourWritesTransaction* ryw,
KeyRangeRef kr) {
HealthMetrics metrics = wait(ryw->getDatabase()->getHealthMetrics(
/*detailed ("per process")*/ kr.intersects(KeyRangeRef(LiteralStringRef("\xff\xff/metrics/health/storage/"),
LiteralStringRef("\xff\xff/metrics/health/storage0"))) ||
kr.intersects(KeyRangeRef(LiteralStringRef("\xff\xff/metrics/health/log/"),
LiteralStringRef("\xff\xff/metrics/health/log0")))));
return healthMetricsToKVPairs(metrics, kr);
}
HealthMetricsRangeImpl::HealthMetricsRangeImpl(KeyRangeRef kr) : SpecialKeyRangeAsyncImpl(kr) {}
Future<Standalone<RangeResultRef>> HealthMetricsRangeImpl::getRange(ReadYourWritesTransaction* ryw,
KeyRangeRef kr) const {
return healthMetricsGetRangeActor(ryw, kr);
}
DatabaseContext::DatabaseContext(Reference<AsyncVar<Reference<ClusterConnectionFile>>> connectionFile,
Reference<AsyncVar<ClientDBInfo>> clientInfo,
Reference<AsyncVar<Optional<ClientLeaderRegInterface>>> coordinator,
Future<Void> clientInfoMonitor,
TaskPriority taskID,
LocalityData const& clientLocality,
bool enableLocalityLoadBalance,
bool lockAware,
bool internal,
int apiVersion,
bool switchable)
: connectionFile(connectionFile), clientInfo(clientInfo), coordinator(coordinator),
clientInfoMonitor(clientInfoMonitor), taskID(taskID), clientLocality(clientLocality),
enableLocalityLoadBalance(enableLocalityLoadBalance), lockAware(lockAware), apiVersion(apiVersion),
switchable(switchable), proxyProvisional(false), cc("TransactionMetrics"),
transactionReadVersions("ReadVersions", cc), transactionReadVersionsThrottled("ReadVersionsThrottled", cc),
transactionReadVersionsCompleted("ReadVersionsCompleted", cc),
transactionReadVersionBatches("ReadVersionBatches", cc),
transactionBatchReadVersions("BatchPriorityReadVersions", cc),
transactionDefaultReadVersions("DefaultPriorityReadVersions", cc),
transactionImmediateReadVersions("ImmediatePriorityReadVersions", cc),
transactionBatchReadVersionsCompleted("BatchPriorityReadVersionsCompleted", cc),
transactionDefaultReadVersionsCompleted("DefaultPriorityReadVersionsCompleted", cc),
transactionImmediateReadVersionsCompleted("ImmediatePriorityReadVersionsCompleted", cc),
transactionLogicalReads("LogicalUncachedReads", cc), transactionPhysicalReads("PhysicalReadRequests", cc),
transactionPhysicalReadsCompleted("PhysicalReadRequestsCompleted", cc),
transactionGetKeyRequests("GetKeyRequests", cc), transactionGetValueRequests("GetValueRequests", cc),
transactionGetRangeRequests("GetRangeRequests", cc), transactionWatchRequests("WatchRequests", cc),
transactionGetAddressesForKeyRequests("GetAddressesForKeyRequests", cc), transactionBytesRead("BytesRead", cc),
transactionKeysRead("KeysRead", cc), transactionMetadataVersionReads("MetadataVersionReads", cc),
transactionCommittedMutations("CommittedMutations", cc),
transactionCommittedMutationBytes("CommittedMutationBytes", cc), transactionSetMutations("SetMutations", cc),
transactionClearMutations("ClearMutations", cc), transactionAtomicMutations("AtomicMutations", cc),
transactionsCommitStarted("CommitStarted", cc), transactionsCommitCompleted("CommitCompleted", cc),
transactionKeyServerLocationRequests("KeyServerLocationRequests", cc),
transactionKeyServerLocationRequestsCompleted("KeyServerLocationRequestsCompleted", cc),
transactionStatusRequests("StatusRequests", cc), transactionsTooOld("TooOld", cc),
transactionsFutureVersions("FutureVersions", cc), transactionsNotCommitted("NotCommitted", cc),
transactionsMaybeCommitted("MaybeCommitted", cc), transactionsResourceConstrained("ResourceConstrained", cc),
transactionsThrottled("Throttled", cc), transactionsProcessBehind("ProcessBehind", cc), outstandingWatches(0),
latencies(1000), readLatencies(1000), commitLatencies(1000), GRVLatencies(1000), mutationsPerCommit(1000),
bytesPerCommit(1000), mvCacheInsertLocation(0), healthMetricsLastUpdated(0), detailedHealthMetricsLastUpdated(0),
internal(internal), transactionTracingEnabled(true), smoothMidShardSize(CLIENT_KNOBS->SHARD_STAT_SMOOTH_AMOUNT),
transactionsExpensiveClearCostEstCount("ExpensiveClearCostEstCount", cc),
specialKeySpace(std::make_unique<SpecialKeySpace>(specialKeys.begin, specialKeys.end, /* test */ false)) {
dbId = deterministicRandom()->randomUniqueID();
connected = (clientInfo->get().commitProxies.size() && clientInfo->get().grvProxies.size())
? Void()
: clientInfo->onChange();
metadataVersionCache.resize(CLIENT_KNOBS->METADATA_VERSION_CACHE_SIZE);
maxOutstandingWatches = CLIENT_KNOBS->DEFAULT_MAX_OUTSTANDING_WATCHES;
snapshotRywEnabled = apiVersionAtLeast(300) ? 1 : 0;
logger = databaseLogger(this);
locationCacheSize = g_network->isSimulated() ? CLIENT_KNOBS->LOCATION_CACHE_EVICTION_SIZE_SIM
: CLIENT_KNOBS->LOCATION_CACHE_EVICTION_SIZE;
getValueSubmitted.init(LiteralStringRef("NativeAPI.GetValueSubmitted"));
getValueCompleted.init(LiteralStringRef("NativeAPI.GetValueCompleted"));
GlobalConfig::create(this, clientInfo);
monitorProxiesInfoChange = monitorProxiesChange(clientInfo, &proxiesChangeTrigger);
clientStatusUpdater.actor = clientStatusUpdateActor(this);
cacheListMonitor = monitorCacheList(this);
smoothMidShardSize.reset(CLIENT_KNOBS->INIT_MID_SHARD_BYTES);
if (apiVersionAtLeast(700)) {
registerSpecialKeySpaceModule(SpecialKeySpace::MODULE::ERRORMSG,
SpecialKeySpace::IMPLTYPE::READONLY,
std::make_unique<SingleSpecialKeyImpl>(
SpecialKeySpace::getModuleRange(SpecialKeySpace::MODULE::ERRORMSG).begin,
[](ReadYourWritesTransaction* ryw) -> Future<Optional<Value>> {
if (ryw->getSpecialKeySpaceErrorMsg().present())
return Optional<Value>(ryw->getSpecialKeySpaceErrorMsg().get());
else
return Optional<Value>();
}));
registerSpecialKeySpaceModule(
SpecialKeySpace::MODULE::MANAGEMENT,
SpecialKeySpace::IMPLTYPE::READWRITE,
std::make_unique<ManagementCommandsOptionsImpl>(
KeyRangeRef(LiteralStringRef("options/"), LiteralStringRef("options0"))
.withPrefix(SpecialKeySpace::getModuleRange(SpecialKeySpace::MODULE::MANAGEMENT).begin)));
registerSpecialKeySpaceModule(
SpecialKeySpace::MODULE::MANAGEMENT,
SpecialKeySpace::IMPLTYPE::READWRITE,
std::make_unique<ExcludeServersRangeImpl>(SpecialKeySpace::getManamentApiCommandRange("exclude")));
registerSpecialKeySpaceModule(
SpecialKeySpace::MODULE::MANAGEMENT,
SpecialKeySpace::IMPLTYPE::READWRITE,
std::make_unique<FailedServersRangeImpl>(SpecialKeySpace::getManamentApiCommandRange("failed")));
registerSpecialKeySpaceModule(
SpecialKeySpace::MODULE::MANAGEMENT,
SpecialKeySpace::IMPLTYPE::READONLY,
std::make_unique<ExclusionInProgressRangeImpl>(
KeyRangeRef(LiteralStringRef("in_progress_exclusion/"), LiteralStringRef("in_progress_exclusion0"))
.withPrefix(SpecialKeySpace::getModuleRange(SpecialKeySpace::MODULE::MANAGEMENT).begin)));
registerSpecialKeySpaceModule(
SpecialKeySpace::MODULE::CONFIGURATION,
SpecialKeySpace::IMPLTYPE::READWRITE,
std::make_unique<ProcessClassRangeImpl>(
KeyRangeRef(LiteralStringRef("process/class_type/"), LiteralStringRef("process/class_type0"))
.withPrefix(SpecialKeySpace::getModuleRange(SpecialKeySpace::MODULE::CONFIGURATION).begin)));
registerSpecialKeySpaceModule(
SpecialKeySpace::MODULE::CONFIGURATION,
SpecialKeySpace::IMPLTYPE::READONLY,
std::make_unique<ProcessClassSourceRangeImpl>(
KeyRangeRef(LiteralStringRef("process/class_source/"), LiteralStringRef("process/class_source0"))
.withPrefix(SpecialKeySpace::getModuleRange(SpecialKeySpace::MODULE::CONFIGURATION).begin)));
registerSpecialKeySpaceModule(
SpecialKeySpace::MODULE::MANAGEMENT,
SpecialKeySpace::IMPLTYPE::READWRITE,
std::make_unique<LockDatabaseImpl>(
singleKeyRange(LiteralStringRef("db_locked"))
.withPrefix(SpecialKeySpace::getModuleRange(SpecialKeySpace::MODULE::MANAGEMENT).begin)));
registerSpecialKeySpaceModule(
SpecialKeySpace::MODULE::MANAGEMENT,
SpecialKeySpace::IMPLTYPE::READWRITE,
std::make_unique<ConsistencyCheckImpl>(
singleKeyRange(LiteralStringRef("consistency_check_suspended"))
.withPrefix(SpecialKeySpace::getModuleRange(SpecialKeySpace::MODULE::MANAGEMENT).begin)));
registerSpecialKeySpaceModule(
SpecialKeySpace::MODULE::GLOBALCONFIG,
SpecialKeySpace::IMPLTYPE::READWRITE,
std::make_unique<GlobalConfigImpl>(SpecialKeySpace::getModuleRange(SpecialKeySpace::MODULE::GLOBALCONFIG)));
registerSpecialKeySpaceModule(
SpecialKeySpace::MODULE::TRACING,
SpecialKeySpace::IMPLTYPE::READWRITE,
std::make_unique<TracingOptionsImpl>(SpecialKeySpace::getModuleRange(SpecialKeySpace::MODULE::TRACING)));
registerSpecialKeySpaceModule(
SpecialKeySpace::MODULE::CONFIGURATION,
SpecialKeySpace::IMPLTYPE::READWRITE,
std::make_unique<CoordinatorsImpl>(
KeyRangeRef(LiteralStringRef("coordinators/"), LiteralStringRef("coordinators0"))
.withPrefix(SpecialKeySpace::getModuleRange(SpecialKeySpace::MODULE::CONFIGURATION).begin)));
registerSpecialKeySpaceModule(
SpecialKeySpace::MODULE::MANAGEMENT,
SpecialKeySpace::IMPLTYPE::READONLY,
std::make_unique<CoordinatorsAutoImpl>(
singleKeyRange(LiteralStringRef("auto_coordinators"))
.withPrefix(SpecialKeySpace::getModuleRange(SpecialKeySpace::MODULE::MANAGEMENT).begin)));
registerSpecialKeySpaceModule(
SpecialKeySpace::MODULE::MANAGEMENT,
SpecialKeySpace::IMPLTYPE::READWRITE,
std::make_unique<AdvanceVersionImpl>(
singleKeyRange(LiteralStringRef("min_required_commit_version"))
.withPrefix(SpecialKeySpace::getModuleRange(SpecialKeySpace::MODULE::MANAGEMENT).begin)));
registerSpecialKeySpaceModule(
SpecialKeySpace::MODULE::MANAGEMENT,
SpecialKeySpace::IMPLTYPE::READWRITE,
std::make_unique<ClientProfilingImpl>(
KeyRangeRef(LiteralStringRef("profiling/"), LiteralStringRef("profiling0"))
.withPrefix(SpecialKeySpace::getModuleRange(SpecialKeySpace::MODULE::MANAGEMENT).begin)));
}
if (apiVersionAtLeast(630)) {
registerSpecialKeySpaceModule(SpecialKeySpace::MODULE::TRANSACTION,
SpecialKeySpace::IMPLTYPE::READONLY,
std::make_unique<ConflictingKeysImpl>(conflictingKeysRange));
registerSpecialKeySpaceModule(SpecialKeySpace::MODULE::TRANSACTION,
SpecialKeySpace::IMPLTYPE::READONLY,
std::make_unique<ReadConflictRangeImpl>(readConflictRangeKeysRange));
registerSpecialKeySpaceModule(SpecialKeySpace::MODULE::TRANSACTION,
SpecialKeySpace::IMPLTYPE::READONLY,
std::make_unique<WriteConflictRangeImpl>(writeConflictRangeKeysRange));
registerSpecialKeySpaceModule(SpecialKeySpace::MODULE::METRICS,
SpecialKeySpace::IMPLTYPE::READONLY,
std::make_unique<DDStatsRangeImpl>(ddStatsRange));
registerSpecialKeySpaceModule(
SpecialKeySpace::MODULE::METRICS,
SpecialKeySpace::IMPLTYPE::READONLY,
std::make_unique<HealthMetricsRangeImpl>(KeyRangeRef(LiteralStringRef("\xff\xff/metrics/health/"),
LiteralStringRef("\xff\xff/metrics/health0"))));
registerSpecialKeySpaceModule(
SpecialKeySpace::MODULE::WORKERINTERFACE,
SpecialKeySpace::IMPLTYPE::READONLY,
std::make_unique<WorkerInterfacesSpecialKeyImpl>(KeyRangeRef(
LiteralStringRef("\xff\xff/worker_interfaces/"), LiteralStringRef("\xff\xff/worker_interfaces0"))));
registerSpecialKeySpaceModule(
SpecialKeySpace::MODULE::STATUSJSON,
SpecialKeySpace::IMPLTYPE::READONLY,
std::make_unique<SingleSpecialKeyImpl>(LiteralStringRef("\xff\xff/status/json"),
[](ReadYourWritesTransaction* ryw) -> Future<Optional<Value>> {
if (ryw->getDatabase().getPtr() &&
ryw->getDatabase()->getConnectionFile()) {
++ryw->getDatabase()->transactionStatusRequests;
return getJSON(ryw->getDatabase());
} else {
return Optional<Value>();
}
}));
registerSpecialKeySpaceModule(
SpecialKeySpace::MODULE::CLUSTERFILEPATH,
SpecialKeySpace::IMPLTYPE::READONLY,
std::make_unique<SingleSpecialKeyImpl>(
LiteralStringRef("\xff\xff/cluster_file_path"),
[](ReadYourWritesTransaction* ryw) -> Future<Optional<Value>> {
try {
if (ryw->getDatabase().getPtr() && ryw->getDatabase()->getConnectionFile()) {
Optional<Value> output = StringRef(ryw->getDatabase()->getConnectionFile()->getFilename());
return output;
}
} catch (Error& e) {
return e;
}
return Optional<Value>();
}));
registerSpecialKeySpaceModule(
SpecialKeySpace::MODULE::CONNECTIONSTRING,
SpecialKeySpace::IMPLTYPE::READONLY,
std::make_unique<SingleSpecialKeyImpl>(
LiteralStringRef("\xff\xff/connection_string"),
[](ReadYourWritesTransaction* ryw) -> Future<Optional<Value>> {
try {
if (ryw->getDatabase().getPtr() && ryw->getDatabase()->getConnectionFile()) {
Reference<ClusterConnectionFile> f = ryw->getDatabase()->getConnectionFile();
Optional<Value> output = StringRef(f->getConnectionString().toString());
return output;
}
} catch (Error& e) {
return e;
}
return Optional<Value>();
}));
}
throttleExpirer = recurring([this]() { expireThrottles(); }, CLIENT_KNOBS->TAG_THROTTLE_EXPIRATION_INTERVAL);
if (BUGGIFY) {
DatabaseContext::debugUseTags = true;
}
}
DatabaseContext::DatabaseContext(const Error& err)
: deferredError(err), cc("TransactionMetrics"), transactionReadVersions("ReadVersions", cc),
transactionReadVersionsThrottled("ReadVersionsThrottled", cc),
transactionReadVersionsCompleted("ReadVersionsCompleted", cc),
transactionReadVersionBatches("ReadVersionBatches", cc),
transactionBatchReadVersions("BatchPriorityReadVersions", cc),
transactionDefaultReadVersions("DefaultPriorityReadVersions", cc),
transactionImmediateReadVersions("ImmediatePriorityReadVersions", cc),
transactionBatchReadVersionsCompleted("BatchPriorityReadVersionsCompleted", cc),
transactionDefaultReadVersionsCompleted("DefaultPriorityReadVersionsCompleted", cc),
transactionImmediateReadVersionsCompleted("ImmediatePriorityReadVersionsCompleted", cc),
transactionLogicalReads("LogicalUncachedReads", cc), transactionPhysicalReads("PhysicalReadRequests", cc),
transactionPhysicalReadsCompleted("PhysicalReadRequestsCompleted", cc),
transactionGetKeyRequests("GetKeyRequests", cc), transactionGetValueRequests("GetValueRequests", cc),
transactionGetRangeRequests("GetRangeRequests", cc), transactionWatchRequests("WatchRequests", cc),
transactionGetAddressesForKeyRequests("GetAddressesForKeyRequests", cc), transactionBytesRead("BytesRead", cc),
transactionKeysRead("KeysRead", cc), transactionMetadataVersionReads("MetadataVersionReads", cc),
transactionCommittedMutations("CommittedMutations", cc),
transactionCommittedMutationBytes("CommittedMutationBytes", cc), transactionSetMutations("SetMutations", cc),
transactionClearMutations("ClearMutations", cc), transactionAtomicMutations("AtomicMutations", cc),
transactionsCommitStarted("CommitStarted", cc), transactionsCommitCompleted("CommitCompleted", cc),
transactionKeyServerLocationRequests("KeyServerLocationRequests", cc),
transactionKeyServerLocationRequestsCompleted("KeyServerLocationRequestsCompleted", cc),
transactionStatusRequests("StatusRequests", cc), transactionsTooOld("TooOld", cc),
transactionsFutureVersions("FutureVersions", cc), transactionsNotCommitted("NotCommitted", cc),
transactionsMaybeCommitted("MaybeCommitted", cc), transactionsResourceConstrained("ResourceConstrained", cc),
transactionsThrottled("Throttled", cc), transactionsProcessBehind("ProcessBehind", cc), latencies(1000),
readLatencies(1000), commitLatencies(1000), GRVLatencies(1000), mutationsPerCommit(1000), bytesPerCommit(1000),
smoothMidShardSize(CLIENT_KNOBS->SHARD_STAT_SMOOTH_AMOUNT),
transactionsExpensiveClearCostEstCount("ExpensiveClearCostEstCount", cc), internal(false),
transactionTracingEnabled(true) {}
// Static constructor used by server processes to create a DatabaseContext
// For internal (fdbserver) use only
Database DatabaseContext::create(Reference<AsyncVar<ClientDBInfo>> clientInfo,
Future<Void> clientInfoMonitor,
LocalityData clientLocality,
bool enableLocalityLoadBalance,
TaskPriority taskID,
bool lockAware,
int apiVersion,
bool switchable) {
return Database(new DatabaseContext(Reference<AsyncVar<Reference<ClusterConnectionFile>>>(),
clientInfo,
makeReference<AsyncVar<Optional<ClientLeaderRegInterface>>>(),
clientInfoMonitor,
taskID,
clientLocality,
enableLocalityLoadBalance,
lockAware,
true,
apiVersion,
switchable));
}
DatabaseContext::~DatabaseContext() {
cacheListMonitor.cancel();
monitorProxiesInfoChange.cancel();
for (auto it = server_interf.begin(); it != server_interf.end(); it = server_interf.erase(it))
it->second->notifyContextDestroyed();
ASSERT_ABORT(server_interf.empty());
locationCache.insert(allKeys, Reference<LocationInfo>());
}
pair<KeyRange, Reference<LocationInfo>> DatabaseContext::getCachedLocation(const KeyRef& key, bool isBackward) {
if (isBackward) {
auto range = locationCache.rangeContainingKeyBefore(key);
return std::make_pair(range->range(), range->value());
} else {
auto range = locationCache.rangeContaining(key);
return std::make_pair(range->range(), range->value());
}
}
bool DatabaseContext::getCachedLocations(const KeyRangeRef& range,
vector<std::pair<KeyRange, Reference<LocationInfo>>>& result,
int limit,
bool reverse) {
result.clear();
auto begin = locationCache.rangeContaining(range.begin);
auto end = locationCache.rangeContainingKeyBefore(range.end);
loop {
auto r = reverse ? end : begin;
if (!r->value()) {
TEST(result.size()); // had some but not all cached locations
result.clear();
return false;
}
result.emplace_back(r->range() & range, r->value());
if (result.size() == limit || begin == end) {
break;
}
if (reverse)
--end;
else
++begin;
}
return true;
}
Reference<LocationInfo> DatabaseContext::setCachedLocation(const KeyRangeRef& keys,
const vector<StorageServerInterface>& servers) {
vector<Reference<ReferencedInterface<StorageServerInterface>>> serverRefs;
serverRefs.reserve(servers.size());
for (const auto& interf : servers) {
serverRefs.push_back(StorageServerInfo::getInterface(this, interf, clientLocality));
}
int maxEvictionAttempts = 100, attempts = 0;
auto loc = makeReference<LocationInfo>(serverRefs);
while (locationCache.size() > locationCacheSize && attempts < maxEvictionAttempts) {
TEST(true); // NativeAPI storage server locationCache entry evicted
attempts++;
auto r = locationCache.randomRange();
Key begin = r.begin(), end = r.end(); // insert invalidates r, so can't be passed a mere reference into it
locationCache.insert(KeyRangeRef(begin, end), Reference<LocationInfo>());
}
locationCache.insert(keys, loc);
return loc;
}
void DatabaseContext::invalidateCache(const KeyRef& key, bool isBackward) {
if (isBackward) {
locationCache.rangeContainingKeyBefore(key)->value() = Reference<LocationInfo>();
} else {
locationCache.rangeContaining(key)->value() = Reference<LocationInfo>();
}
}
void DatabaseContext::invalidateCache(const KeyRangeRef& keys) {
auto rs = locationCache.intersectingRanges(keys);
Key begin = rs.begin().begin(),
end = rs.end().begin(); // insert invalidates rs, so can't be passed a mere reference into it
locationCache.insert(KeyRangeRef(begin, end), Reference<LocationInfo>());
}
Future<Void> DatabaseContext::onProxiesChanged() {
return this->proxiesChangeTrigger.onTrigger();
}
bool DatabaseContext::sampleReadTags() const {
double sampleRate = GlobalConfig::globalConfig().get(transactionTagSampleRate, CLIENT_KNOBS->READ_TAG_SAMPLE_RATE);
return sampleRate > 0 && deterministicRandom()->random01() <= sampleRate;
}
bool DatabaseContext::sampleOnCost(uint64_t cost) const {
double sampleCost =
GlobalConfig::globalConfig().get<double>(transactionTagSampleCost, CLIENT_KNOBS->COMMIT_SAMPLE_COST);
if (sampleCost <= 0)
return false;
return deterministicRandom()->random01() <= (double)cost / sampleCost;
}
int64_t extractIntOption(Optional<StringRef> value, int64_t minValue, int64_t maxValue) {
validateOptionValue(value, true);
if (value.get().size() != 8) {
throw invalid_option_value();
}
int64_t passed = *((int64_t*)(value.get().begin()));
if (passed > maxValue || passed < minValue) {
throw invalid_option_value();
}
return passed;
}
uint64_t extractHexOption(StringRef value) {
char* end;
uint64_t id = strtoull(value.toString().c_str(), &end, 16);
if (*end)
throw invalid_option_value();
return id;
}
void DatabaseContext::setOption(FDBDatabaseOptions::Option option, Optional<StringRef> value) {
int defaultFor = FDBDatabaseOptions::optionInfo.getMustExist(option).defaultFor;
if (defaultFor >= 0) {
ASSERT(FDBTransactionOptions::optionInfo.find((FDBTransactionOptions::Option)defaultFor) !=
FDBTransactionOptions::optionInfo.end());
transactionDefaults.addOption((FDBTransactionOptions::Option)defaultFor, value.castTo<Standalone<StringRef>>());
} else {
switch (option) {
case FDBDatabaseOptions::LOCATION_CACHE_SIZE:
locationCacheSize = (int)extractIntOption(value, 0, std::numeric_limits<int>::max());
break;
case FDBDatabaseOptions::MACHINE_ID:
clientLocality =
LocalityData(clientLocality.processId(),
value.present() ? Standalone<StringRef>(value.get()) : Optional<Standalone<StringRef>>(),
clientLocality.machineId(),
clientLocality.dcId());
if (clientInfo->get().commitProxies.size())
commitProxies = makeReference<CommitProxyInfo>(clientInfo->get().commitProxies, false);
if (clientInfo->get().grvProxies.size())
grvProxies = makeReference<GrvProxyInfo>(clientInfo->get().grvProxies, true);
server_interf.clear();
locationCache.insert(allKeys, Reference<LocationInfo>());
break;
case FDBDatabaseOptions::MAX_WATCHES:
maxOutstandingWatches = (int)extractIntOption(value, 0, CLIENT_KNOBS->ABSOLUTE_MAX_WATCHES);
break;
case FDBDatabaseOptions::DATACENTER_ID:
clientLocality =
LocalityData(clientLocality.processId(),
clientLocality.zoneId(),
clientLocality.machineId(),
value.present() ? Standalone<StringRef>(value.get()) : Optional<Standalone<StringRef>>());
if (clientInfo->get().commitProxies.size())
commitProxies = makeReference<CommitProxyInfo>(clientInfo->get().commitProxies, false);
if (clientInfo->get().grvProxies.size())
grvProxies = makeReference<GrvProxyInfo>(clientInfo->get().grvProxies, true);
server_interf.clear();
locationCache.insert(allKeys, Reference<LocationInfo>());
break;
case FDBDatabaseOptions::SNAPSHOT_RYW_ENABLE:
validateOptionValue(value, false);
snapshotRywEnabled++;
break;
case FDBDatabaseOptions::SNAPSHOT_RYW_DISABLE:
validateOptionValue(value, false);
snapshotRywEnabled--;
break;
case FDBDatabaseOptions::DISTRIBUTED_TRANSACTION_TRACE_ENABLE:
validateOptionValue(value, false);
transactionTracingEnabled++;
break;
case FDBDatabaseOptions::DISTRIBUTED_TRANSACTION_TRACE_DISABLE:
validateOptionValue(value, false);
transactionTracingEnabled--;
break;
default:
break;
}
}
}
void DatabaseContext::addWatch() {
if (outstandingWatches >= maxOutstandingWatches)
throw too_many_watches();
++outstandingWatches;
}
void DatabaseContext::removeWatch() {
--outstandingWatches;
ASSERT(outstandingWatches >= 0);
}
Future<Void> DatabaseContext::onConnected() {
return connected;
}
ACTOR static Future<Void> switchConnectionFileImpl(Reference<ClusterConnectionFile> connFile, DatabaseContext* self) {
TEST(true); // Switch connection file
TraceEvent("SwitchConnectionFile")
.detail("ConnectionFile", connFile->canGetFilename() ? connFile->getFilename() : "")
.detail("ConnectionString", connFile->getConnectionString().toString());
// Reset state from former cluster.
self->commitProxies.clear();
self->grvProxies.clear();
self->minAcceptableReadVersion = std::numeric_limits<Version>::max();
self->invalidateCache(allKeys);
auto clearedClientInfo = self->clientInfo->get();
clearedClientInfo.commitProxies.clear();
clearedClientInfo.grvProxies.clear();
clearedClientInfo.id = deterministicRandom()->randomUniqueID();
self->clientInfo->set(clearedClientInfo);
self->connectionFile->set(connFile);
state Database db(Reference<DatabaseContext>::addRef(self));
state Transaction tr(db);
loop {
tr.setOption(FDBTransactionOptions::READ_LOCK_AWARE);
try {
TraceEvent("SwitchConnectionFileAttemptingGRV");
Version v = wait(tr.getReadVersion());
TraceEvent("SwitchConnectionFileGotRV")
.detail("ReadVersion", v)
.detail("MinAcceptableReadVersion", self->minAcceptableReadVersion);
ASSERT(self->minAcceptableReadVersion != std::numeric_limits<Version>::max());
self->connectionFileChangedTrigger.trigger();
return Void();
} catch (Error& e) {
TraceEvent("SwitchConnectionFileError").detail("Error", e.what());
wait(tr.onError(e));
}
}
}
Reference<ClusterConnectionFile> DatabaseContext::getConnectionFile() {
if (connectionFile) {
return connectionFile->get();
}
return Reference<ClusterConnectionFile>();
}
Future<Void> DatabaseContext::switchConnectionFile(Reference<ClusterConnectionFile> standby) {
ASSERT(switchable);
return switchConnectionFileImpl(standby, this);
}
Future<Void> DatabaseContext::connectionFileChanged() {
return connectionFileChangedTrigger.onTrigger();
}
void DatabaseContext::expireThrottles() {
for (auto& priorityItr : throttledTags) {
for (auto tagItr = priorityItr.second.begin(); tagItr != priorityItr.second.end();) {
if (tagItr->second.expired()) {
TEST(true); // Expiring client throttle
tagItr = priorityItr.second.erase(tagItr);
} else {
++tagItr;
}
}
}
}
extern IPAddress determinePublicIPAutomatically(ClusterConnectionString const& ccs);
// Creates a database object that represents a connection to a cluster
// This constructor uses a preallocated DatabaseContext that may have been created
// on another thread
Database Database::createDatabase(Reference<ClusterConnectionFile> connFile,
int apiVersion,
bool internal,
LocalityData const& clientLocality,
DatabaseContext* preallocatedDb) {
if (!g_network)
throw network_not_setup();
if (connFile) {
if (networkOptions.traceDirectory.present() && !traceFileIsOpen()) {
g_network->initMetrics();
FlowTransport::transport().initMetrics();
initTraceEventMetrics();
auto publicIP = determinePublicIPAutomatically(connFile->getConnectionString());
selectTraceFormatter(networkOptions.traceFormat);
selectTraceClockSource(networkOptions.traceClockSource);
openTraceFile(NetworkAddress(publicIP, ::getpid()),
networkOptions.traceRollSize,
networkOptions.traceMaxLogsSize,
networkOptions.traceDirectory.get(),
"trace",
networkOptions.traceLogGroup,
networkOptions.traceFileIdentifier);
TraceEvent("ClientStart")
.detail("SourceVersion", getSourceVersion())
.detail("Version", FDB_VT_VERSION)
.detail("PackageName", FDB_VT_PACKAGE_NAME)
.detail("ClusterFile", connFile->getFilename().c_str())
.detail("ConnectionString", connFile->getConnectionString().toString())
.detailf("ActualTime", "%lld", DEBUG_DETERMINISM ? 0 : time(nullptr))
.detail("ApiVersion", apiVersion)
.detailf("ImageOffset", "%p", platform::getImageOffset())
.trackLatest("ClientStart");
initializeSystemMonitorMachineState(SystemMonitorMachineState(IPAddress(publicIP)));
systemMonitor();
uncancellable(recurring(&systemMonitor, CLIENT_KNOBS->SYSTEM_MONITOR_INTERVAL, TaskPriority::FlushTrace));
}
}
g_network->initTLS();
auto clientInfo = makeReference<AsyncVar<ClientDBInfo>>();
auto coordinator = makeReference<AsyncVar<Optional<ClientLeaderRegInterface>>>();
auto connectionFile = makeReference<AsyncVar<Reference<ClusterConnectionFile>>>();
connectionFile->set(connFile);
Future<Void> clientInfoMonitor = monitorProxies(connectionFile,
clientInfo,
coordinator,
networkOptions.supportedVersions,
StringRef(networkOptions.traceLogGroup));
DatabaseContext* db;
if (preallocatedDb) {
db = new (preallocatedDb) DatabaseContext(connectionFile,
clientInfo,
coordinator,
clientInfoMonitor,
TaskPriority::DefaultEndpoint,
clientLocality,
true,
false,
internal,
apiVersion,
/*switchable*/ true);
} else {
db = new DatabaseContext(connectionFile,
clientInfo,
coordinator,
clientInfoMonitor,
TaskPriority::DefaultEndpoint,
clientLocality,
true,
false,
internal,
apiVersion,
/*switchable*/ true);
}
return Database(db);
}
Database Database::createDatabase(std::string connFileName,
int apiVersion,
bool internal,
LocalityData const& clientLocality) {
Reference<ClusterConnectionFile> rccf = Reference<ClusterConnectionFile>(
new ClusterConnectionFile(ClusterConnectionFile::lookupClusterFileName(connFileName).first));
return Database::createDatabase(rccf, apiVersion, internal, clientLocality);
}
Reference<WatchMetadata> DatabaseContext::getWatchMetadata(KeyRef key) const {
const auto it = watchMap.find(key);
if (it == watchMap.end())
return Reference<WatchMetadata>();
return it->second;
}
KeyRef DatabaseContext::setWatchMetadata(Reference<WatchMetadata> metadata) {
KeyRef keyRef = metadata->key.contents();
watchMap[keyRef] = metadata;
return keyRef;
}
void DatabaseContext::deleteWatchMetadata(KeyRef key) {
watchMap.erase(key);
}
void DatabaseContext::clearWatchMetadata() {
watchMap.clear();
}
WatchMetadata::WatchMetadata(Key key, Optional<Value> value, Version version, TransactionInfo info, TagSet tags)
: key(key), value(value), version(version), info(info), tags(tags) {
// create dummy future
watchFuture = watchPromise.getFuture();
}
const UniqueOrderedOptionList<FDBTransactionOptions>& Database::getTransactionDefaults() const {
ASSERT(db);
return db->transactionDefaults;
}
void setNetworkOption(FDBNetworkOptions::Option option, Optional<StringRef> value) {
std::regex identifierRegex("^[a-zA-Z0-9_]*$");
switch (option) {
// SOMEDAY: If the network is already started, should these five throw an error?
case FDBNetworkOptions::TRACE_ENABLE:
networkOptions.traceDirectory = value.present() ? value.get().toString() : "";
break;
case FDBNetworkOptions::TRACE_ROLL_SIZE:
validateOptionValue(value, true);
networkOptions.traceRollSize = extractIntOption(value, 0, std::numeric_limits<int64_t>::max());
break;
case FDBNetworkOptions::TRACE_MAX_LOGS_SIZE:
validateOptionValue(value, true);
networkOptions.traceMaxLogsSize = extractIntOption(value, 0, std::numeric_limits<int64_t>::max());
break;
case FDBNetworkOptions::TRACE_FORMAT:
validateOptionValue(value, true);
networkOptions.traceFormat = value.get().toString();
if (!validateTraceFormat(networkOptions.traceFormat)) {
fprintf(stderr, "Unrecognized trace format: `%s'\n", networkOptions.traceFormat.c_str());
throw invalid_option_value();
}
break;
case FDBNetworkOptions::TRACE_FILE_IDENTIFIER:
validateOptionValue(value, true);
networkOptions.traceFileIdentifier = value.get().toString();
if (networkOptions.traceFileIdentifier.length() > CLIENT_KNOBS->TRACE_LOG_FILE_IDENTIFIER_MAX_LENGTH) {
fprintf(stderr, "Trace file identifier provided is too long.\n");
throw invalid_option_value();
} else if (!std::regex_match(networkOptions.traceFileIdentifier, identifierRegex)) {
fprintf(stderr, "Trace file identifier should only contain alphanumerics and underscores.\n");
throw invalid_option_value();
}
break;
case FDBNetworkOptions::TRACE_LOG_GROUP:
if (value.present()) {
if (traceFileIsOpen()) {
setTraceLogGroup(value.get().toString());
} else {
networkOptions.traceLogGroup = value.get().toString();
}
}
break;
case FDBNetworkOptions::TRACE_CLOCK_SOURCE:
validateOptionValue(value, true);
networkOptions.traceClockSource = value.get().toString();
if (!validateTraceClockSource(networkOptions.traceClockSource)) {
fprintf(stderr, "Unrecognized trace clock source: `%s'\n", networkOptions.traceClockSource.c_str());
throw invalid_option_value();
}
break;
case FDBNetworkOptions::KNOB: {
validateOptionValue(value, true);
std::string optionValue = value.get().toString();
TraceEvent("SetKnob").detail("KnobString", optionValue);
size_t eq = optionValue.find_first_of('=');
if (eq == optionValue.npos) {
TraceEvent(SevWarnAlways, "InvalidKnobString").detail("KnobString", optionValue);
throw invalid_option_value();
}
std::string knobName = optionValue.substr(0, eq);
std::string knobValue = optionValue.substr(eq + 1);
if (globalFlowKnobs->setKnob(knobName, knobValue)) {
// update dependent knobs
globalFlowKnobs->initialize();
} else if (globalClientKnobs->setKnob(knobName, knobValue)) {
// update dependent knobs
globalClientKnobs->initialize();
} else {
TraceEvent(SevWarnAlways, "UnrecognizedKnob").detail("Knob", knobName.c_str());
fprintf(stderr, "FoundationDB client ignoring unrecognized knob option '%s'\n", knobName.c_str());
}
break;
}
case FDBNetworkOptions::TLS_PLUGIN:
validateOptionValue(value, true);
break;
case FDBNetworkOptions::TLS_CERT_PATH:
validateOptionValue(value, true);
tlsConfig.setCertificatePath(value.get().toString());
break;
case FDBNetworkOptions::TLS_CERT_BYTES: {
validateOptionValue(value, true);
tlsConfig.setCertificateBytes(value.get().toString());
break;
}
case FDBNetworkOptions::TLS_CA_PATH: {
validateOptionValue(value, true);
tlsConfig.setCAPath(value.get().toString());
break;
}
case FDBNetworkOptions::TLS_CA_BYTES: {
validateOptionValue(value, true);
tlsConfig.setCABytes(value.get().toString());
break;
}
case FDBNetworkOptions::TLS_PASSWORD:
validateOptionValue(value, true);
tlsConfig.setPassword(value.get().toString());
break;
case FDBNetworkOptions::TLS_KEY_PATH:
validateOptionValue(value, true);
tlsConfig.setKeyPath(value.get().toString());
break;
case FDBNetworkOptions::TLS_KEY_BYTES: {
validateOptionValue(value, true);
tlsConfig.setKeyBytes(value.get().toString());
break;
}
case FDBNetworkOptions::TLS_VERIFY_PEERS:
validateOptionValue(value, true);
tlsConfig.clearVerifyPeers();
tlsConfig.addVerifyPeers(value.get().toString());
break;
case FDBNetworkOptions::CLIENT_BUGGIFY_ENABLE:
enableBuggify(true, BuggifyType::Client);
break;
case FDBNetworkOptions::CLIENT_BUGGIFY_DISABLE:
enableBuggify(false, BuggifyType::Client);
break;
case FDBNetworkOptions::CLIENT_BUGGIFY_SECTION_ACTIVATED_PROBABILITY:
validateOptionValue(value, true);
clearBuggifySections(BuggifyType::Client);
P_BUGGIFIED_SECTION_ACTIVATED[int(BuggifyType::Client)] = double(extractIntOption(value, 0, 100)) / 100.0;
break;
case FDBNetworkOptions::CLIENT_BUGGIFY_SECTION_FIRED_PROBABILITY:
validateOptionValue(value, true);
P_BUGGIFIED_SECTION_FIRES[int(BuggifyType::Client)] = double(extractIntOption(value, 0, 100)) / 100.0;
break;
case FDBNetworkOptions::DISABLE_CLIENT_STATISTICS_LOGGING:
validateOptionValue(value, false);
networkOptions.logClientInfo = false;
break;
case FDBNetworkOptions::SUPPORTED_CLIENT_VERSIONS: {
// The multi-version API should be providing us these guarantees
ASSERT(g_network);
ASSERT(value.present());
Standalone<VectorRef<ClientVersionRef>> supportedVersions;
std::vector<StringRef> supportedVersionsStrings = value.get().splitAny(LiteralStringRef(";"));
for (StringRef versionString : supportedVersionsStrings) {
supportedVersions.push_back_deep(supportedVersions.arena(), ClientVersionRef(versionString));
}
ASSERT(supportedVersions.size() > 0);
networkOptions.supportedVersions->set(supportedVersions);
break;
}
case FDBNetworkOptions::ENABLE_RUN_LOOP_PROFILING: // Same as ENABLE_SLOW_TASK_PROFILING
validateOptionValue(value, false);
networkOptions.runLoopProfilingEnabled = true;
break;
case FDBNetworkOptions::DISTRIBUTED_CLIENT_TRACER: {
validateOptionValue(value, true);
std::string tracer = value.get().toString();
if (tracer == "none" || tracer == "disabled") {
openTracer(TracerType::DISABLED);
} else if (tracer == "logfile" || tracer == "file" || tracer == "log_file") {
openTracer(TracerType::LOG_FILE);
} else if (tracer == "network_lossy") {
openTracer(TracerType::NETWORK_LOSSY);
} else {
fprintf(stderr, "ERROR: Unknown or unsupported tracer: `%s'", tracer.c_str());
throw invalid_option_value();
}
break;
}
default:
break;
}
}
// update the network busyness on a 1s cadence
ACTOR Future<Void> monitorNetworkBusyness() {
state double prevTime = now();
loop {
wait(delay(CLIENT_KNOBS->NETWORK_BUSYNESS_MONITOR_INTERVAL, TaskPriority::FlushTrace));
double elapsed = now() - prevTime; // get elapsed time from last execution
prevTime = now();
struct NetworkMetrics::PriorityStats& tracker = g_network->networkInfo.metrics.starvationTrackerNetworkBusyness;
if (tracker.active) { // update metrics
tracker.duration += now() - tracker.windowedTimer;
tracker.maxDuration = std::max(tracker.maxDuration, now() - tracker.timer);
tracker.windowedTimer = now();
}
g_network->networkInfo.metrics.networkBusyness =
std::min(elapsed, tracker.duration) / elapsed; // average duration spent doing "work"
tracker.duration = 0;
tracker.maxDuration = 0;
}
}
// Setup g_network and start monitoring for network busyness
void setupNetwork(uint64_t transportId, bool useMetrics) {
if (g_network)
throw network_already_setup();
if (!networkOptions.logClientInfo.present())
networkOptions.logClientInfo = true;
TLS::DisableOpenSSLAtExitHandler();
g_network = newNet2(tlsConfig, false, useMetrics || networkOptions.traceDirectory.present());
g_network->addStopCallback(Net2FileSystem::stop);
g_network->addStopCallback(TLS::DestroyOpenSSLGlobalState);
FlowTransport::createInstance(true, transportId);
Net2FileSystem::newFileSystem();
uncancellable(monitorNetworkBusyness());
}
void runNetwork() {
if (!g_network) {
throw network_not_setup();
}
if (!g_network->checkRunnable()) {
throw network_cannot_be_restarted();
}
if (networkOptions.traceDirectory.present() && networkOptions.runLoopProfilingEnabled) {
setupRunLoopProfiler();
}
g_network->run();
if (networkOptions.traceDirectory.present())
systemMonitor();
}
void stopNetwork() {
if (!g_network)
throw network_not_setup();
g_network->stop();
closeTraceFile();
}
void DatabaseContext::updateProxies() {
if (proxiesLastChange == clientInfo->get().id)
return;
proxiesLastChange = clientInfo->get().id;
commitProxies.clear();
grvProxies.clear();
bool commitProxyProvisional = false, grvProxyProvisional = false;
if (clientInfo->get().commitProxies.size()) {
commitProxies = makeReference<CommitProxyInfo>(clientInfo->get().commitProxies, false);
commitProxyProvisional = clientInfo->get().commitProxies[0].provisional;
}
if (clientInfo->get().grvProxies.size()) {
grvProxies = makeReference<GrvProxyInfo>(clientInfo->get().grvProxies, true);
grvProxyProvisional = clientInfo->get().grvProxies[0].provisional;
}
if (clientInfo->get().commitProxies.size() && clientInfo->get().grvProxies.size()) {
ASSERT(commitProxyProvisional == grvProxyProvisional);
proxyProvisional = commitProxyProvisional;
}
}
Reference<CommitProxyInfo> DatabaseContext::getCommitProxies(bool useProvisionalProxies) {
updateProxies();
if (proxyProvisional && !useProvisionalProxies) {
return Reference<CommitProxyInfo>();
}
return commitProxies;
}
Reference<GrvProxyInfo> DatabaseContext::getGrvProxies(bool useProvisionalProxies) {
updateProxies();
if (proxyProvisional && !useProvisionalProxies) {
return Reference<GrvProxyInfo>();
}
return grvProxies;
}
// Actor which will wait until the MultiInterface<CommitProxyInterface> returned by the DatabaseContext cx is not
// nullptr
ACTOR Future<Reference<CommitProxyInfo>> getCommitProxiesFuture(DatabaseContext* cx, bool useProvisionalProxies) {
loop {
Reference<CommitProxyInfo> commitProxies = cx->getCommitProxies(useProvisionalProxies);
if (commitProxies)
return commitProxies;
wait(cx->onProxiesChanged());
}
}
// Returns a future which will not be set until the CommitProxyInfo of this DatabaseContext is not nullptr
Future<Reference<CommitProxyInfo>> DatabaseContext::getCommitProxiesFuture(bool useProvisionalProxies) {
return ::getCommitProxiesFuture(this, useProvisionalProxies);
}
void GetRangeLimits::decrement(VectorRef<KeyValueRef> const& data) {
if (rows != GetRangeLimits::ROW_LIMIT_UNLIMITED) {
ASSERT(data.size() <= rows);
rows -= data.size();
}
minRows = std::max(0, minRows - data.size());
if (bytes != GetRangeLimits::BYTE_LIMIT_UNLIMITED)
bytes = std::max(0, bytes - (int)data.expectedSize() - (8 - (int)sizeof(KeyValueRef)) * data.size());
}
void GetRangeLimits::decrement(KeyValueRef const& data) {
minRows = std::max(0, minRows - 1);
if (rows != GetRangeLimits::ROW_LIMIT_UNLIMITED)
rows--;
if (bytes != GetRangeLimits::BYTE_LIMIT_UNLIMITED)
bytes = std::max(0, bytes - (int)8 - (int)data.expectedSize());
}
// True if either the row or byte limit has been reached
bool GetRangeLimits::isReached() {
return rows == 0 || (bytes == 0 && minRows == 0);
}
// True if data would cause the row or byte limit to be reached
bool GetRangeLimits::reachedBy(VectorRef<KeyValueRef> const& data) {
return (rows != GetRangeLimits::ROW_LIMIT_UNLIMITED && data.size() >= rows) ||
(bytes != GetRangeLimits::BYTE_LIMIT_UNLIMITED &&
(int)data.expectedSize() + (8 - (int)sizeof(KeyValueRef)) * data.size() >= bytes && data.size() >= minRows);
}
bool GetRangeLimits::hasByteLimit() {
return bytes != GetRangeLimits::BYTE_LIMIT_UNLIMITED;
}
bool GetRangeLimits::hasRowLimit() {
return rows != GetRangeLimits::ROW_LIMIT_UNLIMITED;
}
bool GetRangeLimits::hasSatisfiedMinRows() {
return hasByteLimit() && minRows == 0;
}
AddressExclusion AddressExclusion::parse(StringRef const& key) {
// Must not change: serialized to the database!
auto parsedIp = IPAddress::parse(key.toString());
if (parsedIp.present()) {
return AddressExclusion(parsedIp.get());
}
// Not a whole machine, includes `port'.
try {
auto addr = NetworkAddress::parse(key.toString());
if (addr.isTLS()) {
TraceEvent(SevWarnAlways, "AddressExclusionParseError")
.detail("String", key)
.detail("Description", "Address inclusion string should not include `:tls' suffix.");
return AddressExclusion();
}
return AddressExclusion(addr.ip, addr.port);
} catch (Error&) {
TraceEvent(SevWarnAlways, "AddressExclusionParseError").detail("String", key);
return AddressExclusion();
}
}
Future<Standalone<RangeResultRef>> getRange(Database const& cx,
Future<Version> const& fVersion,
KeySelector const& begin,
KeySelector const& end,
GetRangeLimits const& limits,
bool const& reverse,
TransactionInfo const& info,
TagSet const& tags);
ACTOR Future<Optional<Value>> getValue(Future<Version> version,
Key key,
Database cx,
TransactionInfo info,
Reference<TransactionLogInfo> trLogInfo,
TagSet tags);
ACTOR Future<Optional<StorageServerInterface>> fetchServerInterface(Database cx,
TransactionInfo info,
UID id,
TagSet tags,
Future<Version> ver = latestVersion) {
Optional<Value> val = wait(getValue(ver, serverListKeyFor(id), cx, info, Reference<TransactionLogInfo>(), tags));
if (!val.present()) {
// A storage server has been removed from serverList since we read keyServers
return Optional<StorageServerInterface>();
}
return decodeServerListValue(val.get());
}
ACTOR Future<Optional<vector<StorageServerInterface>>> transactionalGetServerInterfaces(Future<Version> ver,
Database cx,
TransactionInfo info,
vector<UID> ids,
TagSet tags) {
state vector<Future<Optional<StorageServerInterface>>> serverListEntries;
serverListEntries.reserve(ids.size());
for (int s = 0; s < ids.size(); s++) {
serverListEntries.push_back(fetchServerInterface(cx, info, ids[s], tags, ver));
}
vector<Optional<StorageServerInterface>> serverListValues = wait(getAll(serverListEntries));
vector<StorageServerInterface> serverInterfaces;
for (int s = 0; s < serverListValues.size(); s++) {
if (!serverListValues[s].present()) {
// A storage server has been removed from ServerList since we read keyServers
return Optional<vector<StorageServerInterface>>();
}
serverInterfaces.push_back(serverListValues[s].get());
}
return serverInterfaces;
}
// If isBackward == true, returns the shard containing the key before 'key' (an infinitely long, inexpressible key).
// Otherwise returns the shard containing key
ACTOR Future<pair<KeyRange, Reference<LocationInfo>>> getKeyLocation_internal(Database cx,
Key key,
TransactionInfo info,
bool isBackward = false) {
state Span span("NAPI:getKeyLocation"_loc, info.spanID);
if (isBackward) {
ASSERT(key != allKeys.begin && key <= allKeys.end);
} else {
ASSERT(key < allKeys.end);
}
if (info.debugID.present())
g_traceBatch.addEvent("TransactionDebug", info.debugID.get().first(), "NativeAPI.getKeyLocation.Before");
loop {
++cx->transactionKeyServerLocationRequests;
choose {
when(wait(cx->onProxiesChanged())) {}
when(GetKeyServerLocationsReply rep = wait(basicLoadBalance(
cx->getCommitProxies(info.useProvisionalProxies),
&CommitProxyInterface::getKeyServersLocations,
GetKeyServerLocationsRequest(span.context, key, Optional<KeyRef>(), 100, isBackward, key.arena()),
TaskPriority::DefaultPromiseEndpoint))) {
++cx->transactionKeyServerLocationRequestsCompleted;
if (info.debugID.present())
g_traceBatch.addEvent(
"TransactionDebug", info.debugID.get().first(), "NativeAPI.getKeyLocation.After");
ASSERT(rep.results.size() == 1);
auto locationInfo = cx->setCachedLocation(rep.results[0].first, rep.results[0].second);
return std::make_pair(KeyRange(rep.results[0].first, rep.arena), locationInfo);
}
}
}
}
template <class F>
Future<pair<KeyRange, Reference<LocationInfo>>> getKeyLocation(Database const& cx,
Key const& key,
F StorageServerInterface::*member,
TransactionInfo const& info,
bool isBackward = false) {
// we first check whether this range is cached
auto ssi = cx->getCachedLocation(key, isBackward);
if (!ssi.second) {
return getKeyLocation_internal(cx, key, info, isBackward);
}
for (int i = 0; i < ssi.second->size(); i++) {
if (IFailureMonitor::failureMonitor().onlyEndpointFailed(ssi.second->get(i, member).getEndpoint())) {
cx->invalidateCache(key);
ssi.second.clear();
return getKeyLocation_internal(cx, key, info, isBackward);
}
}
return ssi;
}
ACTOR Future<vector<pair<KeyRange, Reference<LocationInfo>>>> getKeyRangeLocations_internal(Database cx,
KeyRange keys,
int limit,
bool reverse,
TransactionInfo info) {
state Span span("NAPI:getKeyRangeLocations"_loc, info.spanID);
if (info.debugID.present())
g_traceBatch.addEvent("TransactionDebug", info.debugID.get().first(), "NativeAPI.getKeyLocations.Before");
loop {
++cx->transactionKeyServerLocationRequests;
choose {
when(wait(cx->onProxiesChanged())) {}
when(GetKeyServerLocationsReply _rep = wait(basicLoadBalance(
cx->getCommitProxies(info.useProvisionalProxies),
&CommitProxyInterface::getKeyServersLocations,
GetKeyServerLocationsRequest(span.context, keys.begin, keys.end, limit, reverse, keys.arena()),
TaskPriority::DefaultPromiseEndpoint))) {
++cx->transactionKeyServerLocationRequestsCompleted;
state GetKeyServerLocationsReply rep = _rep;
if (info.debugID.present())
g_traceBatch.addEvent(
"TransactionDebug", info.debugID.get().first(), "NativeAPI.getKeyLocations.After");
ASSERT(rep.results.size());
state vector<pair<KeyRange, Reference<LocationInfo>>> results;
state int shard = 0;
for (; shard < rep.results.size(); shard++) {
// FIXME: these shards are being inserted into the map sequentially, it would be much more CPU
// efficient to save the map pairs and insert them all at once.
results.emplace_back(rep.results[shard].first & keys,
cx->setCachedLocation(rep.results[shard].first, rep.results[shard].second));
wait(yield());
}
return results;
}
}
}
}
// Get the SS locations for each shard in the 'keys' key-range;
// Returned vector size is the number of shards in the input keys key-range.
// Returned vector element is <ShardRange, storage server location info> pairs, where
// ShardRange is the whole shard key-range, not a part of the given key range.
// Example: If query the function with key range (b, d), the returned list of pairs could be something like:
// [([a, b1), locationInfo), ([b1, c), locationInfo), ([c, d1), locationInfo)].
template <class F>
Future<vector<pair<KeyRange, Reference<LocationInfo>>>> getKeyRangeLocations(Database const& cx,
KeyRange const& keys,
int limit,
bool reverse,
F StorageServerInterface::*member,
TransactionInfo const& info) {
ASSERT(!keys.empty());
vector<pair<KeyRange, Reference<LocationInfo>>> locations;
if (!cx->getCachedLocations(keys, locations, limit, reverse)) {
return getKeyRangeLocations_internal(cx, keys, limit, reverse, info);
}
bool foundFailed = false;
for (const auto& [range, locInfo] : locations) {
bool onlyEndpointFailed = false;
for (int i = 0; i < locInfo->size(); i++) {
if (IFailureMonitor::failureMonitor().onlyEndpointFailed(locInfo->get(i, member).getEndpoint())) {
onlyEndpointFailed = true;
break;
}
}
if (onlyEndpointFailed) {
cx->invalidateCache(range.begin);
foundFailed = true;
}
}
if (foundFailed) {
return getKeyRangeLocations_internal(cx, keys, limit, reverse, info);
}
return locations;
}
ACTOR Future<Void> warmRange_impl(Transaction* self, Database cx, KeyRange keys) {
state int totalRanges = 0;
state int totalRequests = 0;
loop {
vector<pair<KeyRange, Reference<LocationInfo>>> locations =
wait(getKeyRangeLocations_internal(cx, keys, CLIENT_KNOBS->WARM_RANGE_SHARD_LIMIT, false, self->info));
totalRanges += CLIENT_KNOBS->WARM_RANGE_SHARD_LIMIT;
totalRequests++;
if (locations.size() == 0 || totalRanges >= cx->locationCacheSize ||
locations[locations.size() - 1].first.end >= keys.end)
break;
keys = KeyRangeRef(locations[locations.size() - 1].first.end, keys.end);
if (totalRequests % 20 == 0) {
// To avoid blocking the proxies from starting other transactions, occasionally get a read version.
state Transaction tr(cx);
loop {
try {
tr.setOption(FDBTransactionOptions::LOCK_AWARE);
tr.setOption(FDBTransactionOptions::CAUSAL_READ_RISKY);
wait(success(tr.getReadVersion()));
break;
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
}
return Void();
}
Future<Void> Transaction::warmRange(Database cx, KeyRange keys) {
return warmRange_impl(this, cx, keys);
}
ACTOR Future<Optional<Value>> getValue(Future<Version> version,
Key key,
Database cx,
TransactionInfo info,
Reference<TransactionLogInfo> trLogInfo,
TagSet tags) {
state Version ver = wait(version);
state Span span("NAPI:getValue"_loc, info.spanID);
span.addTag("key"_sr, key);
cx->validateVersion(ver);
loop {
state pair<KeyRange, Reference<LocationInfo>> ssi =
wait(getKeyLocation(cx, key, &StorageServerInterface::getValue, info));
state Optional<UID> getValueID = Optional<UID>();
state uint64_t startTime;
state double startTimeD;
try {
if (info.debugID.present()) {
getValueID = nondeterministicRandom()->randomUniqueID();
g_traceBatch.addAttach("GetValueAttachID", info.debugID.get().first(), getValueID.get().first());
g_traceBatch.addEvent("GetValueDebug",
getValueID.get().first(),
"NativeAPI.getValue.Before"); //.detail("TaskID", g_network->getCurrentTask());
/*TraceEvent("TransactionDebugGetValueInfo", getValueID.get())
.detail("Key", key)
.detail("ReqVersion", ver)
.detail("Servers", describe(ssi.second->get()));*/
}
++cx->getValueSubmitted;
startTime = timer_int();
startTimeD = now();
++cx->transactionPhysicalReads;
state GetValueReply reply;
try {
if (CLIENT_BUGGIFY) {
throw deterministicRandom()->randomChoice(
std::vector<Error>{ transaction_too_old(), future_version() });
}
choose {
when(wait(cx->connectionFileChanged())) { throw transaction_too_old(); }
when(GetValueReply _reply = wait(loadBalance(
cx.getPtr(),
ssi.second,
&StorageServerInterface::getValue,
GetValueRequest(
span.context, key, ver, cx->sampleReadTags() ? tags : Optional<TagSet>(), getValueID),
TaskPriority::DefaultPromiseEndpoint,
false,
cx->enableLocalityLoadBalance ? &cx->queueModel : nullptr))) {
reply = _reply;
}
}
++cx->transactionPhysicalReadsCompleted;
} catch (Error&) {
++cx->transactionPhysicalReadsCompleted;
throw;
}
double latency = now() - startTimeD;
cx->readLatencies.addSample(latency);
if (trLogInfo) {
int valueSize = reply.value.present() ? reply.value.get().size() : 0;
trLogInfo->addLog(
FdbClientLogEvents::EventGet(startTimeD, cx->clientLocality.dcId(), latency, valueSize, key));
}
cx->getValueCompleted->latency = timer_int() - startTime;
cx->getValueCompleted->log();
if (info.debugID.present()) {
g_traceBatch.addEvent("GetValueDebug",
getValueID.get().first(),
"NativeAPI.getValue.After"); //.detail("TaskID", g_network->getCurrentTask());
/*TraceEvent("TransactionDebugGetValueDone", getValueID.get())
.detail("Key", key)
.detail("ReqVersion", ver)
.detail("ReplySize", reply.value.present() ? reply.value.get().size() : -1);*/
}
cx->transactionBytesRead += reply.value.present() ? reply.value.get().size() : 0;
++cx->transactionKeysRead;
return reply.value;
} catch (Error& e) {
cx->getValueCompleted->latency = timer_int() - startTime;
cx->getValueCompleted->log();
if (info.debugID.present()) {
g_traceBatch.addEvent("GetValueDebug",
getValueID.get().first(),
"NativeAPI.getValue.Error"); //.detail("TaskID", g_network->getCurrentTask());
/*TraceEvent("TransactionDebugGetValueDone", getValueID.get())
.detail("Key", key)
.detail("ReqVersion", ver)
.detail("ReplySize", reply.value.present() ? reply.value.get().size() : -1);*/
}
if (e.code() == error_code_wrong_shard_server || e.code() == error_code_all_alternatives_failed ||
(e.code() == error_code_transaction_too_old && ver == latestVersion)) {
cx->invalidateCache(key);
wait(delay(CLIENT_KNOBS->WRONG_SHARD_SERVER_DELAY, info.taskID));
} else {
if (trLogInfo)
trLogInfo->addLog(FdbClientLogEvents::EventGetError(
startTimeD, cx->clientLocality.dcId(), static_cast<int>(e.code()), key));
throw e;
}
}
}
}
ACTOR Future<Key> getKey(Database cx, KeySelector k, Future<Version> version, TransactionInfo info, TagSet tags) {
wait(success(version));
state Optional<UID> getKeyID = Optional<UID>();
state Span span("NAPI:getKey"_loc, info.spanID);
if (info.debugID.present()) {
getKeyID = nondeterministicRandom()->randomUniqueID();
g_traceBatch.addAttach("GetKeyAttachID", info.debugID.get().first(), getKeyID.get().first());
g_traceBatch.addEvent(
"GetKeyDebug",
getKeyID.get().first(),
"NativeAPI.getKey.AfterVersion"); //.detail("StartKey",
// k.getKey()).detail("Offset",k.offset).detail("OrEqual",k.orEqual);
}
loop {
if (k.getKey() == allKeys.end) {
if (k.offset > 0)
return allKeys.end;
k.orEqual = false;
} else if (k.getKey() == allKeys.begin && k.offset <= 0) {
return Key();
}
Key locationKey(k.getKey(), k.arena());
state pair<KeyRange, Reference<LocationInfo>> ssi =
wait(getKeyLocation(cx, locationKey, &StorageServerInterface::getKey, info, k.isBackward()));
try {
if (info.debugID.present())
g_traceBatch.addEvent(
"GetKeyDebug",
getKeyID.get().first(),
"NativeAPI.getKey.Before"); //.detail("StartKey",
// k.getKey()).detail("Offset",k.offset).detail("OrEqual",k.orEqual);
++cx->transactionPhysicalReads;
state GetKeyReply reply;
try {
choose {
when(wait(cx->connectionFileChanged())) { throw transaction_too_old(); }
when(GetKeyReply _reply =
wait(loadBalance(cx.getPtr(),
ssi.second,
&StorageServerInterface::getKey,
GetKeyRequest(span.context,
k,
version.get(),
cx->sampleReadTags() ? tags : Optional<TagSet>(),
getKeyID),
TaskPriority::DefaultPromiseEndpoint,
false,
cx->enableLocalityLoadBalance ? &cx->queueModel : nullptr))) {
reply = _reply;
}
}
++cx->transactionPhysicalReadsCompleted;
} catch (Error&) {
++cx->transactionPhysicalReadsCompleted;
throw;
}
if (info.debugID.present())
g_traceBatch.addEvent("GetKeyDebug",
getKeyID.get().first(),
"NativeAPI.getKey.After"); //.detail("NextKey",reply.sel.key).detail("Offset",
// reply.sel.offset).detail("OrEqual", k.orEqual);
k = reply.sel;
if (!k.offset && k.orEqual) {
return k.getKey();
}
} catch (Error& e) {
if (info.debugID.present())
g_traceBatch.addEvent("GetKeyDebug", getKeyID.get().first(), "NativeAPI.getKey.Error");
if (e.code() == error_code_wrong_shard_server || e.code() == error_code_all_alternatives_failed) {
cx->invalidateCache(k.getKey(), k.isBackward());
wait(delay(CLIENT_KNOBS->WRONG_SHARD_SERVER_DELAY, info.taskID));
} else {
TraceEvent(SevInfo, "GetKeyError").error(e).detail("AtKey", k.getKey()).detail("Offset", k.offset);
throw e;
}
}
}
}
ACTOR Future<Version> waitForCommittedVersion(Database cx, Version version, SpanID spanContext) {
state Span span("NAPI:waitForCommittedVersion"_loc, { spanContext });
try {
loop {
choose {
when(wait(cx->onProxiesChanged())) {}
when(GetReadVersionReply v =
wait(basicLoadBalance(cx->getGrvProxies(false),
&GrvProxyInterface::getConsistentReadVersion,
GetReadVersionRequest(span.context, 0, TransactionPriority::IMMEDIATE),
cx->taskID))) {
cx->minAcceptableReadVersion = std::min(cx->minAcceptableReadVersion, v.version);
if (v.midShardSize > 0)
cx->smoothMidShardSize.setTotal(v.midShardSize);
if (v.version >= version)
return v.version;
// SOMEDAY: Do the wait on the server side, possibly use less expensive source of committed version
// (causal consistency is not needed for this purpose)
wait(delay(CLIENT_KNOBS->FUTURE_VERSION_RETRY_DELAY, cx->taskID));
}
}
}
} catch (Error& e) {
TraceEvent(SevError, "WaitForCommittedVersionError").error(e);
throw;
}
}
ACTOR Future<Version> getRawVersion(Database cx, SpanID spanContext) {
state Span span("NAPI:getRawVersion"_loc, { spanContext });
loop {
choose {
when(wait(cx->onProxiesChanged())) {}
when(GetReadVersionReply v =
wait(basicLoadBalance(cx->getGrvProxies(false),
&GrvProxyInterface::getConsistentReadVersion,
GetReadVersionRequest(spanContext, 0, TransactionPriority::IMMEDIATE),
cx->taskID))) {
return v.version;
}
}
}
}
ACTOR Future<Void> readVersionBatcher(
DatabaseContext* cx,
FutureStream<std::pair<Promise<GetReadVersionReply>, Optional<UID>>> versionStream,
uint32_t flags);
ACTOR Future<Version> watchValue(Future<Version> version,
Key key,
Optional<Value> value,
Database cx,
TransactionInfo info,
TagSet tags) {
state Version ver = wait(version);
state Span span("NAPI:watchValue"_loc, info.spanID);
cx->validateVersion(ver);
ASSERT(ver != latestVersion);
loop {
state pair<KeyRange, Reference<LocationInfo>> ssi =
wait(getKeyLocation(cx, key, &StorageServerInterface::watchValue, info));
try {
state Optional<UID> watchValueID = Optional<UID>();
if (info.debugID.present()) {
watchValueID = nondeterministicRandom()->randomUniqueID();
g_traceBatch.addAttach("WatchValueAttachID", info.debugID.get().first(), watchValueID.get().first());
g_traceBatch.addEvent("WatchValueDebug",
watchValueID.get().first(),
"NativeAPI.watchValue.Before"); //.detail("TaskID", g_network->getCurrentTask());
}
state WatchValueReply resp;
choose {
when(WatchValueReply r =
wait(loadBalance(cx.getPtr(),
ssi.second,
&StorageServerInterface::watchValue,
WatchValueRequest(span.context,
key,
value,
ver,
cx->sampleReadTags() ? tags : Optional<TagSet>(),
watchValueID),
TaskPriority::DefaultPromiseEndpoint))) {
resp = r;
}
when(wait(cx->connectionFile ? cx->connectionFile->onChange() : Never())) { wait(Never()); }
}
if (info.debugID.present()) {
g_traceBatch.addEvent("WatchValueDebug",
watchValueID.get().first(),
"NativeAPI.watchValue.After"); //.detail("TaskID", g_network->getCurrentTask());
}
// FIXME: wait for known committed version on the storage server before replying,
// cannot do this until the storage server is notified on knownCommittedVersion changes from tlog (faster
// than the current update loop)
Version v = wait(waitForCommittedVersion(cx, resp.version, span.context));
//TraceEvent("WatcherCommitted").detail("CommittedVersion", v).detail("WatchVersion", resp.version).detail("Key", key ).detail("Value", value);
// False if there is a master failure between getting the response and getting the committed version,
// Dependent on SERVER_KNOBS->MAX_VERSIONS_IN_FLIGHT
if (v - resp.version < 50000000) {
return resp.version;
}
ver = v;
} catch (Error& e) {
if (e.code() == error_code_wrong_shard_server || e.code() == error_code_all_alternatives_failed) {
cx->invalidateCache(key);
wait(delay(CLIENT_KNOBS->WRONG_SHARD_SERVER_DELAY, info.taskID));
} else if (e.code() == error_code_watch_cancelled || e.code() == error_code_process_behind) {
TEST(e.code() == error_code_watch_cancelled); // Too many watches on storage server, poll for changes
TEST(e.code() == error_code_process_behind); // The storage servers are all behind
wait(delay(CLIENT_KNOBS->WATCH_POLLING_TIME, info.taskID));
} else if (e.code() == error_code_timed_out) { // The storage server occasionally times out watches in case
// it was cancelled
TEST(true); // A watch timed out
wait(delay(CLIENT_KNOBS->FUTURE_VERSION_RETRY_DELAY, info.taskID));
} else {
state Error err = e;
wait(delay(CLIENT_KNOBS->FUTURE_VERSION_RETRY_DELAY, info.taskID));
throw err;
}
}
}
}
ACTOR Future<Void> watchStorageServerResp(KeyRef key, Database cx) {
loop {
try {
state Reference<WatchMetadata> metadata = cx->getWatchMetadata(key);
if (!metadata.isValid())
return Void();
Version watchVersion = wait(watchValue(Future<Version>(metadata->version),
metadata->key,
metadata->value,
cx,
metadata->info,
metadata->tags));
metadata = cx->getWatchMetadata(key);
if (!metadata.isValid())
return Void();
if (watchVersion >= metadata->version) { // case 1: version_1 (SS) >= version_2 (map)
cx->deleteWatchMetadata(key);
if (metadata->watchPromise.canBeSet())
metadata->watchPromise.send(watchVersion);
} else { // ABA happens
TEST(true); // ABA issue where the version returned from the server is less than the version in the map
if (metadata->watchPromise.getFutureReferenceCount() ==
1) { // case 2: version_1 < version_2 and future_count == 1
cx->deleteWatchMetadata(key);
}
}
} catch (Error& e) {
if (e.code() == error_code_operation_cancelled) {
throw e;
}
Reference<WatchMetadata> metadata = cx->getWatchMetadata(key);
if (!metadata.isValid()) {
return Void();
} else if (metadata->watchPromise.getFutureReferenceCount() == 1) {
cx->deleteWatchMetadata(key);
return Void();
} else if (e.code() == error_code_future_version) {
continue;
}
cx->deleteWatchMetadata(key);
metadata->watchPromise.sendError(e);
throw e;
}
}
}
ACTOR Future<Void> sameVersionDiffValue(Version ver,
Key key,
Optional<Value> value,
Database cx,
TransactionInfo info,
TagSet tags) {
state ReadYourWritesTransaction tr(cx);
loop {
try {
tr.setOption(FDBTransactionOptions::READ_SYSTEM_KEYS);
state Optional<Value> valSS = wait(tr.get(key));
Reference<WatchMetadata> metadata = cx->getWatchMetadata(key.contents());
if (metadata.isValid() &&
valSS != metadata->value) { // val_3 != val_1 (storage server value doesnt match value in map)
cx->deleteWatchMetadata(key.contents());
metadata->watchPromise.send(ver);
metadata->watchFutureSS.cancel();
}
if (valSS ==
value) { // val_3 == val_2 (storage server value matches value passed into the function -> new watch)
metadata = makeReference<WatchMetadata>(key, value, ver, info, tags);
KeyRef keyRef = cx->setWatchMetadata(metadata);
metadata->watchFutureSS = watchStorageServerResp(keyRef, cx);
}
if (valSS != value)
return Void(); // if val_3 != val_2
wait(success(metadata->watchPromise.getFuture())); // val_3 == val_2
return Void();
} catch (Error& e) {
wait(tr.onError(e));
}
}
}
Future<Void> getWatchFuture(Version ver,
Key key,
Optional<Value> value,
Database cx,
TransactionInfo info,
TagSet tags) {
Reference<WatchMetadata> metadata = cx->getWatchMetadata(key.contents());
if (!metadata.isValid()) { // case 1: key not in map
metadata = makeReference<WatchMetadata>(key, value, ver, info, tags);
KeyRef keyRef = cx->setWatchMetadata(metadata);
metadata->watchFutureSS = watchStorageServerResp(keyRef, cx);
return success(metadata->watchPromise.getFuture());
} else if (metadata->value == value) { // case 2: val_1 == val_2 (received watch with same value as key already in
// the map so just update)
if (ver > metadata->version) {
metadata->version = ver;
metadata->info = info;
metadata->tags = tags;
}
return success(metadata->watchPromise.getFuture());
} else if (ver > metadata->version) { // case 3: val_1 != val_2 && version_2 > version_1 (recived watch with
// different value and a higher version so recreate in SS)
TEST(true); // Setting a watch that has a different value than the one in the map but a higher version (newer)
cx->deleteWatchMetadata(key.contents());
metadata->watchPromise.send(ver);
metadata->watchFutureSS.cancel();
metadata = makeReference<WatchMetadata>(key, value, ver, info, tags);
KeyRef keyRef = cx->setWatchMetadata(metadata);
metadata->watchFutureSS = watchStorageServerResp(keyRef, cx);
return success(metadata->watchPromise.getFuture());
} else if (metadata->version == ver) { // case 5: val_1 != val_2 && version_1 == version_2 (recived watch with
// different value but same version)
TEST(true); // Setting a watch which has a different value than the one in the map but the same version
return sameVersionDiffValue(ver, key, value, cx, info, tags);
}
TEST(true); // Setting a watch which has a different value than the one in the map but a lower version (older)
// case 4: val_1 != val_2 && version_2 < version_1
return Void();
}
ACTOR Future<Void> watchValueMap(Future<Version> version,
Key key,
Optional<Value> value,
Database cx,
TransactionInfo info,
TagSet tags) {
state Version ver = wait(version);
wait(getWatchFuture(ver, key, value, cx, info, tags));
return Void();
}
void transformRangeLimits(GetRangeLimits limits, bool reverse, GetKeyValuesRequest& req) {
if (limits.bytes != 0) {
if (!limits.hasRowLimit())
req.limit = CLIENT_KNOBS->REPLY_BYTE_LIMIT; // Can't get more than this many rows anyway
else
req.limit = std::min(CLIENT_KNOBS->REPLY_BYTE_LIMIT, limits.rows);
if (reverse)
req.limit *= -1;
if (!limits.hasByteLimit())
req.limitBytes = CLIENT_KNOBS->REPLY_BYTE_LIMIT;
else
req.limitBytes = std::min(CLIENT_KNOBS->REPLY_BYTE_LIMIT, limits.bytes);
} else {
req.limitBytes = CLIENT_KNOBS->REPLY_BYTE_LIMIT;
req.limit = reverse ? -limits.minRows : limits.minRows;
}
}
ACTOR Future<Standalone<RangeResultRef>> getExactRange(Database cx,
Version version,
KeyRange keys,
GetRangeLimits limits,
bool reverse,
TransactionInfo info,
TagSet tags) {
state Standalone<RangeResultRef> output;
state Span span("NAPI:getExactRange"_loc, info.spanID);
// printf("getExactRange( '%s', '%s' )\n", keys.begin.toString().c_str(), keys.end.toString().c_str());
loop {
state vector<pair<KeyRange, Reference<LocationInfo>>> locations = wait(getKeyRangeLocations(
cx, keys, CLIENT_KNOBS->GET_RANGE_SHARD_LIMIT, reverse, &StorageServerInterface::getKeyValues, info));
ASSERT(locations.size());
state int shard = 0;
loop {
const KeyRangeRef& range = locations[shard].first;
GetKeyValuesRequest req;
req.version = version;
req.begin = firstGreaterOrEqual(range.begin);
req.end = firstGreaterOrEqual(range.end);
req.spanContext = span.context;
transformRangeLimits(limits, reverse, req);
ASSERT(req.limitBytes > 0 && req.limit != 0 && req.limit < 0 == reverse);
// FIXME: buggify byte limits on internal functions that use them, instead of globally
req.tags = cx->sampleReadTags() ? tags : Optional<TagSet>();
req.debugID = info.debugID;
try {
if (info.debugID.present()) {
g_traceBatch.addEvent(
"TransactionDebug", info.debugID.get().first(), "NativeAPI.getExactRange.Before");
/*TraceEvent("TransactionDebugGetExactRangeInfo", info.debugID.get())
.detail("ReqBeginKey", req.begin.getKey())
.detail("ReqEndKey", req.end.getKey())
.detail("ReqLimit", req.limit)
.detail("ReqLimitBytes", req.limitBytes)
.detail("ReqVersion", req.version)
.detail("Reverse", reverse)
.detail("Servers", locations[shard].second->description());*/
}
++cx->transactionPhysicalReads;
state GetKeyValuesReply rep;
try {
choose {
when(wait(cx->connectionFileChanged())) { throw transaction_too_old(); }
when(GetKeyValuesReply _rep =
wait(loadBalance(cx.getPtr(),
locations[shard].second,
&StorageServerInterface::getKeyValues,
req,
TaskPriority::DefaultPromiseEndpoint,
false,
cx->enableLocalityLoadBalance ? &cx->queueModel : nullptr))) {
rep = _rep;
}
}
++cx->transactionPhysicalReadsCompleted;
} catch (Error&) {
++cx->transactionPhysicalReadsCompleted;
throw;
}
if (info.debugID.present())
g_traceBatch.addEvent(
"TransactionDebug", info.debugID.get().first(), "NativeAPI.getExactRange.After");
output.arena().dependsOn(rep.arena);
output.append(output.arena(), rep.data.begin(), rep.data.size());
if (limits.hasRowLimit() && rep.data.size() > limits.rows) {
TraceEvent(SevError, "GetExactRangeTooManyRows")
.detail("RowLimit", limits.rows)
.detail("DeliveredRows", output.size());
ASSERT(false);
}
limits.decrement(rep.data);
if (limits.isReached()) {
output.more = true;
return output;
}
bool more = rep.more;
// If the reply says there is more but we know that we finished the shard, then fix rep.more
if (reverse && more && rep.data.size() > 0 &&
output[output.size() - 1].key == locations[shard].first.begin)
more = false;
if (more) {
if (!rep.data.size()) {
TraceEvent(SevError, "GetExactRangeError")
.detail("Reason", "More data indicated but no rows present")
.detail("LimitBytes", limits.bytes)
.detail("LimitRows", limits.rows)
.detail("OutputSize", output.size())
.detail("OutputBytes", output.expectedSize())
.detail("BlockSize", rep.data.size())
.detail("BlockBytes", rep.data.expectedSize());
ASSERT(false);
}
TEST(true); // GetKeyValuesReply.more in getExactRange
// Make next request to the same shard with a beginning key just after the last key returned
if (reverse)
locations[shard].first =
KeyRangeRef(locations[shard].first.begin, output[output.size() - 1].key);
else
locations[shard].first =
KeyRangeRef(keyAfter(output[output.size() - 1].key), locations[shard].first.end);
}
if (!more || locations[shard].first.empty()) {
TEST(true); // getExactrange (!more || locations[shard].first.empty())
if (shard == locations.size() - 1) {
const KeyRangeRef& range = locations[shard].first;
KeyRef begin = reverse ? keys.begin : range.end;
KeyRef end = reverse ? range.begin : keys.end;
if (begin >= end) {
output.more = false;
return output;
}
TEST(true); // Multiple requests of key locations
keys = KeyRangeRef(begin, end);
break;
}
++shard;
}
// Soft byte limit - return results early if the user specified a byte limit and we got results
// This can prevent problems where the desired range spans many shards and would be too slow to
// fetch entirely.
if (limits.hasSatisfiedMinRows() && output.size() > 0) {
output.more = true;
return output;
}
} catch (Error& e) {
if (e.code() == error_code_wrong_shard_server || e.code() == error_code_all_alternatives_failed) {
const KeyRangeRef& range = locations[shard].first;
if (reverse)
keys = KeyRangeRef(keys.begin, range.end);
else
keys = KeyRangeRef(range.begin, keys.end);
cx->invalidateCache(keys);
wait(delay(CLIENT_KNOBS->WRONG_SHARD_SERVER_DELAY, info.taskID));
break;
} else {
TraceEvent(SevInfo, "GetExactRangeError")
.error(e)
.detail("ShardBegin", locations[shard].first.begin)
.detail("ShardEnd", locations[shard].first.end);
throw;
}
}
}
}
}
Future<Key> resolveKey(Database const& cx,
KeySelector const& key,
Version const& version,
TransactionInfo const& info,
TagSet const& tags) {
if (key.isFirstGreaterOrEqual())
return Future<Key>(key.getKey());
if (key.isFirstGreaterThan())
return Future<Key>(keyAfter(key.getKey()));
return getKey(cx, key, version, info, tags);
}
ACTOR Future<Standalone<RangeResultRef>> getRangeFallback(Database cx,
Version version,
KeySelector begin,
KeySelector end,
GetRangeLimits limits,
bool reverse,
TransactionInfo info,
TagSet tags) {
if (version == latestVersion) {
state Transaction transaction(cx);
transaction.setOption(FDBTransactionOptions::CAUSAL_READ_RISKY);
transaction.setOption(FDBTransactionOptions::LOCK_AWARE);
transaction.setOption(FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE);
Version ver = wait(transaction.getReadVersion());
version = ver;
}
Future<Key> fb = resolveKey(cx, begin, version, info, tags);
state Future<Key> fe = resolveKey(cx, end, version, info, tags);
state Key b = wait(fb);
state Key e = wait(fe);
if (b >= e) {
return Standalone<RangeResultRef>();
}
// if e is allKeys.end, we have read through the end of the database
// if b is allKeys.begin, we have either read through the beginning of the database,
// or allKeys.begin exists in the database and will be part of the conflict range anyways
Standalone<RangeResultRef> _r = wait(getExactRange(cx, version, KeyRangeRef(b, e), limits, reverse, info, tags));
Standalone<RangeResultRef> r = _r;
if (b == allKeys.begin && ((reverse && !r.more) || !reverse))
r.readToBegin = true;
if (e == allKeys.end && ((!reverse && !r.more) || reverse))
r.readThroughEnd = true;
ASSERT(!limits.hasRowLimit() || r.size() <= limits.rows);
// If we were limiting bytes and the returned range is twice the request (plus 10K) log a warning
if (limits.hasByteLimit() &&
r.expectedSize() >
size_t(limits.bytes + CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT + CLIENT_KNOBS->VALUE_SIZE_LIMIT + 1) &&
limits.minRows == 0) {
TraceEvent(SevWarnAlways, "GetRangeFallbackTooMuchData")
.detail("LimitBytes", limits.bytes)
.detail("DeliveredBytes", r.expectedSize())
.detail("LimitRows", limits.rows)
.detail("DeliveredRows", r.size());
}
return r;
}
void getRangeFinished(Database cx,
Reference<TransactionLogInfo> trLogInfo,
double startTime,
KeySelector begin,
KeySelector end,
bool snapshot,
Promise<std::pair<Key, Key>> conflictRange,
bool reverse,
Standalone<RangeResultRef> result) {
int64_t bytes = 0;
for (const KeyValueRef& kv : result) {
bytes += kv.key.size() + kv.value.size();
}
cx->transactionBytesRead += bytes;
cx->transactionKeysRead += result.size();
if (trLogInfo) {
trLogInfo->addLog(FdbClientLogEvents::EventGetRange(
startTime, cx->clientLocality.dcId(), now() - startTime, bytes, begin.getKey(), end.getKey()));
}
if (!snapshot) {
Key rangeBegin;
Key rangeEnd;
if (result.readToBegin) {
rangeBegin = allKeys.begin;
} else if (((!reverse || !result.more || begin.offset > 1) && begin.offset > 0) || result.size() == 0) {
rangeBegin = Key(begin.getKey(), begin.arena());
} else {
rangeBegin = reverse ? result.end()[-1].key : result[0].key;
}
if (end.offset > begin.offset && end.getKey() < rangeBegin) {
rangeBegin = Key(end.getKey(), end.arena());
}
if (result.readThroughEnd) {
rangeEnd = allKeys.end;
} else if (((reverse || !result.more || end.offset <= 0) && end.offset <= 1) || result.size() == 0) {
rangeEnd = Key(end.getKey(), end.arena());
} else {
rangeEnd = keyAfter(reverse ? result[0].key : result.end()[-1].key);
}
if (begin.offset < end.offset && begin.getKey() > rangeEnd) {
rangeEnd = Key(begin.getKey(), begin.arena());
}
conflictRange.send(std::make_pair(rangeBegin, rangeEnd));
}
}
ACTOR Future<Standalone<RangeResultRef>> getRange(Database cx,
Reference<TransactionLogInfo> trLogInfo,
Future<Version> fVersion,
KeySelector begin,
KeySelector end,
GetRangeLimits limits,
Promise<std::pair<Key, Key>> conflictRange,
bool snapshot,
bool reverse,
TransactionInfo info,
TagSet tags) {
state GetRangeLimits originalLimits(limits);
state KeySelector originalBegin = begin;
state KeySelector originalEnd = end;
state Standalone<RangeResultRef> output;
state Span span("NAPI:getRange"_loc, info.spanID);
try {
state Version version = wait(fVersion);
cx->validateVersion(version);
state double startTime = now();
state Version readVersion = version; // Needed for latestVersion requests; if more, make future requests at the
// version that the first one completed
// FIXME: Is this really right? Weaken this and see if there is a problem;
// if so maybe there is a much subtler problem even with this.
if (begin.getKey() == allKeys.begin && begin.offset < 1) {
output.readToBegin = true;
begin = KeySelector(firstGreaterOrEqual(begin.getKey()), begin.arena());
}
ASSERT(!limits.isReached());
ASSERT((!limits.hasRowLimit() || limits.rows >= limits.minRows) && limits.minRows >= 0);
loop {
if (end.getKey() == allKeys.begin && (end.offset < 1 || end.isFirstGreaterOrEqual())) {
getRangeFinished(
cx, trLogInfo, startTime, originalBegin, originalEnd, snapshot, conflictRange, reverse, output);
return output;
}
Key locationKey = reverse ? Key(end.getKey(), end.arena()) : Key(begin.getKey(), begin.arena());
bool locationBackward = reverse ? (end - 1).isBackward() : begin.isBackward();
state pair<KeyRange, Reference<LocationInfo>> beginServer =
wait(getKeyLocation(cx, locationKey, &StorageServerInterface::getKeyValues, info, locationBackward));
state KeyRange shard = beginServer.first;
state bool modifiedSelectors = false;
state GetKeyValuesRequest req;
req.isFetchKeys = (info.taskID == TaskPriority::FetchKeys);
req.version = readVersion;
if (reverse && (begin - 1).isDefinitelyLess(shard.begin) &&
(!begin.isFirstGreaterOrEqual() ||
begin.getKey() != shard.begin)) { // In this case we would be setting modifiedSelectors to true, but
// not modifying anything
req.begin = firstGreaterOrEqual(shard.begin);
modifiedSelectors = true;
} else
req.begin = begin;
if (!reverse && end.isDefinitelyGreater(shard.end)) {
req.end = firstGreaterOrEqual(shard.end);
modifiedSelectors = true;
} else
req.end = end;
transformRangeLimits(limits, reverse, req);
ASSERT(req.limitBytes > 0 && req.limit != 0 && req.limit < 0 == reverse);
req.tags = cx->sampleReadTags() ? tags : Optional<TagSet>();
req.debugID = info.debugID;
req.spanContext = span.context;
try {
if (info.debugID.present()) {
g_traceBatch.addEvent("TransactionDebug", info.debugID.get().first(), "NativeAPI.getRange.Before");
/*TraceEvent("TransactionDebugGetRangeInfo", info.debugID.get())
.detail("ReqBeginKey", req.begin.getKey())
.detail("ReqEndKey", req.end.getKey())
.detail("OriginalBegin", originalBegin.toString())
.detail("OriginalEnd", originalEnd.toString())
.detail("Begin", begin.toString())
.detail("End", end.toString())
.detail("Shard", shard)
.detail("ReqLimit", req.limit)
.detail("ReqLimitBytes", req.limitBytes)
.detail("ReqVersion", req.version)
.detail("Reverse", reverse)
.detail("ModifiedSelectors", modifiedSelectors)
.detail("Servers", beginServer.second->description());*/
}
++cx->transactionPhysicalReads;
state GetKeyValuesReply rep;
try {
if (CLIENT_BUGGIFY) {
throw deterministicRandom()->randomChoice(
std::vector<Error>{ transaction_too_old(), future_version() });
}
GetKeyValuesReply _rep =
wait(loadBalance(cx.getPtr(),
beginServer.second,
&StorageServerInterface::getKeyValues,
req,
TaskPriority::DefaultPromiseEndpoint,
false,
cx->enableLocalityLoadBalance ? &cx->queueModel : nullptr));
rep = _rep;
++cx->transactionPhysicalReadsCompleted;
} catch (Error&) {
++cx->transactionPhysicalReadsCompleted;
throw;
}
if (info.debugID.present()) {
g_traceBatch.addEvent("TransactionDebug",
info.debugID.get().first(),
"NativeAPI.getRange.After"); //.detail("SizeOf", rep.data.size());
/*TraceEvent("TransactionDebugGetRangeDone", info.debugID.get())
.detail("ReqBeginKey", req.begin.getKey())
.detail("ReqEndKey", req.end.getKey())
.detail("RepIsMore", rep.more)
.detail("VersionReturned", rep.version)
.detail("RowsReturned", rep.data.size());*/
}
ASSERT(!rep.more || rep.data.size());
ASSERT(!limits.hasRowLimit() || rep.data.size() <= limits.rows);
limits.decrement(rep.data);
if (reverse && begin.isLastLessOrEqual() && rep.data.size() &&
rep.data.end()[-1].key == begin.getKey()) {
modifiedSelectors = false;
}
bool finished = limits.isReached() || (!modifiedSelectors && !rep.more) || limits.hasSatisfiedMinRows();
bool readThrough = modifiedSelectors && !rep.more;
// optimization: first request got all data--just return it
if (finished && !output.size()) {
bool readToBegin = output.readToBegin;
bool readThroughEnd = output.readThroughEnd;
output = Standalone<RangeResultRef>(
RangeResultRef(rep.data, modifiedSelectors || limits.isReached() || rep.more), rep.arena);
output.readToBegin = readToBegin;
output.readThroughEnd = readThroughEnd;
if (BUGGIFY && limits.hasByteLimit() && output.size() > std::max(1, originalLimits.minRows)) {
output.more = true;
output.resize(
output.arena(),
deterministicRandom()->randomInt(std::max(1, originalLimits.minRows), output.size()));
getRangeFinished(cx,
trLogInfo,
startTime,
originalBegin,
originalEnd,
snapshot,
conflictRange,
reverse,
output);
return output;
}
if (readThrough) {
output.arena().dependsOn(shard.arena());
output.readThrough = reverse ? shard.begin : shard.end;
}
getRangeFinished(
cx, trLogInfo, startTime, originalBegin, originalEnd, snapshot, conflictRange, reverse, output);
return output;
}
output.arena().dependsOn(rep.arena);
output.append(output.arena(), rep.data.begin(), rep.data.size());
if (finished) {
if (readThrough) {
output.arena().dependsOn(shard.arena());
output.readThrough = reverse ? shard.begin : shard.end;
}
output.more = modifiedSelectors || limits.isReached() || rep.more;
getRangeFinished(
cx, trLogInfo, startTime, originalBegin, originalEnd, snapshot, conflictRange, reverse, output);
return output;
}
readVersion = rep.version; // see above comment
if (!rep.more) {
ASSERT(modifiedSelectors);
TEST(true); // !GetKeyValuesReply.more and modifiedSelectors in getRange
if (!rep.data.size()) {
Standalone<RangeResultRef> result = wait(getRangeFallback(
cx, version, originalBegin, originalEnd, originalLimits, reverse, info, tags));
getRangeFinished(cx,
trLogInfo,
startTime,
originalBegin,
originalEnd,
snapshot,
conflictRange,
reverse,
result);
return result;
}
if (reverse)
end = firstGreaterOrEqual(shard.begin);
else
begin = firstGreaterOrEqual(shard.end);
} else {
TEST(true); // GetKeyValuesReply.more in getRange
if (reverse)
end = firstGreaterOrEqual(output[output.size() - 1].key);
else
begin = firstGreaterThan(output[output.size() - 1].key);
}
} catch (Error& e) {
if (info.debugID.present()) {
g_traceBatch.addEvent("TransactionDebug", info.debugID.get().first(), "NativeAPI.getRange.Error");
TraceEvent("TransactionDebugError", info.debugID.get()).error(e);
}
if (e.code() == error_code_wrong_shard_server || e.code() == error_code_all_alternatives_failed ||
(e.code() == error_code_transaction_too_old && readVersion == latestVersion)) {
cx->invalidateCache(reverse ? end.getKey() : begin.getKey(),
reverse ? (end - 1).isBackward() : begin.isBackward());
if (e.code() == error_code_wrong_shard_server) {
Standalone<RangeResultRef> result = wait(getRangeFallback(
cx, version, originalBegin, originalEnd, originalLimits, reverse, info, tags));
getRangeFinished(cx,
trLogInfo,
startTime,
originalBegin,
originalEnd,
snapshot,
conflictRange,
reverse,
result);
return result;
}
wait(delay(CLIENT_KNOBS->WRONG_SHARD_SERVER_DELAY, info.taskID));
} else {
if (trLogInfo)
trLogInfo->addLog(FdbClientLogEvents::EventGetRangeError(startTime,
cx->clientLocality.dcId(),
static_cast<int>(e.code()),
begin.getKey(),
end.getKey()));
throw e;
}
}
}
} catch (Error& e) {
if (conflictRange.canBeSet()) {
conflictRange.send(std::make_pair(Key(), Key()));
}
throw;
}
}
Future<Standalone<RangeResultRef>> getRange(Database const& cx,
Future<Version> const& fVersion,
KeySelector const& begin,
KeySelector const& end,
GetRangeLimits const& limits,
bool const& reverse,
TransactionInfo const& info,
TagSet const& tags) {
return getRange(cx,
Reference<TransactionLogInfo>(),
fVersion,
begin,
end,
limits,
Promise<std::pair<Key, Key>>(),
true,
reverse,
info,
tags);
}
bool DatabaseContext::debugUseTags = false;
const std::vector<std::string> DatabaseContext::debugTransactionTagChoices = { "a", "b", "c", "d", "e", "f", "g",
"h", "i", "j", "k", "l", "m", "n",
"o", "p", "q", "r", "s", "t" };
void debugAddTags(Transaction* tr) {
int numTags = deterministicRandom()->randomInt(0, CLIENT_KNOBS->MAX_TAGS_PER_TRANSACTION + 1);
for (int i = 0; i < numTags; ++i) {
TransactionTag tag;
if (deterministicRandom()->random01() < 0.7) {
tag = TransactionTagRef(deterministicRandom()->randomChoice(DatabaseContext::debugTransactionTagChoices));
} else {
int length = deterministicRandom()->randomInt(1, CLIENT_KNOBS->MAX_TRANSACTION_TAG_LENGTH + 1);
uint8_t* s = new (tag.arena()) uint8_t[length];
for (int j = 0; j < length; ++j) {
s[j] = (uint8_t)deterministicRandom()->randomInt(0, 256);
}
tag.contents() = TransactionTagRef(s, length);
}
if (deterministicRandom()->coinflip()) {
tr->options.readTags.addTag(tag);
}
tr->options.tags.addTag(tag);
}
}
SpanID generateSpanID(int transactionTracingEnabled) {
uint64_t tid = deterministicRandom()->randomUInt64();
if (transactionTracingEnabled > 0) {
return SpanID(tid, deterministicRandom()->randomUInt64());
} else {
return SpanID(tid, 0);
}
}
Transaction::Transaction()
: info(TaskPriority::DefaultEndpoint, generateSpanID(true)), span(info.spanID, "Transaction"_loc) {}
Transaction::Transaction(Database const& cx)
: cx(cx), info(cx->taskID, generateSpanID(cx->transactionTracingEnabled)), backoff(CLIENT_KNOBS->DEFAULT_BACKOFF),
committedVersion(invalidVersion), versionstampPromise(Promise<Standalone<StringRef>>()), options(cx), numErrors(0),
trLogInfo(createTrLogInfoProbabilistically(cx)), tr(info.spanID), span(info.spanID, "Transaction"_loc) {
if (DatabaseContext::debugUseTags) {
debugAddTags(this);
}
}
Transaction::~Transaction() {
flushTrLogsIfEnabled();
cancelWatches();
}
void Transaction::operator=(Transaction&& r) noexcept {
flushTrLogsIfEnabled();
cx = std::move(r.cx);
tr = std::move(r.tr);
readVersion = std::move(r.readVersion);
metadataVersion = std::move(r.metadataVersion);
extraConflictRanges = std::move(r.extraConflictRanges);
commitResult = std::move(r.commitResult);
committing = std::move(r.committing);
options = std::move(r.options);
info = r.info;
backoff = r.backoff;
numErrors = r.numErrors;
committedVersion = r.committedVersion;
versionstampPromise = std::move(r.versionstampPromise);
watches = r.watches;
trLogInfo = std::move(r.trLogInfo);
}
void Transaction::flushTrLogsIfEnabled() {
if (trLogInfo && trLogInfo->logsAdded && trLogInfo->trLogWriter.getData()) {
ASSERT(trLogInfo->flushed == false);
cx->clientStatusUpdater.inStatusQ.push_back({ trLogInfo->identifier, std::move(trLogInfo->trLogWriter) });
trLogInfo->flushed = true;
}
}
void Transaction::setVersion(Version v) {
startTime = now();
if (readVersion.isValid())
throw read_version_already_set();
if (v <= 0)
throw version_invalid();
readVersion = v;
}
Future<Optional<Value>> Transaction::get(const Key& key, bool snapshot) {
++cx->transactionLogicalReads;
++cx->transactionGetValueRequests;
// ASSERT (key < allKeys.end);
// There are no keys in the database with size greater than KEY_SIZE_LIMIT
if (key.size() >
(key.startsWith(systemKeys.begin) ? CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT : CLIENT_KNOBS->KEY_SIZE_LIMIT))
return Optional<Value>();
auto ver = getReadVersion();
/* if (!systemKeys.contains(key))
return Optional<Value>(Value()); */
if (!snapshot)
tr.transaction.read_conflict_ranges.push_back(tr.arena, singleKeyRange(key, tr.arena));
if (key == metadataVersionKey) {
++cx->transactionMetadataVersionReads;
if (!ver.isReady() || metadataVersion.isSet()) {
return metadataVersion.getFuture();
} else {
if (ver.isError())
return ver.getError();
if (ver.get() == cx->metadataVersionCache[cx->mvCacheInsertLocation].first) {
return cx->metadataVersionCache[cx->mvCacheInsertLocation].second;
}
Version v = ver.get();
int hi = cx->mvCacheInsertLocation;
int lo = (cx->mvCacheInsertLocation + 1) % cx->metadataVersionCache.size();
while (hi != lo) {
int cu = hi > lo ? (hi + lo) / 2
: ((hi + cx->metadataVersionCache.size() + lo) / 2) % cx->metadataVersionCache.size();
if (v == cx->metadataVersionCache[cu].first) {
return cx->metadataVersionCache[cu].second;
}
if (cu == lo) {
break;
}
if (v < cx->metadataVersionCache[cu].first) {
hi = cu;
} else {
lo = (cu + 1) % cx->metadataVersionCache.size();
}
}
}
}
return getValue(ver, key, cx, info, trLogInfo, options.readTags);
}
void Watch::setWatch(Future<Void> watchFuture) {
this->watchFuture = watchFuture;
// Cause the watch loop to go around and start waiting on watchFuture
onSetWatchTrigger.send(Void());
}
// FIXME: This seems pretty horrible. Now a Database can't die until all of its watches do...
ACTOR Future<Void> watch(Reference<Watch> watch, Database cx, TagSet tags, TransactionInfo info) {
try {
choose {
// RYOW write to value that is being watched (if applicable)
// Errors
when(wait(watch->onChangeTrigger.getFuture())) {}
// NativeAPI finished commit and updated watchFuture
when(wait(watch->onSetWatchTrigger.getFuture())) {
loop {
choose {
// NativeAPI watchValue future finishes or errors
when(wait(watch->watchFuture)) { break; }
when(wait(cx->connectionFileChanged())) {
TEST(true); // Recreated a watch after switch
cx->clearWatchMetadata();
watch->watchFuture =
watchValueMap(cx->minAcceptableReadVersion, watch->key, watch->value, cx, info, tags);
}
}
}
}
}
} catch (Error& e) {
cx->removeWatch();
throw;
}
cx->removeWatch();
return Void();
}
Future<Version> Transaction::getRawReadVersion() {
return ::getRawVersion(cx, info.spanID);
}
Future<Void> Transaction::watch(Reference<Watch> watch) {
++cx->transactionWatchRequests;
cx->addWatch();
watches.push_back(watch);
return ::watch(watch, cx, options.readTags, info);
}
ACTOR Future<Standalone<VectorRef<const char*>>> getAddressesForKeyActor(Key key,
Future<Version> ver,
Database cx,
TransactionInfo info,
TransactionOptions options) {
state vector<StorageServerInterface> ssi;
// If key >= allKeys.end, then getRange will return a kv-pair with an empty value. This will result in our
// serverInterfaces vector being empty, which will cause us to return an empty addresses list.
state Key ksKey = keyServersKey(key);
state Standalone<RangeResultRef> serverTagResult = wait(getRange(cx,
ver,
lastLessOrEqual(serverTagKeys.begin),
firstGreaterThan(serverTagKeys.end),
GetRangeLimits(CLIENT_KNOBS->TOO_MANY),
false,
info,
options.readTags));
ASSERT(!serverTagResult.more && serverTagResult.size() < CLIENT_KNOBS->TOO_MANY);
Future<Standalone<RangeResultRef>> futureServerUids = getRange(
cx, ver, lastLessOrEqual(ksKey), firstGreaterThan(ksKey), GetRangeLimits(1), false, info, options.readTags);
Standalone<RangeResultRef> serverUids = wait(futureServerUids);
ASSERT(serverUids.size()); // every shard needs to have a team
vector<UID> src;
vector<UID> ignore; // 'ignore' is so named because it is the vector into which we decode the 'dest' servers in the
// case where this key is being relocated. But 'src' is the canonical location until the move is
// finished, because it could be cancelled at any time.
decodeKeyServersValue(serverTagResult, serverUids[0].value, src, ignore);
Optional<vector<StorageServerInterface>> serverInterfaces =
wait(transactionalGetServerInterfaces(ver, cx, info, src, options.readTags));
ASSERT(serverInterfaces.present()); // since this is happening transactionally, /FF/keyServers and /FF/serverList
// need to be consistent with one another
ssi = serverInterfaces.get();
Standalone<VectorRef<const char*>> addresses;
for (auto i : ssi) {
std::string ipString = options.includePort ? i.address().toString() : i.address().ip.toString();
char* c_string = new (addresses.arena()) char[ipString.length() + 1];
strcpy(c_string, ipString.c_str());
addresses.push_back(addresses.arena(), c_string);
}
return addresses;
}
Future<Standalone<VectorRef<const char*>>> Transaction::getAddressesForKey(const Key& key) {
++cx->transactionLogicalReads;
++cx->transactionGetAddressesForKeyRequests;
auto ver = getReadVersion();
return getAddressesForKeyActor(key, ver, cx, info, options);
}
ACTOR Future<Key> getKeyAndConflictRange(Database cx,
KeySelector k,
Future<Version> version,
Promise<std::pair<Key, Key>> conflictRange,
TransactionInfo info,
TagSet tags) {
try {
Key rep = wait(getKey(cx, k, version, info, tags));
if (k.offset <= 0)
conflictRange.send(std::make_pair(rep, k.orEqual ? keyAfter(k.getKey()) : Key(k.getKey(), k.arena())));
else
conflictRange.send(
std::make_pair(k.orEqual ? keyAfter(k.getKey()) : Key(k.getKey(), k.arena()), keyAfter(rep)));
return rep;
} catch (Error& e) {
conflictRange.send(std::make_pair(Key(), Key()));
throw;
}
}
Future<Key> Transaction::getKey(const KeySelector& key, bool snapshot) {
++cx->transactionLogicalReads;
++cx->transactionGetKeyRequests;
if (snapshot)
return ::getKey(cx, key, getReadVersion(), info, options.readTags);
Promise<std::pair<Key, Key>> conflictRange;
extraConflictRanges.push_back(conflictRange.getFuture());
return getKeyAndConflictRange(cx, key, getReadVersion(), conflictRange, info, options.readTags);
}
Future<Standalone<RangeResultRef>> Transaction::getRange(const KeySelector& begin,
const KeySelector& end,
GetRangeLimits limits,
bool snapshot,
bool reverse) {
++cx->transactionLogicalReads;
++cx->transactionGetRangeRequests;
if (limits.isReached())
return Standalone<RangeResultRef>();
if (!limits.isValid())
return range_limits_invalid();
ASSERT(limits.rows != 0);
KeySelector b = begin;
if (b.orEqual) {
TEST(true); // Native begin orEqual==true
b.removeOrEqual(b.arena());
}
KeySelector e = end;
if (e.orEqual) {
TEST(true); // Native end orEqual==true
e.removeOrEqual(e.arena());
}
if (b.offset >= e.offset && b.getKey() >= e.getKey()) {
TEST(true); // Native range inverted
return Standalone<RangeResultRef>();
}
Promise<std::pair<Key, Key>> conflictRange;
if (!snapshot) {
extraConflictRanges.push_back(conflictRange.getFuture());
}
return ::getRange(
cx, trLogInfo, getReadVersion(), b, e, limits, conflictRange, snapshot, reverse, info, options.readTags);
}
Future<Standalone<RangeResultRef>> Transaction::getRange(const KeySelector& begin,
const KeySelector& end,
int limit,
bool snapshot,
bool reverse) {
return getRange(begin, end, GetRangeLimits(limit), snapshot, reverse);
}
void Transaction::addReadConflictRange(KeyRangeRef const& keys) {
ASSERT(!keys.empty());
// There aren't any keys in the database with size larger than KEY_SIZE_LIMIT, so if range contains large keys
// we can translate it to an equivalent one with smaller keys
KeyRef begin = keys.begin;
KeyRef end = keys.end;
if (begin.size() >
(begin.startsWith(systemKeys.begin) ? CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT : CLIENT_KNOBS->KEY_SIZE_LIMIT))
begin = begin.substr(
0,
(begin.startsWith(systemKeys.begin) ? CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT : CLIENT_KNOBS->KEY_SIZE_LIMIT) +
1);
if (end.size() >
(end.startsWith(systemKeys.begin) ? CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT : CLIENT_KNOBS->KEY_SIZE_LIMIT))
end = end.substr(
0,
(end.startsWith(systemKeys.begin) ? CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT : CLIENT_KNOBS->KEY_SIZE_LIMIT) +
1);
KeyRangeRef r = KeyRangeRef(begin, end);
if (r.empty()) {
return;
}
tr.transaction.read_conflict_ranges.push_back_deep(tr.arena, r);
}
void Transaction::makeSelfConflicting() {
BinaryWriter wr(Unversioned());
wr.serializeBytes(LiteralStringRef("\xFF/SC/"));
wr << deterministicRandom()->randomUniqueID();
auto r = singleKeyRange(wr.toValue(), tr.arena);
tr.transaction.read_conflict_ranges.push_back(tr.arena, r);
tr.transaction.write_conflict_ranges.push_back(tr.arena, r);
}
void Transaction::set(const KeyRef& key, const ValueRef& value, bool addConflictRange) {
++cx->transactionSetMutations;
if (key.size() >
(key.startsWith(systemKeys.begin) ? CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT : CLIENT_KNOBS->KEY_SIZE_LIMIT))
throw key_too_large();
if (value.size() > CLIENT_KNOBS->VALUE_SIZE_LIMIT)
throw value_too_large();
auto& req = tr;
auto& t = req.transaction;
auto r = singleKeyRange(key, req.arena);
auto v = ValueRef(req.arena, value);
t.mutations.emplace_back(req.arena, MutationRef::SetValue, r.begin, v);
if (addConflictRange) {
t.write_conflict_ranges.push_back(req.arena, r);
}
}
void Transaction::atomicOp(const KeyRef& key,
const ValueRef& operand,
MutationRef::Type operationType,
bool addConflictRange) {
++cx->transactionAtomicMutations;
if (key.size() >
(key.startsWith(systemKeys.begin) ? CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT : CLIENT_KNOBS->KEY_SIZE_LIMIT))
throw key_too_large();
if (operand.size() > CLIENT_KNOBS->VALUE_SIZE_LIMIT)
throw value_too_large();
if (apiVersionAtLeast(510)) {
if (operationType == MutationRef::Min)
operationType = MutationRef::MinV2;
else if (operationType == MutationRef::And)
operationType = MutationRef::AndV2;
}
auto& req = tr;
auto& t = req.transaction;
auto r = singleKeyRange(key, req.arena);
auto v = ValueRef(req.arena, operand);
t.mutations.emplace_back(req.arena, operationType, r.begin, v);
if (addConflictRange && operationType != MutationRef::SetVersionstampedKey)
t.write_conflict_ranges.push_back(req.arena, r);
TEST(true); // NativeAPI atomic operation
}
void Transaction::clear(const KeyRangeRef& range, bool addConflictRange) {
++cx->transactionClearMutations;
auto& req = tr;
auto& t = req.transaction;
KeyRef begin = range.begin;
KeyRef end = range.end;
// There aren't any keys in the database with size larger than KEY_SIZE_LIMIT, so if range contains large keys
// we can translate it to an equivalent one with smaller keys
if (begin.size() >
(begin.startsWith(systemKeys.begin) ? CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT : CLIENT_KNOBS->KEY_SIZE_LIMIT))
begin = begin.substr(
0,
(begin.startsWith(systemKeys.begin) ? CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT : CLIENT_KNOBS->KEY_SIZE_LIMIT) +
1);
if (end.size() >
(end.startsWith(systemKeys.begin) ? CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT : CLIENT_KNOBS->KEY_SIZE_LIMIT))
end = end.substr(
0,
(end.startsWith(systemKeys.begin) ? CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT : CLIENT_KNOBS->KEY_SIZE_LIMIT) +
1);
auto r = KeyRangeRef(req.arena, KeyRangeRef(begin, end));
if (r.empty())
return;
t.mutations.emplace_back(req.arena, MutationRef::ClearRange, r.begin, r.end);
if (addConflictRange)
t.write_conflict_ranges.push_back(req.arena, r);
}
void Transaction::clear(const KeyRef& key, bool addConflictRange) {
++cx->transactionClearMutations;
// There aren't any keys in the database with size larger than KEY_SIZE_LIMIT
if (key.size() >
(key.startsWith(systemKeys.begin) ? CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT : CLIENT_KNOBS->KEY_SIZE_LIMIT))
return;
auto& req = tr;
auto& t = req.transaction;
// efficient single key range clear range mutation, see singleKeyRange
uint8_t* data = new (req.arena) uint8_t[key.size() + 1];
memcpy(data, key.begin(), key.size());
data[key.size()] = 0;
t.mutations.emplace_back(
req.arena, MutationRef::ClearRange, KeyRef(data, key.size()), KeyRef(data, key.size() + 1));
if (addConflictRange)
t.write_conflict_ranges.emplace_back(req.arena, KeyRef(data, key.size()), KeyRef(data, key.size() + 1));
}
void Transaction::addWriteConflictRange(const KeyRangeRef& keys) {
ASSERT(!keys.empty());
auto& req = tr;
auto& t = req.transaction;
// There aren't any keys in the database with size larger than KEY_SIZE_LIMIT, so if range contains large keys
// we can translate it to an equivalent one with smaller keys
KeyRef begin = keys.begin;
KeyRef end = keys.end;
if (begin.size() >
(begin.startsWith(systemKeys.begin) ? CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT : CLIENT_KNOBS->KEY_SIZE_LIMIT))
begin = begin.substr(
0,
(begin.startsWith(systemKeys.begin) ? CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT : CLIENT_KNOBS->KEY_SIZE_LIMIT) +
1);
if (end.size() >
(end.startsWith(systemKeys.begin) ? CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT : CLIENT_KNOBS->KEY_SIZE_LIMIT))
end = end.substr(
0,
(end.startsWith(systemKeys.begin) ? CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT : CLIENT_KNOBS->KEY_SIZE_LIMIT) +
1);
KeyRangeRef r = KeyRangeRef(begin, end);
if (r.empty()) {
return;
}
t.write_conflict_ranges.push_back_deep(req.arena, r);
}
double Transaction::getBackoff(int errCode) {
double returnedBackoff = backoff;
if (errCode == error_code_tag_throttled) {
auto priorityItr = cx->throttledTags.find(options.priority);
for (auto& tag : options.tags) {
if (priorityItr != cx->throttledTags.end()) {
auto tagItr = priorityItr->second.find(tag);
if (tagItr != priorityItr->second.end()) {
TEST(true); // Returning throttle backoff
returnedBackoff = std::min(CLIENT_KNOBS->TAG_THROTTLE_RECHECK_INTERVAL,
std::max(returnedBackoff, tagItr->second.throttleDuration()));
if (returnedBackoff == CLIENT_KNOBS->TAG_THROTTLE_RECHECK_INTERVAL) {
break;
}
}
}
}
}
returnedBackoff *= deterministicRandom()->random01();
// Set backoff for next time
if (errCode == error_code_proxy_memory_limit_exceeded) {
backoff = std::min(backoff * CLIENT_KNOBS->BACKOFF_GROWTH_RATE, CLIENT_KNOBS->RESOURCE_CONSTRAINED_MAX_BACKOFF);
} else {
backoff = std::min(backoff * CLIENT_KNOBS->BACKOFF_GROWTH_RATE, options.maxBackoff);
}
return returnedBackoff;
}
TransactionOptions::TransactionOptions(Database const& cx) {
reset(cx);
if (BUGGIFY) {
commitOnFirstProxy = true;
}
}
void TransactionOptions::clear() {
maxBackoff = CLIENT_KNOBS->DEFAULT_MAX_BACKOFF;
getReadVersionFlags = 0;
sizeLimit = CLIENT_KNOBS->TRANSACTION_SIZE_LIMIT;
maxTransactionLoggingFieldLength = 0;
checkWritesEnabled = false;
causalWriteRisky = false;
commitOnFirstProxy = false;
debugDump = false;
lockAware = false;
readOnly = false;
firstInBatch = false;
includePort = false;
reportConflictingKeys = false;
tags = TagSet{};
readTags = TagSet{};
priority = TransactionPriority::DEFAULT;
expensiveClearCostEstimation = false;
}
TransactionOptions::TransactionOptions() {
clear();
}
void TransactionOptions::reset(Database const& cx) {
clear();
lockAware = cx->lockAware;
if (cx->apiVersionAtLeast(630)) {
includePort = true;
}
}
void Transaction::reset() {
tr = CommitTransactionRequest();
readVersion = Future<Version>();
metadataVersion = Promise<Optional<Key>>();
extraConflictRanges.clear();
versionstampPromise = Promise<Standalone<StringRef>>();
commitResult = Promise<Void>();
committing = Future<Void>();
info.taskID = cx->taskID;
info.debugID = Optional<UID>();
flushTrLogsIfEnabled();
trLogInfo = Reference<TransactionLogInfo>(createTrLogInfoProbabilistically(cx));
cancelWatches();
if (apiVersionAtLeast(16)) {
options.reset(cx);
}
}
void Transaction::fullReset() {
reset();
span = Span(span.location);
info.spanID = span.context;
backoff = CLIENT_KNOBS->DEFAULT_BACKOFF;
}
int Transaction::apiVersionAtLeast(int minVersion) const {
return cx->apiVersionAtLeast(minVersion);
}
class MutationBlock {
public:
bool mutated;
bool cleared;
ValueRef setValue;
MutationBlock() : mutated(false) {}
MutationBlock(bool _cleared) : mutated(true), cleared(_cleared) {}
MutationBlock(ValueRef value) : mutated(true), cleared(false), setValue(value) {}
};
bool compareBegin(KeyRangeRef lhs, KeyRangeRef rhs) {
return lhs.begin < rhs.begin;
}
// If there is any intersection between the two given sets of ranges, returns a range that
// falls within the intersection
Optional<KeyRangeRef> intersects(VectorRef<KeyRangeRef> lhs, VectorRef<KeyRangeRef> rhs) {
if (lhs.size() && rhs.size()) {
std::sort(lhs.begin(), lhs.end(), compareBegin);
std::sort(rhs.begin(), rhs.end(), compareBegin);
int l = 0, r = 0;
while (l < lhs.size() && r < rhs.size()) {
if (lhs[l].end <= rhs[r].begin)
l++;
else if (rhs[r].end <= lhs[l].begin)
r++;
else
return lhs[l] & rhs[r];
}
}
return Optional<KeyRangeRef>();
}
ACTOR void checkWrites(Database cx,
Future<Void> committed,
Promise<Void> outCommitted,
CommitTransactionRequest req,
Transaction* checkTr) {
state Version version;
try {
wait(committed);
// If the commit is successful, by definition the transaction still exists for now. Grab the version, and don't
// use it again.
version = checkTr->getCommittedVersion();
outCommitted.send(Void());
} catch (Error& e) {
outCommitted.sendError(e);
return;
}
wait(delay(deterministicRandom()->random01())); // delay between 0 and 1 seconds
// Future<Optional<Version>> version, Database cx, CommitTransactionRequest req ) {
state KeyRangeMap<MutationBlock> expectedValues;
auto& mutations = req.transaction.mutations;
state int mCount = mutations.size(); // debugging info for traceEvent
for (int idx = 0; idx < mutations.size(); idx++) {
if (mutations[idx].type == MutationRef::SetValue)
expectedValues.insert(singleKeyRange(mutations[idx].param1), MutationBlock(mutations[idx].param2));
else if (mutations[idx].type == MutationRef::ClearRange)
expectedValues.insert(KeyRangeRef(mutations[idx].param1, mutations[idx].param2), MutationBlock(true));
}
try {
state Transaction tr(cx);
tr.setVersion(version);
state int checkedRanges = 0;
state KeyRangeMap<MutationBlock>::Ranges ranges = expectedValues.ranges();
state KeyRangeMap<MutationBlock>::iterator it = ranges.begin();
for (; it != ranges.end(); ++it) {
state MutationBlock m = it->value();
if (m.mutated) {
checkedRanges++;
if (m.cleared) {
Standalone<RangeResultRef> shouldBeEmpty = wait(tr.getRange(it->range(), 1));
if (shouldBeEmpty.size()) {
TraceEvent(SevError, "CheckWritesFailed")
.detail("Class", "Clear")
.detail("KeyBegin", it->range().begin)
.detail("KeyEnd", it->range().end);
return;
}
} else {
Optional<Value> val = wait(tr.get(it->range().begin));
if (!val.present() || val.get() != m.setValue) {
TraceEvent evt(SevError, "CheckWritesFailed");
evt.detail("Class", "Set").detail("Key", it->range().begin).detail("Expected", m.setValue);
if (!val.present())
evt.detail("Actual", "_Value Missing_");
else
evt.detail("Actual", val.get());
return;
}
}
}
}
TraceEvent("CheckWritesSuccess")
.detail("Version", version)
.detail("MutationCount", mCount)
.detail("CheckedRanges", checkedRanges);
} catch (Error& e) {
bool ok = e.code() == error_code_transaction_too_old || e.code() == error_code_future_version;
TraceEvent(ok ? SevWarn : SevError, "CheckWritesFailed").error(e);
throw;
}
}
ACTOR static Future<Void> commitDummyTransaction(Database cx,
KeyRange range,
TransactionInfo info,
TransactionOptions options) {
state Transaction tr(cx);
state int retries = 0;
state Span span("NAPI:dummyTransaction"_loc, info.spanID);
tr.span.addParent(span.context);
loop {
try {
TraceEvent("CommitDummyTransaction").detail("Key", range.begin).detail("Retries", retries);
tr.options = options;
tr.info.taskID = info.taskID;
tr.setOption(FDBTransactionOptions::ACCESS_SYSTEM_KEYS);
tr.setOption(FDBTransactionOptions::CAUSAL_WRITE_RISKY);
tr.setOption(FDBTransactionOptions::LOCK_AWARE);
tr.addReadConflictRange(range);
tr.addWriteConflictRange(range);
wait(tr.commit());
return Void();
} catch (Error& e) {
TraceEvent("CommitDummyTransactionError")
.error(e, true)
.detail("Key", range.begin)
.detail("Retries", retries);
wait(tr.onError(e));
}
++retries;
}
}
void Transaction::cancelWatches(Error const& e) {
for (int i = 0; i < watches.size(); ++i)
if (!watches[i]->onChangeTrigger.isSet())
watches[i]->onChangeTrigger.sendError(e);
watches.clear();
}
void Transaction::setupWatches() {
try {
Future<Version> watchVersion = getCommittedVersion() > 0 ? getCommittedVersion() : getReadVersion();
for (int i = 0; i < watches.size(); ++i)
watches[i]->setWatch(
watchValueMap(watchVersion, watches[i]->key, watches[i]->value, cx, info, options.readTags));
watches.clear();
} catch (Error&) {
ASSERT(false); // The above code must NOT throw because commit has already occured.
throw internal_error();
}
}
ACTOR Future<Optional<ClientTrCommitCostEstimation>> estimateCommitCosts(Transaction* self,
CommitTransactionRef const* transaction) {
state ClientTrCommitCostEstimation trCommitCosts;
state KeyRangeRef keyRange;
state int i = 0;
for (; i < transaction->mutations.size(); ++i) {
auto* it = &transaction->mutations[i];
if (it->type == MutationRef::Type::SetValue || it->isAtomicOp()) {
trCommitCosts.opsCount++;
trCommitCosts.writeCosts += getWriteOperationCost(it->expectedSize());
} else if (it->type == MutationRef::Type::ClearRange) {
trCommitCosts.opsCount++;
keyRange = KeyRangeRef(it->param1, it->param2);
if (self->options.expensiveClearCostEstimation) {
StorageMetrics m = wait(self->getStorageMetrics(keyRange, CLIENT_KNOBS->TOO_MANY));
trCommitCosts.clearIdxCosts.emplace_back(i, getWriteOperationCost(m.bytes));
trCommitCosts.writeCosts += getWriteOperationCost(m.bytes);
++trCommitCosts.expensiveCostEstCount;
++self->getDatabase()->transactionsExpensiveClearCostEstCount;
} else {
std::vector<pair<KeyRange, Reference<LocationInfo>>> locations =
wait(getKeyRangeLocations(self->getDatabase(),
keyRange,
CLIENT_KNOBS->TOO_MANY,
false,
&StorageServerInterface::getShardState,
self->info));
if (locations.empty())
continue;
uint64_t bytes = 0;
if (locations.size() == 1) {
bytes = CLIENT_KNOBS->INCOMPLETE_SHARD_PLUS;
} else { // small clear on the boundary will hit two shards but be much smaller than the shard size
bytes = CLIENT_KNOBS->INCOMPLETE_SHARD_PLUS * 2 +
(locations.size() - 2) * (int64_t)self->getDatabase()->smoothMidShardSize.smoothTotal();
}
trCommitCosts.clearIdxCosts.emplace_back(i, getWriteOperationCost(bytes));
trCommitCosts.writeCosts += getWriteOperationCost(bytes);
}
}
}
// sample on written bytes
if (!self->getDatabase()->sampleOnCost(trCommitCosts.writeCosts))
return Optional<ClientTrCommitCostEstimation>();
// sample clear op: the expectation of #sampledOp is every COMMIT_SAMPLE_COST sample once
// we also scale the cost of mutations whose cost is less than COMMIT_SAMPLE_COST as scaledCost =
// min(COMMIT_SAMPLE_COST, cost) If we have 4 transactions: A - 100 1-cost mutations: E[sampled ops] = 1, E[sampled
// cost] = 100 B - 1 100-cost mutation: E[sampled ops] = 1, E[sampled cost] = 100 C - 50 2-cost mutations: E[sampled
// ops] = 1, E[sampled cost] = 100 D - 1 150-cost mutation and 150 1-cost mutations: E[sampled ops] = 3, E[sampled
// cost] = 150cost * 1 + 150 * 100cost * 0.01 = 300
ASSERT(trCommitCosts.writeCosts > 0);
std::deque<std::pair<int, uint64_t>> newClearIdxCosts;
for (const auto& [idx, cost] : trCommitCosts.clearIdxCosts) {
if (trCommitCosts.writeCosts >= CLIENT_KNOBS->COMMIT_SAMPLE_COST) {
double mul = trCommitCosts.writeCosts / std::max(1.0, (double)CLIENT_KNOBS->COMMIT_SAMPLE_COST);
if (deterministicRandom()->random01() < cost * mul / trCommitCosts.writeCosts) {
newClearIdxCosts.emplace_back(
idx, cost < CLIENT_KNOBS->COMMIT_SAMPLE_COST ? CLIENT_KNOBS->COMMIT_SAMPLE_COST : cost);
}
} else if (deterministicRandom()->random01() < (double)cost / trCommitCosts.writeCosts) {
newClearIdxCosts.emplace_back(
idx, cost < CLIENT_KNOBS->COMMIT_SAMPLE_COST ? CLIENT_KNOBS->COMMIT_SAMPLE_COST : cost);
}
}
trCommitCosts.clearIdxCosts.swap(newClearIdxCosts);
return trCommitCosts;
}
ACTOR static Future<Void> tryCommit(Database cx,
Reference<TransactionLogInfo> trLogInfo,
CommitTransactionRequest req,
Future<Version> readVersion,
TransactionInfo info,
Version* pCommittedVersion,
Transaction* tr,
TransactionOptions options) {
state TraceInterval interval("TransactionCommit");
state double startTime = now();
state Span span("NAPI:tryCommit"_loc, info.spanID);
req.spanContext = span.context;
if (info.debugID.present())
TraceEvent(interval.begin()).detail("Parent", info.debugID.get());
try {
if (CLIENT_BUGGIFY) {
throw deterministicRandom()->randomChoice(std::vector<Error>{
not_committed(), transaction_too_old(), proxy_memory_limit_exceeded(), commit_unknown_result() });
}
if (req.tagSet.present() && tr->options.priority < TransactionPriority::IMMEDIATE) {
wait(store(req.transaction.read_snapshot, readVersion) &&
store(req.commitCostEstimation, estimateCommitCosts(tr, &req.transaction)));
} else {
wait(store(req.transaction.read_snapshot, readVersion));
}
startTime = now();
state Optional<UID> commitID = Optional<UID>();
if (info.debugID.present()) {
commitID = nondeterministicRandom()->randomUniqueID();
g_traceBatch.addAttach("CommitAttachID", info.debugID.get().first(), commitID.get().first());
g_traceBatch.addEvent("CommitDebug", commitID.get().first(), "NativeAPI.commit.Before");
}
req.debugID = commitID;
state Future<CommitID> reply;
if (options.commitOnFirstProxy) {
if (cx->clientInfo->get().firstCommitProxy.present()) {
reply = throwErrorOr(brokenPromiseToMaybeDelivered(
cx->clientInfo->get().firstCommitProxy.get().commit.tryGetReply(req)));
} else {
const std::vector<CommitProxyInterface>& proxies = cx->clientInfo->get().commitProxies;
reply = proxies.size() ? throwErrorOr(brokenPromiseToMaybeDelivered(proxies[0].commit.tryGetReply(req)))
: Never();
}
} else {
reply = basicLoadBalance(cx->getCommitProxies(info.useProvisionalProxies),
&CommitProxyInterface::commit,
req,
TaskPriority::DefaultPromiseEndpoint,
true);
}
choose {
when(wait(cx->onProxiesChanged())) {
reply.cancel();
throw request_maybe_delivered();
}
when(CommitID ci = wait(reply)) {
Version v = ci.version;
if (v != invalidVersion) {
if (CLIENT_BUGGIFY) {
throw commit_unknown_result();
}
if (info.debugID.present())
TraceEvent(interval.end()).detail("CommittedVersion", v);
*pCommittedVersion = v;
if (v > cx->metadataVersionCache[cx->mvCacheInsertLocation].first) {
cx->mvCacheInsertLocation = (cx->mvCacheInsertLocation + 1) % cx->metadataVersionCache.size();
cx->metadataVersionCache[cx->mvCacheInsertLocation] = std::make_pair(v, ci.metadataVersion);
}
Standalone<StringRef> ret = makeString(10);
placeVersionstamp(mutateString(ret), v, ci.txnBatchId);
tr->versionstampPromise.send(ret);
tr->numErrors = 0;
++cx->transactionsCommitCompleted;
cx->transactionCommittedMutations += req.transaction.mutations.size();
cx->transactionCommittedMutationBytes += req.transaction.mutations.expectedSize();
if (info.debugID.present())
g_traceBatch.addEvent("CommitDebug", commitID.get().first(), "NativeAPI.commit.After");
double latency = now() - startTime;
cx->commitLatencies.addSample(latency);
cx->latencies.addSample(now() - tr->startTime);
if (trLogInfo)
trLogInfo->addLog(FdbClientLogEvents::EventCommit_V2(startTime,
cx->clientLocality.dcId(),
latency,
req.transaction.mutations.size(),
req.transaction.mutations.expectedSize(),
ci.version,
req));
return Void();
} else {
// clear the RYW transaction which contains previous conflicting keys
tr->info.conflictingKeys.reset();
if (ci.conflictingKRIndices.present()) {
tr->info.conflictingKeys =
std::make_shared<CoalescedKeyRangeMap<Value>>(conflictingKeysFalse, specialKeys.end);
state Standalone<VectorRef<int>> conflictingKRIndices = ci.conflictingKRIndices.get();
// drop duplicate indices and merge overlapped ranges
// Note: addReadConflictRange in native transaction object does not merge overlapped ranges
state std::unordered_set<int> mergedIds(conflictingKRIndices.begin(),
conflictingKRIndices.end());
for (auto const& rCRIndex : mergedIds) {
const KeyRangeRef kr = req.transaction.read_conflict_ranges[rCRIndex];
const KeyRange krWithPrefix = KeyRangeRef(kr.begin.withPrefix(conflictingKeysRange.begin),
kr.end.withPrefix(conflictingKeysRange.begin));
tr->info.conflictingKeys->insert(krWithPrefix, conflictingKeysTrue);
}
}
if (info.debugID.present())
TraceEvent(interval.end()).detail("Conflict", 1);
if (info.debugID.present())
g_traceBatch.addEvent("CommitDebug", commitID.get().first(), "NativeAPI.commit.After");
throw not_committed();
}
}
}
} catch (Error& e) {
if (e.code() == error_code_request_maybe_delivered || e.code() == error_code_commit_unknown_result) {
// We don't know if the commit happened, and it might even still be in flight.
if (!options.causalWriteRisky) {
// Make sure it's not still in flight, either by ensuring the master we submitted to is dead, or the
// version we submitted with is dead, or by committing a conflicting transaction successfully
// if ( cx->getCommitProxies()->masterGeneration <= originalMasterGeneration )
// To ensure the original request is not in flight, we need a key range which intersects its read
// conflict ranges We pick a key range which also intersects its write conflict ranges, since that
// avoids potentially creating conflicts where there otherwise would be none We make the range as small
// as possible (a single key range) to minimize conflicts The intersection will never be empty, because
// if it were (since !causalWriteRisky) makeSelfConflicting would have been applied automatically to req
KeyRangeRef selfConflictingRange =
intersects(req.transaction.write_conflict_ranges, req.transaction.read_conflict_ranges).get();
TEST(true); // Waiting for dummy transaction to report commit_unknown_result
wait(commitDummyTransaction(cx, singleKeyRange(selfConflictingRange.begin), info, tr->options));
}
// The user needs to be informed that we aren't sure whether the commit happened. Standard retry loops
// retry it anyway (relying on transaction idempotence) but a client might do something else.
throw commit_unknown_result();
} else {
if (e.code() != error_code_transaction_too_old && e.code() != error_code_not_committed &&
e.code() != error_code_database_locked && e.code() != error_code_proxy_memory_limit_exceeded &&
e.code() != error_code_batch_transaction_throttled && e.code() != error_code_tag_throttled) {
TraceEvent(SevError, "TryCommitError").error(e);
}
if (trLogInfo)
trLogInfo->addLog(FdbClientLogEvents::EventCommitError(
startTime, cx->clientLocality.dcId(), static_cast<int>(e.code()), req));
throw;
}
}
}
Future<Void> Transaction::commitMutations() {
try {
// if this is a read-only transaction return immediately
if (!tr.transaction.write_conflict_ranges.size() && !tr.transaction.mutations.size()) {
numErrors = 0;
committedVersion = invalidVersion;
versionstampPromise.sendError(no_commit_version());
return Void();
}
++cx->transactionsCommitStarted;
if (options.readOnly)
return transaction_read_only();
cx->mutationsPerCommit.addSample(tr.transaction.mutations.size());
cx->bytesPerCommit.addSample(tr.transaction.mutations.expectedSize());
if (options.tags.size())
tr.tagSet = options.tags;
size_t transactionSize = getSize();
if (transactionSize > (uint64_t)FLOW_KNOBS->PACKET_WARNING) {
TraceEvent(!g_network->isSimulated() ? SevWarnAlways : SevWarn, "LargeTransaction")
.suppressFor(1.0)
.detail("Size", transactionSize)
.detail("NumMutations", tr.transaction.mutations.size())
.detail("ReadConflictSize", tr.transaction.read_conflict_ranges.expectedSize())
.detail("WriteConflictSize", tr.transaction.write_conflict_ranges.expectedSize())
.detail("DebugIdentifier", trLogInfo ? trLogInfo->identifier : "");
}
if (!apiVersionAtLeast(300)) {
transactionSize =
tr.transaction.mutations.expectedSize(); // Old API versions didn't account for conflict ranges when
// determining whether to throw transaction_too_large
}
if (transactionSize > options.sizeLimit) {
return transaction_too_large();
}
if (!readVersion.isValid())
getReadVersion(
GetReadVersionRequest::FLAG_CAUSAL_READ_RISKY); // sets up readVersion field. We had no reads, so no
// need for (expensive) full causal consistency.
bool isCheckingWrites = options.checkWritesEnabled && deterministicRandom()->random01() < 0.01;
for (int i = 0; i < extraConflictRanges.size(); i++)
if (extraConflictRanges[i].isReady() &&
extraConflictRanges[i].get().first < extraConflictRanges[i].get().second)
tr.transaction.read_conflict_ranges.emplace_back(
tr.arena, extraConflictRanges[i].get().first, extraConflictRanges[i].get().second);
if (!options.causalWriteRisky &&
!intersects(tr.transaction.write_conflict_ranges, tr.transaction.read_conflict_ranges).present())
makeSelfConflicting();
if (isCheckingWrites) {
// add all writes into the read conflict range...
tr.transaction.read_conflict_ranges.append(
tr.arena, tr.transaction.write_conflict_ranges.begin(), tr.transaction.write_conflict_ranges.size());
}
if (options.debugDump) {
UID u = nondeterministicRandom()->randomUniqueID();
TraceEvent("TransactionDump", u);
for (auto i = tr.transaction.mutations.begin(); i != tr.transaction.mutations.end(); ++i)
TraceEvent("TransactionMutation", u)
.detail("T", i->type)
.detail("P1", i->param1)
.detail("P2", i->param2);
}
if (options.lockAware) {
tr.flags = tr.flags | CommitTransactionRequest::FLAG_IS_LOCK_AWARE;
}
if (options.firstInBatch) {
tr.flags = tr.flags | CommitTransactionRequest::FLAG_FIRST_IN_BATCH;
}
if (options.reportConflictingKeys) {
tr.transaction.report_conflicting_keys = true;
}
Future<Void> commitResult =
tryCommit(cx, trLogInfo, tr, readVersion, info, &this->committedVersion, this, options);
if (isCheckingWrites) {
Promise<Void> committed;
checkWrites(cx, commitResult, committed, tr, this);
return committed.getFuture();
}
return commitResult;
} catch (Error& e) {
TraceEvent("ClientCommitError").error(e);
return Future<Void>(e);
} catch (...) {
Error e(error_code_unknown_error);
TraceEvent("ClientCommitError").error(e);
return Future<Void>(e);
}
}
ACTOR Future<Void> commitAndWatch(Transaction* self) {
try {
wait(self->commitMutations());
if (!self->watches.empty()) {
self->setupWatches();
}
self->reset();
return Void();
} catch (Error& e) {
if (e.code() != error_code_actor_cancelled) {
if (!self->watches.empty()) {
self->cancelWatches(e);
}
self->versionstampPromise.sendError(transaction_invalid_version());
self->reset();
}
throw;
}
}
Future<Void> Transaction::commit() {
ASSERT(!committing.isValid());
committing = commitAndWatch(this);
return committing;
}
void Transaction::setOption(FDBTransactionOptions::Option option, Optional<StringRef> value) {
switch (option) {
case FDBTransactionOptions::INITIALIZE_NEW_DATABASE:
validateOptionValue(value, false);
if (readVersion.isValid())
throw read_version_already_set();
readVersion = Version(0);
options.causalWriteRisky = true;
break;
case FDBTransactionOptions::CAUSAL_READ_RISKY:
validateOptionValue(value, false);
options.getReadVersionFlags |= GetReadVersionRequest::FLAG_CAUSAL_READ_RISKY;
break;
case FDBTransactionOptions::PRIORITY_SYSTEM_IMMEDIATE:
validateOptionValue(value, false);
options.priority = TransactionPriority::IMMEDIATE;
break;
case FDBTransactionOptions::PRIORITY_BATCH:
validateOptionValue(value, false);
options.priority = TransactionPriority::BATCH;
break;
case FDBTransactionOptions::CAUSAL_WRITE_RISKY:
validateOptionValue(value, false);
options.causalWriteRisky = true;
break;
case FDBTransactionOptions::COMMIT_ON_FIRST_PROXY:
validateOptionValue(value, false);
options.commitOnFirstProxy = true;
break;
case FDBTransactionOptions::CHECK_WRITES_ENABLE:
validateOptionValue(value, false);
options.checkWritesEnabled = true;
break;
case FDBTransactionOptions::DEBUG_DUMP:
validateOptionValue(value, false);
options.debugDump = true;
break;
case FDBTransactionOptions::TRANSACTION_LOGGING_ENABLE:
setOption(FDBTransactionOptions::DEBUG_TRANSACTION_IDENTIFIER, value);
setOption(FDBTransactionOptions::LOG_TRANSACTION);
break;
case FDBTransactionOptions::DEBUG_TRANSACTION_IDENTIFIER:
validateOptionValue(value, true);
if (value.get().size() > 100 || value.get().size() == 0) {
throw invalid_option_value();
}
if (trLogInfo) {
if (trLogInfo->identifier.empty()) {
trLogInfo->identifier = value.get().printable();
} else if (trLogInfo->identifier != value.get().printable()) {
TraceEvent(SevWarn, "CannotChangeDebugTransactionIdentifier")
.detail("PreviousIdentifier", trLogInfo->identifier)
.detail("NewIdentifier", value.get());
throw client_invalid_operation();
}
} else {
trLogInfo = makeReference<TransactionLogInfo>(value.get().printable(), TransactionLogInfo::DONT_LOG);
trLogInfo->maxFieldLength = options.maxTransactionLoggingFieldLength;
}
if (info.debugID.present()) {
TraceEvent(SevInfo, "TransactionBeingTraced")
.detail("DebugTransactionID", trLogInfo->identifier)
.detail("ServerTraceID", info.debugID.get());
}
break;
case FDBTransactionOptions::LOG_TRANSACTION:
validateOptionValue(value, false);
if (trLogInfo && !trLogInfo->identifier.empty()) {
trLogInfo->logTo(TransactionLogInfo::TRACE_LOG);
} else {
TraceEvent(SevWarn, "DebugTransactionIdentifierNotSet")
.detail("Error", "Debug Transaction Identifier option must be set before logging the transaction");
throw client_invalid_operation();
}
break;
case FDBTransactionOptions::TRANSACTION_LOGGING_MAX_FIELD_LENGTH:
validateOptionValue(value, true);
{
int maxFieldLength = extractIntOption(value, -1, std::numeric_limits<int32_t>::max());
if (maxFieldLength == 0) {
throw invalid_option_value();
}
options.maxTransactionLoggingFieldLength = maxFieldLength;
}
if (trLogInfo) {
trLogInfo->maxFieldLength = options.maxTransactionLoggingFieldLength;
}
break;
case FDBTransactionOptions::SERVER_REQUEST_TRACING:
validateOptionValue(value, false);
debugTransaction(deterministicRandom()->randomUniqueID());
if (trLogInfo && !trLogInfo->identifier.empty()) {
TraceEvent(SevInfo, "TransactionBeingTraced")
.detail("DebugTransactionID", trLogInfo->identifier)
.detail("ServerTraceID", info.debugID.get());
}
break;
case FDBTransactionOptions::MAX_RETRY_DELAY:
validateOptionValue(value, true);
options.maxBackoff = extractIntOption(value, 0, std::numeric_limits<int32_t>::max()) / 1000.0;
break;
case FDBTransactionOptions::SIZE_LIMIT:
validateOptionValue(value, true);
options.sizeLimit = extractIntOption(value, 32, CLIENT_KNOBS->TRANSACTION_SIZE_LIMIT);
break;
case FDBTransactionOptions::LOCK_AWARE:
validateOptionValue(value, false);
options.lockAware = true;
options.readOnly = false;
break;
case FDBTransactionOptions::READ_LOCK_AWARE:
validateOptionValue(value, false);
if (!options.lockAware) {
options.lockAware = true;
options.readOnly = true;
}
break;
case FDBTransactionOptions::FIRST_IN_BATCH:
validateOptionValue(value, false);
options.firstInBatch = true;
break;
case FDBTransactionOptions::USE_PROVISIONAL_PROXIES:
validateOptionValue(value, false);
options.getReadVersionFlags |= GetReadVersionRequest::FLAG_USE_PROVISIONAL_PROXIES;
info.useProvisionalProxies = true;
break;
case FDBTransactionOptions::INCLUDE_PORT_IN_ADDRESS:
validateOptionValue(value, false);
options.includePort = true;
break;
case FDBTransactionOptions::TAG:
validateOptionValue(value, true);
options.tags.addTag(value.get());
break;
case FDBTransactionOptions::AUTO_THROTTLE_TAG:
validateOptionValue(value, true);
options.tags.addTag(value.get());
options.readTags.addTag(value.get());
break;
case FDBTransactionOptions::SPAN_PARENT:
validateOptionValue(value, true);
if (value.get().size() != 16) {
throw invalid_option_value();
}
span.addParent(BinaryReader::fromStringRef<UID>(value.get(), Unversioned()));
break;
case FDBTransactionOptions::REPORT_CONFLICTING_KEYS:
validateOptionValue(value, false);
options.reportConflictingKeys = true;
break;
case FDBTransactionOptions::EXPENSIVE_CLEAR_COST_ESTIMATION_ENABLE:
validateOptionValue(value, false);
options.expensiveClearCostEstimation = true;
break;
default:
break;
}
}
ACTOR Future<GetReadVersionReply> getConsistentReadVersion(SpanID parentSpan,
DatabaseContext* cx,
uint32_t transactionCount,
TransactionPriority priority,
uint32_t flags,
TransactionTagMap<uint32_t> tags,
Optional<UID> debugID) {
state Span span("NAPI:getConsistentReadVersion"_loc, parentSpan);
++cx->transactionReadVersionBatches;
if (debugID.present())
g_traceBatch.addEvent("TransactionDebug", debugID.get().first(), "NativeAPI.getConsistentReadVersion.Before");
loop {
try {
state GetReadVersionRequest req(span.context, transactionCount, priority, flags, tags, debugID);
choose {
when(wait(cx->onProxiesChanged())) {}
when(GetReadVersionReply v = wait(basicLoadBalance(
cx->getGrvProxies(flags & GetReadVersionRequest::FLAG_USE_PROVISIONAL_PROXIES),
&GrvProxyInterface::getConsistentReadVersion,
req,
cx->taskID))) {
if (tags.size() != 0) {
auto& priorityThrottledTags = cx->throttledTags[priority];
for (auto& tag : tags) {
auto itr = v.tagThrottleInfo.find(tag.first);
if (itr == v.tagThrottleInfo.end()) {
TEST(true); // Removing client throttle
priorityThrottledTags.erase(tag.first);
} else {
TEST(true); // Setting client throttle
auto result = priorityThrottledTags.try_emplace(tag.first, itr->second);
if (!result.second) {
result.first->second.update(itr->second);
}
}
}
}
if (debugID.present())
g_traceBatch.addEvent(
"TransactionDebug", debugID.get().first(), "NativeAPI.getConsistentReadVersion.After");
ASSERT(v.version > 0);
cx->minAcceptableReadVersion = std::min(cx->minAcceptableReadVersion, v.version);
return v;
}
}
} catch (Error& e) {
if (e.code() != error_code_broken_promise && e.code() != error_code_batch_transaction_throttled)
TraceEvent(SevError, "GetConsistentReadVersionError").error(e);
if (e.code() == error_code_batch_transaction_throttled && !cx->apiVersionAtLeast(630)) {
wait(delayJittered(5.0));
} else {
throw;
}
}
}
}
ACTOR Future<Void> readVersionBatcher(DatabaseContext* cx,
FutureStream<DatabaseContext::VersionRequest> versionStream,
TransactionPriority priority,
uint32_t flags) {
state std::vector<Promise<GetReadVersionReply>> requests;
state PromiseStream<Future<Void>> addActor;
state Future<Void> collection = actorCollection(addActor.getFuture());
state Future<Void> timeout;
state Optional<UID> debugID;
state bool send_batch;
state TransactionTagMap<uint32_t> tags;
// dynamic batching
state PromiseStream<double> replyTimes;
state PromiseStream<Error> _errorStream;
state double batchTime = 0;
state Span span("NAPI:readVersionBatcher"_loc);
loop {
send_batch = false;
choose {
when(DatabaseContext::VersionRequest req = waitNext(versionStream)) {
if (req.debugID.present()) {
if (!debugID.present()) {
debugID = nondeterministicRandom()->randomUniqueID();
}
g_traceBatch.addAttach("TransactionAttachID", req.debugID.get().first(), debugID.get().first());
}
span.addParent(req.spanContext);
requests.push_back(req.reply);
for (auto tag : req.tags) {
++tags[tag];
}
if (requests.size() == CLIENT_KNOBS->MAX_BATCH_SIZE)
send_batch = true;
else if (!timeout.isValid())
timeout = delay(batchTime, TaskPriority::GetConsistentReadVersion);
}
when(wait(timeout.isValid() ? timeout : Never())) { send_batch = true; }
// dynamic batching monitors reply latencies
when(double reply_latency = waitNext(replyTimes.getFuture())) {
double target_latency = reply_latency * 0.5;
batchTime = min(0.1 * target_latency + 0.9 * batchTime, CLIENT_KNOBS->GRV_BATCH_TIMEOUT);
}
when(wait(collection)) {} // for errors
}
if (send_batch) {
int count = requests.size();
ASSERT(count);
// dynamic batching
Promise<GetReadVersionReply> GRVReply;
requests.push_back(GRVReply);
addActor.send(ready(timeReply(GRVReply.getFuture(), replyTimes)));
Future<Void> batch = incrementalBroadcastWithError(
getConsistentReadVersion(span.context, cx, count, priority, flags, std::move(tags), std::move(debugID)),
std::move(requests),
CLIENT_KNOBS->BROADCAST_BATCH_SIZE);
span = Span("NAPI:readVersionBatcher"_loc);
tags.clear();
debugID = Optional<UID>();
requests.clear();
addActor.send(batch);
timeout = Future<Void>();
}
}
}
ACTOR Future<Version> extractReadVersion(Location location,
SpanID spanContext,
SpanID parent,
DatabaseContext* cx,
TransactionPriority priority,
Reference<TransactionLogInfo> trLogInfo,
Future<GetReadVersionReply> f,
bool lockAware,
double startTime,
Promise<Optional<Value>> metadataVersion,
TagSet tags) {
state Span span(spanContext, location, { parent });
GetReadVersionReply rep = wait(f);
double latency = now() - startTime;
cx->GRVLatencies.addSample(latency);
if (trLogInfo)
trLogInfo->addLog(FdbClientLogEvents::EventGetVersion_V3(
startTime, cx->clientLocality.dcId(), latency, priority, rep.version));
if (rep.version == 1 && rep.locked) {
throw proxy_memory_limit_exceeded();
}
if (rep.locked && !lockAware)
throw database_locked();
++cx->transactionReadVersionsCompleted;
switch (priority) {
case TransactionPriority::IMMEDIATE:
++cx->transactionImmediateReadVersionsCompleted;
break;
case TransactionPriority::DEFAULT:
++cx->transactionDefaultReadVersionsCompleted;
break;
case TransactionPriority::BATCH:
++cx->transactionBatchReadVersionsCompleted;
break;
default:
ASSERT(false);
}
if (tags.size() != 0) {
auto& priorityThrottledTags = cx->throttledTags[priority];
for (auto& tag : tags) {
auto itr = priorityThrottledTags.find(tag);
if (itr != priorityThrottledTags.end()) {
if (itr->second.expired()) {
priorityThrottledTags.erase(itr);
} else if (itr->second.throttleDuration() > 0) {
TEST(true); // throttling transaction after getting read version
++cx->transactionReadVersionsThrottled;
throw tag_throttled();
}
}
}
for (auto& tag : tags) {
auto itr = priorityThrottledTags.find(tag);
if (itr != priorityThrottledTags.end()) {
itr->second.addReleased(1);
}
}
}
if (rep.version > cx->metadataVersionCache[cx->mvCacheInsertLocation].first) {
cx->mvCacheInsertLocation = (cx->mvCacheInsertLocation + 1) % cx->metadataVersionCache.size();
cx->metadataVersionCache[cx->mvCacheInsertLocation] = std::make_pair(rep.version, rep.metadataVersion);
}
metadataVersion.send(rep.metadataVersion);
return rep.version;
}
Future<Version> Transaction::getReadVersion(uint32_t flags) {
if (!readVersion.isValid()) {
++cx->transactionReadVersions;
flags |= options.getReadVersionFlags;
switch (options.priority) {
case TransactionPriority::IMMEDIATE:
flags |= GetReadVersionRequest::PRIORITY_SYSTEM_IMMEDIATE;
++cx->transactionImmediateReadVersions;
break;
case TransactionPriority::DEFAULT:
flags |= GetReadVersionRequest::PRIORITY_DEFAULT;
++cx->transactionDefaultReadVersions;
break;
case TransactionPriority::BATCH:
flags |= GetReadVersionRequest::PRIORITY_BATCH;
++cx->transactionBatchReadVersions;
break;
default:
ASSERT(false);
}
if (options.tags.size() != 0) {
double maxThrottleDelay = 0.0;
bool canRecheck = false;
auto& priorityThrottledTags = cx->throttledTags[options.priority];
for (auto& tag : options.tags) {
auto itr = priorityThrottledTags.find(tag);
if (itr != priorityThrottledTags.end()) {
if (!itr->second.expired()) {
maxThrottleDelay = std::max(maxThrottleDelay, itr->second.throttleDuration());
canRecheck = itr->second.canRecheck();
} else {
priorityThrottledTags.erase(itr);
}
}
}
if (maxThrottleDelay > 0.0 && !canRecheck) { // TODO: allow delaying?
TEST(true); // Throttling tag before GRV request
++cx->transactionReadVersionsThrottled;
readVersion = tag_throttled();
return readVersion;
} else {
TEST(maxThrottleDelay > 0.0); // Rechecking throttle
}
for (auto& tag : options.tags) {
auto itr = priorityThrottledTags.find(tag);
if (itr != priorityThrottledTags.end()) {
itr->second.updateChecked();
}
}
}
auto& batcher = cx->versionBatcher[flags];
if (!batcher.actor.isValid()) {
batcher.actor = readVersionBatcher(cx.getPtr(), batcher.stream.getFuture(), options.priority, flags);
}
Location location = "NAPI:getReadVersion"_loc;
UID spanContext = deterministicRandom()->randomUniqueID();
auto const req = DatabaseContext::VersionRequest(spanContext, options.tags, info.debugID);
batcher.stream.send(req);
startTime = now();
readVersion = extractReadVersion(location,
spanContext,
info.spanID,
cx.getPtr(),
options.priority,
trLogInfo,
req.reply.getFuture(),
options.lockAware,
startTime,
metadataVersion,
options.tags);
}
return readVersion;
}
Optional<Version> Transaction::getCachedReadVersion() {
if (readVersion.isValid() && readVersion.isReady() && !readVersion.isError()) {
return readVersion.get();
} else {
return Optional<Version>();
}
}
Future<Standalone<StringRef>> Transaction::getVersionstamp() {
if (committing.isValid()) {
return transaction_invalid_version();
}
return versionstampPromise.getFuture();
}
// Gets the protocol version reported by a coordinator via the protocol info interface
ACTOR Future<ProtocolVersion> getCoordinatorProtocol(NetworkAddressList coordinatorAddresses) {
RequestStream<ProtocolInfoRequest> requestStream{ Endpoint{ { coordinatorAddresses }, WLTOKEN_PROTOCOL_INFO } };
ProtocolInfoReply reply = wait(retryBrokenPromise(requestStream, ProtocolInfoRequest{}));
return reply.version;
}
// Gets the protocol version reported by a coordinator in its connect packet
// If we are unable to get a version from the connect packet (e.g. because we lost connection with the peer), then this
// function will return with an unset result.
// If an expected version is given, this future won't return if the actual protocol version matches the expected version
ACTOR Future<Optional<ProtocolVersion>> getCoordinatorProtocolFromConnectPacket(
NetworkAddress coordinatorAddress,
Optional<ProtocolVersion> expectedVersion) {
state Reference<AsyncVar<Optional<ProtocolVersion>>> protocolVersion =
FlowTransport::transport().getPeerProtocolAsyncVar(coordinatorAddress);
loop {
if (protocolVersion->get().present() && protocolVersion->get() != expectedVersion) {
return protocolVersion->get();
}
Future<Void> change = protocolVersion->onChange();
if (!protocolVersion->get().present()) {
// If we still don't have any connection info after a timeout, retry sending the protocol version request
change = timeout(change, FLOW_KNOBS->CONNECTION_MONITOR_TIMEOUT, Void());
}
wait(change);
if (!protocolVersion->get().present()) {
return protocolVersion->get();
}
}
}
// Returns the protocol version reported by the given coordinator
// If an expected version is given, the future won't return until the protocol version is different than expected
ACTOR Future<ProtocolVersion> getClusterProtocolImpl(
Reference<AsyncVar<Optional<ClientLeaderRegInterface>>> coordinator,
Optional<ProtocolVersion> expectedVersion) {
state bool needToConnect = true;
state Future<ProtocolVersion> protocolVersion = Never();
loop {
if (!coordinator->get().present()) {
wait(coordinator->onChange());
} else {
Endpoint coordinatorEndpoint = coordinator->get().get().getLeader.getEndpoint();
if (needToConnect) {
// Even though we typically rely on the connect packet to get the protocol version, we need to send some
// request in order to start a connection. This protocol version request serves that purpose.
protocolVersion = getCoordinatorProtocol(coordinatorEndpoint.addresses);
needToConnect = false;
}
choose {
when(wait(coordinator->onChange())) { needToConnect = true; }
when(ProtocolVersion pv = wait(protocolVersion)) {
if (!expectedVersion.present() || expectedVersion.get() != pv) {
return pv;
}
protocolVersion = Never();
}
// Older versions of FDB don't have an endpoint to return the protocol version, so we get this info from
// the connect packet
when(Optional<ProtocolVersion> pv = wait(getCoordinatorProtocolFromConnectPacket(
coordinatorEndpoint.getPrimaryAddress(), expectedVersion))) {
if (pv.present()) {
return pv.get();
} else {
needToConnect = true;
}
}
}
}
}
}
// Returns the protocol version reported by the coordinator this client is currently connected to
// If an expected version is given, the future won't return until the protocol version is different than expected
// Note: this will never return if the server is running a protocol from FDB 5.0 or older
Future<ProtocolVersion> DatabaseContext::getClusterProtocol(Optional<ProtocolVersion> expectedVersion) {
return getClusterProtocolImpl(coordinator, expectedVersion);
}
uint32_t Transaction::getSize() {
auto s = tr.transaction.mutations.expectedSize() + tr.transaction.read_conflict_ranges.expectedSize() +
tr.transaction.write_conflict_ranges.expectedSize();
return s;
}
Future<Void> Transaction::onError(Error const& e) {
if (e.code() == error_code_success) {
return client_invalid_operation();
}
if (e.code() == error_code_not_committed || e.code() == error_code_commit_unknown_result ||
e.code() == error_code_database_locked || e.code() == error_code_proxy_memory_limit_exceeded ||
e.code() == error_code_process_behind || e.code() == error_code_batch_transaction_throttled ||
e.code() == error_code_tag_throttled) {
if (e.code() == error_code_not_committed)
++cx->transactionsNotCommitted;
else if (e.code() == error_code_commit_unknown_result)
++cx->transactionsMaybeCommitted;
else if (e.code() == error_code_proxy_memory_limit_exceeded)
++cx->transactionsResourceConstrained;
else if (e.code() == error_code_process_behind)
++cx->transactionsProcessBehind;
else if (e.code() == error_code_batch_transaction_throttled || e.code() == error_code_tag_throttled) {
++cx->transactionsThrottled;
}
double backoff = getBackoff(e.code());
reset();
return delay(backoff, info.taskID);
}
if (e.code() == error_code_transaction_too_old || e.code() == error_code_future_version) {
if (e.code() == error_code_transaction_too_old)
++cx->transactionsTooOld;
else if (e.code() == error_code_future_version)
++cx->transactionsFutureVersions;
double maxBackoff = options.maxBackoff;
reset();
return delay(std::min(CLIENT_KNOBS->FUTURE_VERSION_RETRY_DELAY, maxBackoff), info.taskID);
}
if (g_network->isSimulated() && ++numErrors % 10 == 0)
TraceEvent(SevWarnAlways, "TransactionTooManyRetries").detail("NumRetries", numErrors);
return e;
}
ACTOR Future<StorageMetrics> getStorageMetricsLargeKeyRange(Database cx, KeyRange keys);
ACTOR Future<StorageMetrics> doGetStorageMetrics(Database cx, KeyRange keys, Reference<LocationInfo> locationInfo) {
loop {
try {
WaitMetricsRequest req(keys, StorageMetrics(), StorageMetrics());
req.min.bytes = 0;
req.max.bytes = -1;
StorageMetrics m = wait(loadBalance(
locationInfo->locations(), &StorageServerInterface::waitMetrics, req, TaskPriority::DataDistribution));
return m;
} catch (Error& e) {
if (e.code() != error_code_wrong_shard_server && e.code() != error_code_all_alternatives_failed) {
TraceEvent(SevError, "WaitStorageMetricsError").error(e);
throw;
}
wait(delay(CLIENT_KNOBS->WRONG_SHARD_SERVER_DELAY, TaskPriority::DataDistribution));
cx->invalidateCache(keys);
StorageMetrics m = wait(getStorageMetricsLargeKeyRange(cx, keys));
return m;
}
}
}
ACTOR Future<StorageMetrics> getStorageMetricsLargeKeyRange(Database cx, KeyRange keys) {
state Span span("NAPI:GetStorageMetricsLargeKeyRange"_loc);
vector<pair<KeyRange, Reference<LocationInfo>>> locations =
wait(getKeyRangeLocations(cx,
keys,
std::numeric_limits<int>::max(),
false,
&StorageServerInterface::waitMetrics,
TransactionInfo(TaskPriority::DataDistribution, span.context)));
state int nLocs = locations.size();
state vector<Future<StorageMetrics>> fx(nLocs);
state StorageMetrics total;
KeyRef partBegin, partEnd;
for (int i = 0; i < nLocs; i++) {
partBegin = (i == 0) ? keys.begin : locations[i].first.begin;
partEnd = (i == nLocs - 1) ? keys.end : locations[i].first.end;
fx[i] = doGetStorageMetrics(cx, KeyRangeRef(partBegin, partEnd), locations[i].second);
}
wait(waitForAll(fx));
for (int i = 0; i < nLocs; i++) {
total += fx[i].get();
}
return total;
}
ACTOR Future<Void> trackBoundedStorageMetrics(KeyRange keys,
Reference<LocationInfo> location,
StorageMetrics x,
StorageMetrics halfError,
PromiseStream<StorageMetrics> deltaStream) {
try {
loop {
WaitMetricsRequest req(keys, x - halfError, x + halfError);
StorageMetrics nextX = wait(loadBalance(location->locations(), &StorageServerInterface::waitMetrics, req));
deltaStream.send(nextX - x);
x = nextX;
}
} catch (Error& e) {
deltaStream.sendError(e);
throw e;
}
}
ACTOR Future<StorageMetrics> waitStorageMetricsMultipleLocations(
vector<pair<KeyRange, Reference<LocationInfo>>> locations,
StorageMetrics min,
StorageMetrics max,
StorageMetrics permittedError) {
state int nLocs = locations.size();
state vector<Future<StorageMetrics>> fx(nLocs);
state StorageMetrics total;
state PromiseStream<StorageMetrics> deltas;
state vector<Future<Void>> wx(fx.size());
state StorageMetrics halfErrorPerMachine = permittedError * (0.5 / nLocs);
state StorageMetrics maxPlus = max + halfErrorPerMachine * (nLocs - 1);
state StorageMetrics minMinus = min - halfErrorPerMachine * (nLocs - 1);
for (int i = 0; i < nLocs; i++) {
WaitMetricsRequest req(locations[i].first, StorageMetrics(), StorageMetrics());
req.min.bytes = 0;
req.max.bytes = -1;
fx[i] = loadBalance(locations[i].second->locations(),
&StorageServerInterface::waitMetrics,
req,
TaskPriority::DataDistribution);
}
wait(waitForAll(fx));
// invariant: true total is between (total-permittedError/2, total+permittedError/2)
for (int i = 0; i < nLocs; i++)
total += fx[i].get();
if (!total.allLessOrEqual(maxPlus))
return total;
if (!minMinus.allLessOrEqual(total))
return total;
for (int i = 0; i < nLocs; i++)
wx[i] = trackBoundedStorageMetrics(
locations[i].first, locations[i].second, fx[i].get(), halfErrorPerMachine, deltas);
loop {
StorageMetrics delta = waitNext(deltas.getFuture());
total += delta;
if (!total.allLessOrEqual(maxPlus))
return total;
if (!minMinus.allLessOrEqual(total))
return total;
}
}
ACTOR Future<StorageMetrics> extractMetrics(Future<std::pair<Optional<StorageMetrics>, int>> fMetrics) {
std::pair<Optional<StorageMetrics>, int> x = wait(fMetrics);
return x.first.get();
}
ACTOR Future<Standalone<VectorRef<ReadHotRangeWithMetrics>>> getReadHotRanges(Database cx, KeyRange keys) {
state Span span("NAPI:GetReadHotRanges"_loc);
loop {
int64_t shardLimit = 100; // Shard limit here does not really matter since this function is currently only used
// to find the read-hot sub ranges within a read-hot shard.
vector<pair<KeyRange, Reference<LocationInfo>>> locations =
wait(getKeyRangeLocations(cx,
keys,
shardLimit,
false,
&StorageServerInterface::getReadHotRanges,
TransactionInfo(TaskPriority::DataDistribution, span.context)));
try {
// TODO: how to handle this?
// This function is called whenever a shard becomes read-hot. But somehow the shard was splitted across more
// than one storage server after become read-hot and before this function is called, i.e. a race condition.
// Should we abort and wait the newly splitted shards to be hot again?
state int nLocs = locations.size();
// if (nLocs > 1) {
// TraceEvent("RHDDebug")
// .detail("NumSSIs", nLocs)
// .detail("KeysBegin", keys.begin.printable().c_str())
// .detail("KeysEnd", keys.end.printable().c_str());
// }
state vector<Future<ReadHotSubRangeReply>> fReplies(nLocs);
KeyRef partBegin, partEnd;
for (int i = 0; i < nLocs; i++) {
partBegin = (i == 0) ? keys.begin : locations[i].first.begin;
partEnd = (i == nLocs - 1) ? keys.end : locations[i].first.end;
ReadHotSubRangeRequest req(KeyRangeRef(partBegin, partEnd));
fReplies[i] = loadBalance(locations[i].second->locations(),
&StorageServerInterface::getReadHotRanges,
req,
TaskPriority::DataDistribution);
}
wait(waitForAll(fReplies));
if (nLocs == 1) {
TEST(true); // Single-shard read hot range request
return fReplies[0].get().readHotRanges;
} else {
TEST(true); // Multi-shard read hot range request
Standalone<VectorRef<ReadHotRangeWithMetrics>> results;
for (int i = 0; i < nLocs; i++) {
results.append(results.arena(),
fReplies[i].get().readHotRanges.begin(),
fReplies[i].get().readHotRanges.size());
results.arena().dependsOn(fReplies[i].get().readHotRanges.arena());
}
return results;
}
} catch (Error& e) {
if (e.code() != error_code_wrong_shard_server && e.code() != error_code_all_alternatives_failed) {
TraceEvent(SevError, "GetReadHotSubRangesError").error(e);
throw;
}
cx->invalidateCache(keys);
wait(delay(CLIENT_KNOBS->WRONG_SHARD_SERVER_DELAY, TaskPriority::DataDistribution));
}
}
}
ACTOR Future<std::pair<Optional<StorageMetrics>, int>> waitStorageMetrics(Database cx,
KeyRange keys,
StorageMetrics min,
StorageMetrics max,
StorageMetrics permittedError,
int shardLimit,
int expectedShardCount) {
state Span span("NAPI:WaitStorageMetrics"_loc);
loop {
vector<pair<KeyRange, Reference<LocationInfo>>> locations =
wait(getKeyRangeLocations(cx,
keys,
shardLimit,
false,
&StorageServerInterface::waitMetrics,
TransactionInfo(TaskPriority::DataDistribution, span.context)));
if (expectedShardCount >= 0 && locations.size() != expectedShardCount) {
return std::make_pair(Optional<StorageMetrics>(), locations.size());
}
// SOMEDAY: Right now, if there are too many shards we delay and check again later. There may be a better
// solution to this.
if (locations.size() < shardLimit) {
try {
Future<StorageMetrics> fx;
if (locations.size() > 1) {
fx = waitStorageMetricsMultipleLocations(locations, min, max, permittedError);
} else {
WaitMetricsRequest req(keys, min, max);
fx = loadBalance(locations[0].second->locations(),
&StorageServerInterface::waitMetrics,
req,
TaskPriority::DataDistribution);
}
StorageMetrics x = wait(fx);
return std::make_pair(x, -1);
} catch (Error& e) {
if (e.code() != error_code_wrong_shard_server && e.code() != error_code_all_alternatives_failed) {
TraceEvent(SevError, "WaitStorageMetricsError").error(e);
throw;
}
cx->invalidateCache(keys);
wait(delay(CLIENT_KNOBS->WRONG_SHARD_SERVER_DELAY, TaskPriority::DataDistribution));
}
} else {
TraceEvent(SevWarn, "WaitStorageMetricsPenalty")
.detail("Keys", keys)
.detail("Limit", CLIENT_KNOBS->STORAGE_METRICS_SHARD_LIMIT)
.detail("JitteredSecondsOfPenitence", CLIENT_KNOBS->STORAGE_METRICS_TOO_MANY_SHARDS_DELAY);
wait(delayJittered(CLIENT_KNOBS->STORAGE_METRICS_TOO_MANY_SHARDS_DELAY, TaskPriority::DataDistribution));
// make sure that the next getKeyRangeLocations() call will actually re-fetch the range
cx->invalidateCache(keys);
}
}
}
Future<std::pair<Optional<StorageMetrics>, int>> Transaction::waitStorageMetrics(KeyRange const& keys,
StorageMetrics const& min,
StorageMetrics const& max,
StorageMetrics const& permittedError,
int shardLimit,
int expectedShardCount) {
return ::waitStorageMetrics(cx, keys, min, max, permittedError, shardLimit, expectedShardCount);
}
Future<StorageMetrics> Transaction::getStorageMetrics(KeyRange const& keys, int shardLimit) {
if (shardLimit > 0) {
StorageMetrics m;
m.bytes = -1;
return extractMetrics(::waitStorageMetrics(cx, keys, StorageMetrics(), m, StorageMetrics(), shardLimit, -1));
} else {
return ::getStorageMetricsLargeKeyRange(cx, keys);
}
}
ACTOR Future<Standalone<VectorRef<DDMetricsRef>>> waitDataDistributionMetricsList(Database cx,
KeyRange keys,
int shardLimit) {
loop {
choose {
when(wait(cx->onProxiesChanged())) {}
when(ErrorOr<GetDDMetricsReply> rep =
wait(errorOr(basicLoadBalance(cx->getCommitProxies(false),
&CommitProxyInterface::getDDMetrics,
GetDDMetricsRequest(keys, shardLimit))))) {
if (rep.isError()) {
throw rep.getError();
}
return rep.get().storageMetricsList;
}
}
}
}
Future<Standalone<VectorRef<ReadHotRangeWithMetrics>>> Transaction::getReadHotRanges(KeyRange const& keys) {
return ::getReadHotRanges(cx, keys);
}
ACTOR Future<Standalone<VectorRef<KeyRef>>> getRangeSplitPoints(Database cx, KeyRange keys, int64_t chunkSize) {
state Span span("NAPI:GetRangeSplitPoints"_loc);
loop {
state vector<pair<KeyRange, Reference<LocationInfo>>> locations =
wait(getKeyRangeLocations(cx,
keys,
100,
false,
&StorageServerInterface::getRangeSplitPoints,
TransactionInfo(TaskPriority::DataDistribution, span.context)));
try {
state int nLocs = locations.size();
state vector<Future<SplitRangeReply>> fReplies(nLocs);
KeyRef partBegin, partEnd;
for (int i = 0; i < nLocs; i++) {
partBegin = (i == 0) ? keys.begin : locations[i].first.begin;
partEnd = (i == nLocs - 1) ? keys.end : locations[i].first.end;
SplitRangeRequest req(KeyRangeRef(partBegin, partEnd), chunkSize);
fReplies[i] = loadBalance(locations[i].second->locations(),
&StorageServerInterface::getRangeSplitPoints,
req,
TaskPriority::DataDistribution);
}
wait(waitForAll(fReplies));
Standalone<VectorRef<KeyRef>> results;
results.push_back_deep(results.arena(), keys.begin);
for (int i = 0; i < nLocs; i++) {
if (i > 0) {
results.push_back_deep(results.arena(), locations[i].first.begin); // Need this shard boundary
}
if (fReplies[i].get().splitPoints.size() > 0) {
results.append(
results.arena(), fReplies[i].get().splitPoints.begin(), fReplies[i].get().splitPoints.size());
results.arena().dependsOn(fReplies[i].get().splitPoints.arena());
}
}
if (results.back() != keys.end) {
results.push_back_deep(results.arena(), keys.end);
}
return results;
} catch (Error& e) {
if (e.code() != error_code_wrong_shard_server && e.code() != error_code_all_alternatives_failed) {
TraceEvent(SevError, "GetRangeSplitPoints").error(e);
throw;
}
cx->invalidateCache(keys);
wait(delay(CLIENT_KNOBS->WRONG_SHARD_SERVER_DELAY, TaskPriority::DataDistribution));
}
}
}
Future<Standalone<VectorRef<KeyRef>>> Transaction::getRangeSplitPoints(KeyRange const& keys, int64_t chunkSize) {
return ::getRangeSplitPoints(cx, keys, chunkSize);
}
ACTOR Future<Standalone<VectorRef<KeyRef>>> splitStorageMetrics(Database cx,
KeyRange keys,
StorageMetrics limit,
StorageMetrics estimated) {
state Span span("NAPI:SplitStorageMetrics"_loc);
loop {
state vector<pair<KeyRange, Reference<LocationInfo>>> locations =
wait(getKeyRangeLocations(cx,
keys,
CLIENT_KNOBS->STORAGE_METRICS_SHARD_LIMIT,
false,
&StorageServerInterface::splitMetrics,
TransactionInfo(TaskPriority::DataDistribution, span.context)));
state StorageMetrics used;
state Standalone<VectorRef<KeyRef>> results;
// SOMEDAY: Right now, if there are too many shards we delay and check again later. There may be a better
// solution to this.
if (locations.size() == CLIENT_KNOBS->STORAGE_METRICS_SHARD_LIMIT) {
wait(delay(CLIENT_KNOBS->STORAGE_METRICS_TOO_MANY_SHARDS_DELAY, TaskPriority::DataDistribution));
cx->invalidateCache(keys);
} else {
results.push_back_deep(results.arena(), keys.begin);
try {
//TraceEvent("SplitStorageMetrics").detail("Locations", locations.size());
state int i = 0;
for (; i < locations.size(); i++) {
SplitMetricsRequest req(locations[i].first, limit, used, estimated, i == locations.size() - 1);
SplitMetricsReply res = wait(loadBalance(locations[i].second->locations(),
&StorageServerInterface::splitMetrics,
req,
TaskPriority::DataDistribution));
if (res.splits.size() &&
res.splits[0] <= results.back()) { // split points are out of order, possibly because of moving
// data, throw error to retry
ASSERT_WE_THINK(
false); // FIXME: This seems impossible and doesn't seem to be covered by testing
throw all_alternatives_failed();
}
if (res.splits.size()) {
results.append(results.arena(), res.splits.begin(), res.splits.size());
results.arena().dependsOn(res.splits.arena());
}
used = res.used;
//TraceEvent("SplitStorageMetricsResult").detail("Used", used.bytes).detail("Location", i).detail("Size", res.splits.size());
}
if (used.allLessOrEqual(limit * CLIENT_KNOBS->STORAGE_METRICS_UNFAIR_SPLIT_LIMIT)) {
results.resize(results.arena(), results.size() - 1);
}
results.push_back_deep(results.arena(), keys.end);
return results;
} catch (Error& e) {
if (e.code() != error_code_wrong_shard_server && e.code() != error_code_all_alternatives_failed) {
TraceEvent(SevError, "SplitStorageMetricsError").error(e);
throw;
}
cx->invalidateCache(keys);
wait(delay(CLIENT_KNOBS->WRONG_SHARD_SERVER_DELAY, TaskPriority::DataDistribution));
}
}
}
}
Future<Standalone<VectorRef<KeyRef>>> Transaction::splitStorageMetrics(KeyRange const& keys,
StorageMetrics const& limit,
StorageMetrics const& estimated) {
return ::splitStorageMetrics(cx, keys, limit, estimated);
}
void Transaction::checkDeferredError() {
cx->checkDeferredError();
}
Reference<TransactionLogInfo> Transaction::createTrLogInfoProbabilistically(const Database& cx) {
if (!cx->isError()) {
double clientSamplingProbability = GlobalConfig::globalConfig().get<double>(
fdbClientInfoTxnSampleRate, CLIENT_KNOBS->CSI_SAMPLING_PROBABILITY);
if (((networkOptions.logClientInfo.present() && networkOptions.logClientInfo.get()) || BUGGIFY) &&
deterministicRandom()->random01() < clientSamplingProbability &&
(!g_network->isSimulated() || !g_simulator.speedUpSimulation)) {
return makeReference<TransactionLogInfo>(TransactionLogInfo::DATABASE);
}
}
return Reference<TransactionLogInfo>();
}
void Transaction::setTransactionID(uint64_t id) {
ASSERT(getSize() == 0);
info.spanID = SpanID(id, info.spanID.second());
}
void Transaction::setToken(uint64_t token) {
ASSERT(getSize() == 0);
info.spanID = SpanID(info.spanID.first(), token);
}
void enableClientInfoLogging() {
ASSERT(networkOptions.logClientInfo.present() == false);
networkOptions.logClientInfo = true;
TraceEvent(SevInfo, "ClientInfoLoggingEnabled");
}
ACTOR Future<Void> snapCreate(Database cx, Standalone<StringRef> snapCmd, UID snapUID) {
TraceEvent("SnapCreateEnter").detail("SnapCmd", snapCmd.toString()).detail("UID", snapUID);
try {
loop {
choose {
when(wait(cx->onProxiesChanged())) {}
when(wait(basicLoadBalance(cx->getCommitProxies(false),
&CommitProxyInterface::proxySnapReq,
ProxySnapRequest(snapCmd, snapUID, snapUID),
cx->taskID,
true /*atmostOnce*/))) {
TraceEvent("SnapCreateExit").detail("SnapCmd", snapCmd.toString()).detail("UID", snapUID);
return Void();
}
}
}
} catch (Error& e) {
TraceEvent("SnapCreateError").detail("SnapCmd", snapCmd.toString()).detail("UID", snapUID).error(e);
throw;
}
}
ACTOR Future<bool> checkSafeExclusions(Database cx, vector<AddressExclusion> exclusions) {
TraceEvent("ExclusionSafetyCheckBegin")
.detail("NumExclusion", exclusions.size())
.detail("Exclusions", describe(exclusions));
state ExclusionSafetyCheckRequest req(exclusions);
state bool ddCheck;
try {
loop {
choose {
when(wait(cx->onProxiesChanged())) {}
when(ExclusionSafetyCheckReply _ddCheck =
wait(basicLoadBalance(cx->getCommitProxies(false),
&CommitProxyInterface::exclusionSafetyCheckReq,
req,
cx->taskID))) {
ddCheck = _ddCheck.safe;
break;
}
}
}
} catch (Error& e) {
if (e.code() != error_code_actor_cancelled) {
TraceEvent("ExclusionSafetyCheckError")
.detail("NumExclusion", exclusions.size())
.detail("Exclusions", describe(exclusions))
.error(e);
}
throw;
}
TraceEvent("ExclusionSafetyCheckCoordinators");
state ClientCoordinators coordinatorList(cx->getConnectionFile());
state vector<Future<Optional<LeaderInfo>>> leaderServers;
leaderServers.reserve(coordinatorList.clientLeaderServers.size());
for (int i = 0; i < coordinatorList.clientLeaderServers.size(); i++) {
leaderServers.push_back(retryBrokenPromise(coordinatorList.clientLeaderServers[i].getLeader,
GetLeaderRequest(coordinatorList.clusterKey, UID()),
TaskPriority::CoordinationReply));
}
// Wait for quorum so we don't dismiss live coordinators as unreachable by acting too fast
choose {
when(wait(smartQuorum(leaderServers, leaderServers.size() / 2 + 1, 1.0))) {}
when(wait(delay(3.0))) {
TraceEvent("ExclusionSafetyCheckNoCoordinatorQuorum");
return false;
}
}
int attemptCoordinatorExclude = 0;
int coordinatorsUnavailable = 0;
for (int i = 0; i < leaderServers.size(); i++) {
NetworkAddress leaderAddress =
coordinatorList.clientLeaderServers[i].getLeader.getEndpoint().getPrimaryAddress();
if (leaderServers[i].isReady()) {
if ((std::count(
exclusions.begin(), exclusions.end(), AddressExclusion(leaderAddress.ip, leaderAddress.port)) ||
std::count(exclusions.begin(), exclusions.end(), AddressExclusion(leaderAddress.ip)))) {
attemptCoordinatorExclude++;
}
} else {
coordinatorsUnavailable++;
}
}
int faultTolerance = (leaderServers.size() - 1) / 2 - coordinatorsUnavailable;
bool coordinatorCheck = (attemptCoordinatorExclude <= faultTolerance);
TraceEvent("ExclusionSafetyCheckFinish")
.detail("CoordinatorListSize", leaderServers.size())
.detail("NumExclusions", exclusions.size())
.detail("FaultTolerance", faultTolerance)
.detail("AttemptCoordinatorExclude", attemptCoordinatorExclude)
.detail("CoordinatorCheck", coordinatorCheck)
.detail("DataDistributorCheck", ddCheck);
return (ddCheck && coordinatorCheck);
}
ACTOR Future<Void> addInterfaceActor(std::map<Key, std::pair<Value, ClientLeaderRegInterface>>* address_interface,
Reference<FlowLock> connectLock,
KeyValue kv) {
wait(connectLock->take());
state FlowLock::Releaser releaser(*connectLock);
state ClientWorkerInterface workerInterf =
BinaryReader::fromStringRef<ClientWorkerInterface>(kv.value, IncludeVersion());
state ClientLeaderRegInterface leaderInterf(workerInterf.address());
choose {
when(Optional<LeaderInfo> rep =
wait(brokenPromiseToNever(leaderInterf.getLeader.getReply(GetLeaderRequest())))) {
StringRef ip_port =
kv.key.endsWith(LiteralStringRef(":tls")) ? kv.key.removeSuffix(LiteralStringRef(":tls")) : kv.key;
(*address_interface)[ip_port] = std::make_pair(kv.value, leaderInterf);
if (workerInterf.reboot.getEndpoint().addresses.secondaryAddress.present()) {
Key full_ip_port2 =
StringRef(workerInterf.reboot.getEndpoint().addresses.secondaryAddress.get().toString());
StringRef ip_port2 = full_ip_port2.endsWith(LiteralStringRef(":tls"))
? full_ip_port2.removeSuffix(LiteralStringRef(":tls"))
: full_ip_port2;
(*address_interface)[ip_port2] = std::make_pair(kv.value, leaderInterf);
}
}
when(wait(delay(CLIENT_KNOBS->CLI_CONNECT_TIMEOUT))) {} // NOTE : change timeout time here if necessary
}
return Void();
}
ACTOR static Future<int64_t> rebootWorkerActor(DatabaseContext* cx, ValueRef addr, bool check, int duration) {
// ignore negative value
if (duration < 0)
duration = 0;
// fetch the addresses of all workers
state std::map<Key, std::pair<Value, ClientLeaderRegInterface>> address_interface;
if (!cx->getConnectionFile())
return 0;
Standalone<RangeResultRef> kvs = wait(getWorkerInterfaces(cx->getConnectionFile()));
ASSERT(!kvs.more);
// Note: reuse this knob from fdbcli, change it if necessary
Reference<FlowLock> connectLock(new FlowLock(CLIENT_KNOBS->CLI_CONNECT_PARALLELISM));
std::vector<Future<Void>> addInterfs;
for (const auto& it : kvs) {
addInterfs.push_back(addInterfaceActor(&address_interface, connectLock, it));
}
wait(waitForAll(addInterfs));
if (!address_interface.count(addr))
return 0;
BinaryReader::fromStringRef<ClientWorkerInterface>(address_interface[addr].first, IncludeVersion())
.reboot.send(RebootRequest(false, check, duration));
return 1;
}
Future<int64_t> DatabaseContext::rebootWorker(StringRef addr, bool check, int duration) {
return rebootWorkerActor(this, addr, check, duration);
}
Future<Void> DatabaseContext::forceRecoveryWithDataLoss(StringRef dcId) {
return forceRecovery(getConnectionFile(), dcId);
}
ACTOR static Future<Void> createSnapshotActor(DatabaseContext* cx, UID snapUID, StringRef snapCmd) {
wait(mgmtSnapCreate(cx->clone(), snapCmd, snapUID));
return Void();
}
Future<Void> DatabaseContext::createSnapshot(StringRef uid, StringRef snapshot_command) {
std::string uid_str = uid.toString();
if (!std::all_of(uid_str.begin(), uid_str.end(), [](unsigned char c) { return std::isxdigit(c); }) ||
uid_str.size() != 32) {
// only 32-length hex string is considered as a valid UID
throw snap_invalid_uid_string();
}
return createSnapshotActor(this, UID::fromString(uid_str), snapshot_command);
}