foundationdb/fdbserver/SimulatedCluster.actor.cpp

1192 lines
49 KiB
C++

/*
* SimulatedCluster.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <fstream>
#include "flow/actorcompiler.h"
#include "fdbrpc/simulator.h"
#include "fdbclient/FailureMonitorClient.h"
#include "fdbclient/DatabaseContext.h"
#include "TesterInterface.h"
#include "WorkerInterface.h"
#include "fdbclient/ClusterInterface.h"
#include "Knobs.h"
#include "ClusterRecruitmentInterface.h"
#include "fdbserver/CoordinationInterface.h"
#include "fdbmonitor/SimpleIni.h"
#include "fdbrpc/AsyncFileNonDurable.actor.h"
#include "fdbrpc/TLSConnection.h"
#include "fdbclient/ManagementAPI.h"
#include "fdbclient/NativeAPI.h"
#include "fdbclient/BackupAgent.h"
#ifndef WIN32
#include "versions.h"
#endif
#undef max
#undef min
extern bool buggifyActivated;
extern "C" int g_expect_full_pointermap;
extern const char* getHGVersion();
const int PROCESS_START_TIME = 4;
const int MACHINE_REBOOT_TIME = 10;
bool destructed = false;
static const char* certBytes =
"-----BEGIN CERTIFICATE-----\n"
"MIIEGzCCAwOgAwIBAgIJANUQj1rRA2XMMA0GCSqGSIb3DQEBBQUAMIGjMQswCQYD\n"
"VQQGEwJVUzELMAkGA1UECAwCVkExDzANBgNVBAcMBlZpZW5uYTEaMBgGA1UECgwR\n"
"Rm91bmRhdGlvbkRCLCBMTEMxGTAXBgNVBAsMEFRlc3QgZW5naW5lZXJpbmcxFTAT\n"
"BgNVBAMMDE1yLiBCaWcgVHVuYTEoMCYGCSqGSIb3DQEJARYZYmlnLnR1bmFAZm91\n"
"bmRhdGlvbmRiLmNvbTAeFw0xNDEyMDUxNTEyMjFaFw0yNDEyMDIxNTEyMjFaMIGj\n"
"MQswCQYDVQQGEwJVUzELMAkGA1UECAwCVkExDzANBgNVBAcMBlZpZW5uYTEaMBgG\n"
"A1UECgwRRm91bmRhdGlvbkRCLCBMTEMxGTAXBgNVBAsMEFRlc3QgZW5naW5lZXJp\n"
"bmcxFTATBgNVBAMMDE1yLiBCaWcgVHVuYTEoMCYGCSqGSIb3DQEJARYZYmlnLnR1\n"
"bmFAZm91bmRhdGlvbmRiLmNvbTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoC\n"
"ggEBAKZTL2edDkiet4HBTZnjysn6gOVZH2MP02KVBIv/H7e+3w7ZOIRvcPzhZe9M\n"
"3cGH1t/pkr9DSXvzIb42EffMVlpLD2VQn2H8VC2QSdJCIQcf802u+Taf+XtW6K1h\n"
"p/YPL1uhdopUs3c1oon8ykKwnOfrQYgv5pUa7jQdMkltI2MQJU3uFq3Z/LHTvIKe\n"
"FN+bqK0iYhZthwMG7Rld4+RgKZoT4u1B6w/duEWk9KLjgs7fTf3Oe6JHCYNqwBJi\n"
"78sJalwXz9Wf8wmMaYSG0XNA7vBOdpTFhVPSsh6e3rkydf5HydMade/II98MWpMe\n"
"hFg7FFMaJP6ig8p5iL+9QP2VMCkCAwEAAaNQME4wHQYDVR0OBBYEFIXGmIcKptBP\n"
"v3i9WS/mK78o5E/MMB8GA1UdIwQYMBaAFIXGmIcKptBPv3i9WS/mK78o5E/MMAwG\n"
"A1UdEwQFMAMBAf8wDQYJKoZIhvcNAQEFBQADggEBAJkVgNGOXT+ZHCNEYLjr/6OM\n"
"UCHvwlMeaEyqxaOmK26J2kAADPhjBZ7lZOHWb2Wzb+BiQUIFGwNIMoRvsg8skpJa\n"
"OCqpVciHVXY/U8BiYY70DKozRza93Ab9om3pySGDJ/akdCjqbMT1Cb7Kloyw+hNh\n"
"XD4MML0lYiUE9KK35xyK6FgTx4A7IXl4b3lWBgglqTh4+P5J1+xy8AYJ0VfPoP7y\n"
"OoZgwAmkpkMnalReNkN7LALHGqMzv/qH04ODlkU/HUGgExtnINMxK9VEDIe/yLGm\n"
"DHy7gcQMj5Hyymack/d4ZF8CSrYpGZQeZGXoxOmTDwWcXgnYA+2o7lOYPb5Uu08=\n"
"-----END CERTIFICATE-----\n"
"-----BEGIN PRIVATE KEY-----\n"
"MIIEvwIBADANBgkqhkiG9w0BAQEFAASCBKkwggSlAgEAAoIBAQCmUy9nnQ5InreB\n"
"wU2Z48rJ+oDlWR9jD9NilQSL/x+3vt8O2TiEb3D84WXvTN3Bh9bf6ZK/Q0l78yG+\n"
"NhH3zFZaSw9lUJ9h/FQtkEnSQiEHH/NNrvk2n/l7VuitYaf2Dy9boXaKVLN3NaKJ\n"
"/MpCsJzn60GIL+aVGu40HTJJbSNjECVN7hat2fyx07yCnhTfm6itImIWbYcDBu0Z\n"
"XePkYCmaE+LtQesP3bhFpPSi44LO3039znuiRwmDasASYu/LCWpcF8/Vn/MJjGmE\n"
"htFzQO7wTnaUxYVT0rIent65MnX+R8nTGnXvyCPfDFqTHoRYOxRTGiT+ooPKeYi/\n"
"vUD9lTApAgMBAAECggEBAIYCmDtfq9aPK0P8v82yX/4FPD2OZV+nrKXNc3BpCuE9\n"
"hPOtyX/LWrol0b/Rqwr3rAWVaIt6Z4bbCuD7J9cEaL8voyP6pbCJYjmj/BbQ+VOI\n"
"Rrzcsid1Fcpu5+JqwK3c5kdp/NzQChmOuXt8lmrNal7iilZ0YdDZdfu/WnkW2mBB\n"
"oQHkujlnWr4PNYdwMOnBU6TwdOuz+inPVMLohOO0Vr585OxPsGzG2Ud3yQ/t34Cq\n"
"F9nmOXQoszftGKsL1yuh/3fGj/O86g/CRsUy05qZhDDBEYQD6qZCvD5+yp8oOWIR\n"
"SljM3GXDBnJqRPhP+Nyf6e6/GoQtfVZ9MPRzDDPzIBECgYEA2kX/zAs6taOiNqCb\n"
"6nVGe7/3uQJz/CkmOSKIFKUu7lCEUjmMYpK3Xzp26RTUR9cT+g9y+cnJO1Vbaxtf\n"
"Qidje6K+Oi1pQyUGQ6W+U8cPJHz43PVa7IB5Az5i/sS2tu0BGhvGo9G6iYQjxXeD\n"
"1197DRACgnm5AORQMum616XvSPMCgYEAwxKbkAzJzfZF6A3Ys+/0kycNfDP8xZoC\n"
"1zV3d1b2JncsdAPCHYSKtpniRrQN9ASa3RMdkh+wrMN/KlbtU9Ddoc4NHxSTFV7F\n"
"wypFMzLZslqkQ6uHnVVewHV7prfoKsMci2c9iHO7W8TEv4aqW8XDd8OozP3/q2j4\n"
"hvL7VIAVqXMCgYEAwAFnfOQ75uBkp00tGlfDgsRhc5vWz3CbMRNRRWfxGq41V+dL\n"
"uMJ7EAfr5ijue6uU5RmF+HkqzUjOvC894oGnn3CPibm8qNX+5q7799JZXa2ZdTVX\n"
"oEd7LAFLL/V3DP77Qy4/1Id/Ycydcu0pSuGw6tK0gnX06fXtHnxAYcaT8UUCgYAE\n"
"MytcP5o8r/ezVlD7Fsh6PpYAvZHMo1M6VPFchWfJTjmLyeTtA8SEx+1iPlAql8rJ\n"
"xbaWRc5k+dSMEdEMQ+vxpuELcUL1a9PwLsHMp2SefWsZ9eB2l7bxh9YAsebyvL6p\n"
"lbBydqNrB2KBCSIz1Z8uveytdS6C/0CSjzqwCA3vVwKBgQDAXqjo3xrzMlHeXm5o\n"
"qH/OjajjqbnPXHolHDitbLubyQ4E6KhMBMxfChBe/8VptB/Gs0efVbMVGuabxY7Q\n"
"iastGId8HyONy3UPGPxCn4b95cIxKvdpt+hvWtYHIBCfHXluQK7zsDMgvtXjYNiz\n"
"peZRikYlwmu1K2YRTf7oLE2Ogw==\n"
"-----END PRIVATE KEY-----\n";
template <class T>
T simulate( const T& in ) {
BinaryWriter writer(AssumeVersion(currentProtocolVersion));
writer << in;
BinaryReader reader( writer.getData(), writer.getLength(), AssumeVersion(currentProtocolVersion) );
T out;
reader >> out;
return out;
}
static void simInitTLS(Reference<TLSOptions> tlsOptions) {
tlsOptions->set_cert_data( certBytes );
tlsOptions->set_key_data( certBytes );
tlsOptions->register_network();
}
ACTOR Future<Void> runBackup( Reference<ClusterConnectionFile> connFile ) {
state std::vector<Future<Void>> agentFutures;
while (g_simulator.backupAgents == ISimulator::WaitForType) {
Void _ = wait(delay(1.0));
}
if (g_simulator.backupAgents == ISimulator::BackupToFile) {
Reference<Cluster> cluster = Cluster::createCluster(connFile, -1);
Database cx = cluster->createDatabase(LiteralStringRef("DB")).get();
state FileBackupAgent fileAgent;
state double backupPollDelay = 1.0 / CLIENT_KNOBS->BACKUP_AGGREGATE_POLL_RATE;
agentFutures.push_back(fileAgent.run(cx, &backupPollDelay, CLIENT_KNOBS->SIM_BACKUP_TASKS_PER_AGENT));
while (g_simulator.backupAgents == ISimulator::BackupToFile) {
Void _ = wait(delay(1.0));
}
for(auto it : agentFutures) {
it.cancel();
}
}
Void _= wait(Future<Void>(Never()));
throw internal_error();
}
ACTOR Future<Void> runDr( Reference<ClusterConnectionFile> connFile ) {
state std::vector<Future<Void>> agentFutures;
while (g_simulator.drAgents == ISimulator::WaitForType) {
Void _ = wait(delay(1.0));
}
if (g_simulator.drAgents == ISimulator::BackupToDB) {
Reference<Cluster> cluster = Cluster::createCluster(connFile, -1);
Database cx = cluster->createDatabase(LiteralStringRef("DB")).get();
Reference<ClusterConnectionFile> extraFile(new ClusterConnectionFile(*g_simulator.extraDB));
Reference<Cluster> extraCluster = Cluster::createCluster(extraFile, -1);
state Database extraDB = extraCluster->createDatabase(LiteralStringRef("DB")).get();
TraceEvent("StartingDrAgents").detail("connFile", connFile->getConnectionString().toString()).detail("extraString", extraFile->getConnectionString().toString());
state DatabaseBackupAgent dbAgent = DatabaseBackupAgent(cx);
state DatabaseBackupAgent extraAgent = DatabaseBackupAgent(extraDB);
state double dr1PollDelay = 1.0 / CLIENT_KNOBS->BACKUP_AGGREGATE_POLL_RATE;
state double dr2PollDelay = 1.0 / CLIENT_KNOBS->BACKUP_AGGREGATE_POLL_RATE;
agentFutures.push_back(extraAgent.run(cx, &dr1PollDelay, CLIENT_KNOBS->SIM_BACKUP_TASKS_PER_AGENT));
agentFutures.push_back(dbAgent.run(extraDB, &dr2PollDelay, CLIENT_KNOBS->SIM_BACKUP_TASKS_PER_AGENT));
while (g_simulator.drAgents == ISimulator::BackupToDB) {
Void _ = wait(delay(1.0));
}
TraceEvent("StoppingDrAgents");
for(auto it : agentFutures) {
it.cancel();
}
}
Void _= wait(Future<Void>(Never()));
throw internal_error();
}
// SOMEDAY: when a process can be rebooted in isolation from the other on that machine,
// a loop{} will be needed around the waiting on simulatedFDBD(). For now this simply
// takes care of house-keeping such as context switching and file closing.
ACTOR Future<ISimulator::KillType> simulatedFDBDRebooter(
Reference<ClusterConnectionFile> connFile,
uint32_t ip,
bool sslEnabled,
Reference<TLSOptions> tlsOptions,
uint16_t port,
LocalityData localities,
ProcessClass processClass,
std::string* dataFolder,
std::string* coordFolder,
std::string baseFolder,
ClusterConnectionString connStr,
bool useSeedFile,
bool runBackupAgents)
{
state ISimulator::ProcessInfo *simProcess = g_simulator.getCurrentProcess();
state UID randomId = g_nondeterministic_random->randomUniqueID();
state int cycles = 0;
loop {
auto waitTime = SERVER_KNOBS->MIN_REBOOT_TIME + (SERVER_KNOBS->MAX_REBOOT_TIME - SERVER_KNOBS->MIN_REBOOT_TIME) * g_random->random01();
cycles ++;
TraceEvent("SimulatedFDBDPreWait").detail("Cycles", cycles).detail("RandomId", randomId)
.detail("Address", NetworkAddress(ip, port, true, false))
.detailext("ZoneId", localities.zoneId())
.detail("waitTime", waitTime).detail("Port", port);
Void _ = wait( delay( waitTime ) );
state ISimulator::ProcessInfo *process = g_simulator.newProcess( "Server", ip, port, localities, processClass, dataFolder->c_str(), coordFolder->c_str() );
Void _ = wait( g_simulator.onProcess(process, TaskDefaultYield) ); // Now switch execution to the process on which we will run
state Future<ISimulator::KillType> onShutdown = process->onShutdown();
try {
TraceEvent("SimulatedRebooterStarting", localities.zoneId()).detail("Cycles", cycles).detail("RandomId", randomId)
.detailext("ZoneId", localities.zoneId())
.detailext("DataHall", localities.dataHallId())
.detail("Address", process->address.toString())
.detail("Excluded", process->excluded)
.detail("UsingSSL", sslEnabled);
TraceEvent("ProgramStart").detail("Cycles", cycles).detail("RandomId", randomId)
.detail("SourceVersion", getHGVersion())
.detail("Version", FDB_VT_VERSION)
.detail("PackageName", FDB_VT_PACKAGE_NAME)
.detail("DataFolder", *dataFolder)
.detail("ConnectionString", connFile ? connFile->getConnectionString().toString() : "")
.detailf("ActualTime", "%lld", DEBUG_DETERMINISM ? 0 : time(NULL))
.detail("CommandLine", "fdbserver -r simulation")
.detail("BuggifyEnabled", buggifyActivated)
.detail("Simulated", true)
.trackLatest("ProgramStart");
try {
//SOMEDAY: test lower memory limits, without making them too small and causing the database to stop making progress
FlowTransport::createInstance(1);
Sim2FileSystem::newFileSystem();
if (sslEnabled) {
tlsOptions->register_network();
}
NetworkAddress n(ip, port, true, sslEnabled);
Future<Void> listen = FlowTransport::transport().bind( n, n );
Future<Void> fd = fdbd( connFile, localities, processClass, *dataFolder, *coordFolder, 500e6, "", "");
Future<Void> backup = runBackupAgents ? runBackup(connFile) : Future<Void>(Never());
Future<Void> dr = runBackupAgents ? runDr(connFile) : Future<Void>(Never());
Void _ = wait(listen || fd || success(onShutdown) || backup || dr);
} catch (Error& e) {
// If in simulation, if we make it here with an error other than io_timeout but enASIOTimedOut is set then somewhere an io_timeout was converted to a different error.
if(g_network->isSimulated() && e.code() != error_code_io_timeout && (bool)g_network->global(INetwork::enASIOTimedOut))
TraceEvent(SevError, "IOTimeoutErrorSuppressed").detail("ErrorCode", e.code()).detail("RandomId", randomId).backtrace();
if (onShutdown.isReady() && onShutdown.isError()) throw onShutdown.getError();
if(e.code() != error_code_actor_cancelled)
printf("SimulatedFDBDTerminated: %s\n", e.what());
ASSERT( destructed || g_simulator.getCurrentProcess() == process ); // simulatedFDBD catch called on different process
TraceEvent(e.code() == error_code_actor_cancelled || e.code() == error_code_file_not_found || destructed ? SevInfo : SevError, "SimulatedFDBDTerminated", localities.zoneId()).error(e, true);
}
TraceEvent("SimulatedFDBDDone", localities.zoneId()).detail("Cycles", cycles).detail("RandomId", randomId)
.detail("Address", process->address)
.detail("Excluded", process->excluded)
.detailext("ZoneId", localities.zoneId())
.detail("KillType", onShutdown.isReady() ? onShutdown.get() : ISimulator::None);
if (!onShutdown.isReady())
onShutdown = ISimulator::InjectFaults;
} catch (Error& e) {
TraceEvent(destructed ? SevInfo : SevError, "SimulatedFDBDRebooterError", localities.zoneId()).detail("RandomId", randomId).error(e, true);
onShutdown = e;
}
ASSERT( destructed || g_simulator.getCurrentProcess() == process );
if( !process->shutdownSignal.isSet() && !destructed ) {
process->rebooting = true;
process->shutdownSignal.send(ISimulator::None);
}
TraceEvent("SimulatedFDBDWait", localities.zoneId()).detail("Cycles", cycles).detail("RandomId", randomId)
.detail("Address", process->address)
.detail("Excluded", process->excluded)
.detail("Rebooting", process->rebooting)
.detailext("ZoneId", localities.zoneId());
Void _ = wait( g_simulator.onProcess( simProcess ) );
Void _ = wait(delay(0.00001 + FLOW_KNOBS->MAX_BUGGIFIED_DELAY)); // One last chance for the process to clean up?
g_simulator.destroyProcess( process ); // Leak memory here; the process may be used in other parts of the simulation
auto shutdownResult = onShutdown.get();
TraceEvent("SimulatedFDBDShutdown", localities.zoneId()).detail("Cycles", cycles).detail("RandomId", randomId)
.detail("Address", process->address)
.detail("Excluded", process->excluded)
.detailext("ZoneId", localities.zoneId())
.detail("KillType", shutdownResult);
if( shutdownResult < ISimulator::RebootProcessAndDelete ) {
TraceEvent("SimulatedFDBDLowerReboot", localities.zoneId()).detail("Cycles", cycles).detail("RandomId", randomId)
.detail("Address", process->address)
.detail("Excluded", process->excluded)
.detailext("ZoneId", localities.zoneId())
.detail("KillType", shutdownResult);
return onShutdown.get();
}
if( onShutdown.get() == ISimulator::RebootProcessAndDelete ) {
TraceEvent("SimulatedFDBDRebootAndDelete", localities.zoneId()).detail("Cycles", cycles).detail("RandomId", randomId)
.detail("Address", process->address)
.detailext("ZoneId", localities.zoneId())
.detail("KillType", shutdownResult);
*coordFolder = joinPath(baseFolder, g_random->randomUniqueID().toString());
*dataFolder = joinPath(baseFolder, g_random->randomUniqueID().toString());
platform::createDirectory( *dataFolder );
if(!useSeedFile) {
writeFile(joinPath(*dataFolder, "fdb.cluster"), connStr.toString());
connFile = Reference<ClusterConnectionFile>( new ClusterConnectionFile( joinPath( *dataFolder, "fdb.cluster" )));
}
else {
connFile = Reference<ClusterConnectionFile>( new ClusterConnectionFile( joinPath( *dataFolder, "fdb.cluster" ), connStr.toString() ) );
}
}
else {
TraceEvent("SimulatedFDBDJustRepeat", localities.zoneId()).detail("Cycles", cycles).detail("RandomId", randomId)
.detail("Address", process->address)
.detailext("ZoneId", localities.zoneId())
.detail("KillType", shutdownResult);
}
}
}
template<>
std::string describe(bool const& val) {
return val ? "true" : "false";
}
template<>
std::string describe(int const& val) {
return format("%d", val);
}
// Since a datacenter kill is considered to be the same as killing a machine, files cannot be swapped across datacenters
std::map< Optional<Standalone<StringRef>>, std::vector< std::vector< std::string > > > availableFolders;
// process count is no longer needed because it is now the length of the vector of ip's, because it was one ip per process
ACTOR Future<Void> simulatedMachine(
ClusterConnectionString connStr,
std::vector<uint32_t> ips,
bool sslEnabled,
Reference<TLSOptions> tlsOptions,
LocalityData localities,
ProcessClass processClass,
std::string baseFolder,
bool restarting,
bool useSeedFile,
bool runBackupAgents)
{
state int bootCount = 0;
state std::vector<std::string> myFolders;
state std::vector<std::string> coordFolders;
state UID randomId = g_nondeterministic_random->randomUniqueID();
try {
CSimpleIni ini;
ini.SetUnicode();
ini.LoadFile(joinPath(baseFolder, "restartInfo.ini").c_str());
for (int i = 0; i < ips.size(); i++) {
if (restarting) {
myFolders.push_back( ini.GetValue(printable(localities.zoneId()).c_str(), format("%d", i).c_str(), joinPath(baseFolder, g_random->randomUniqueID().toString()).c_str()) );
if(i == 0) {
std::string coordinationFolder = ini.GetValue(printable(localities.zoneId()).c_str(), "coordinationFolder", "");
if(!coordinationFolder.size())
coordinationFolder = ini.GetValue(printable(localities.zoneId()).c_str(), format("c%d", i).c_str(), joinPath(baseFolder, g_random->randomUniqueID().toString()).c_str());
coordFolders.push_back(coordinationFolder);
} else {
coordFolders.push_back( ini.GetValue(printable(localities.zoneId()).c_str(), format("c%d", i).c_str(), joinPath(baseFolder, g_random->randomUniqueID().toString()).c_str()) );
}
}
else {
coordFolders.push_back( joinPath(baseFolder, g_random->randomUniqueID().toString()) );
std::string thisFolder = g_random->randomUniqueID().toString();
myFolders.push_back( joinPath(baseFolder, thisFolder ) );
platform::createDirectory( myFolders[i] );
if (!useSeedFile)
writeFile(joinPath(myFolders[i], "fdb.cluster"), connStr.toString());
}
}
loop {
state std::vector< Future<ISimulator::KillType> > processes;
for( int i = 0; i < ips.size(); i++ ) {
std::string path = joinPath(myFolders[i], "fdb.cluster");
Reference<ClusterConnectionFile> clusterFile(useSeedFile ? new ClusterConnectionFile(path, connStr.toString()) : new ClusterConnectionFile(path));
processes.push_back(simulatedFDBDRebooter(clusterFile, ips[i], sslEnabled, tlsOptions, i + 1, localities, processClass, &myFolders[i], &coordFolders[i], baseFolder, connStr, useSeedFile, runBackupAgents));
TraceEvent("SimulatedMachineProcess", randomId).detail("Address", NetworkAddress(ips[i], i+1, true, false)).detailext("ZoneId", localities.zoneId()).detailext("DataHall", localities.dataHallId()).detail("Folder", myFolders[i]);
}
TEST( bootCount >= 1 ); // Simulated machine rebooted
TEST( bootCount >= 2 ); // Simulated machine rebooted twice
TEST( bootCount >= 3 ); // Simulated machine rebooted three times
++bootCount;
TraceEvent("SimulatedMachineStart", randomId)
.detail("Folder0", myFolders[0])
.detail("CFolder0", coordFolders[0])
.detail("MachineIPs", toIPVectorString(ips))
.detail("SSL", sslEnabled)
.detail("processes", processes.size())
.detail("bootCount", bootCount)
.detail("ProcessClass", processClass.toString())
.detail("Restarting", restarting)
.detail("UseSeedFile", useSeedFile)
.detailext("ZoneId", localities.zoneId())
.detailext("DataHall", localities.dataHallId())
.detail("Locality", localities.toString());
Void _ = wait( waitForAll( processes ) );
TraceEvent("SimulatedMachineRebootStart", randomId)
.detail("Folder0", myFolders[0])
.detail("CFolder0", coordFolders[0])
.detail("MachineIPs", toIPVectorString(ips))
.detailext("ZoneId", localities.zoneId())
.detailext("DataHall", localities.dataHallId());
//Kill all open files, which may cause them to write invalid data.
auto& machineCache = g_simulator.getMachineById(localities.zoneId())->openFiles;
//Copy the file pointers to a vector because the map may be modified while we are killing files
std::vector<AsyncFileNonDurable*> files;
for(auto fileItr = machineCache.begin(); fileItr != machineCache.end(); ++fileItr) {
ASSERT( fileItr->second.isReady() );
files.push_back( (AsyncFileNonDurable*)fileItr->second.get().getPtr() );
}
std::vector<Future<Void>> killFutures;
for(auto fileItr = files.begin(); fileItr != files.end(); ++fileItr)
killFutures.push_back((*fileItr)->kill());
Void _ = wait( waitForAll( killFutures ) );
state std::set<std::string> filenames;
state std::string closingStr;
auto& machineCache = g_simulator.getMachineById(localities.zoneId())->openFiles;
for( auto it : machineCache ) {
filenames.insert( it.first );
closingStr += it.first + ", ";
ASSERT( it.second.isReady() && !it.second.isError() );
}
for( auto it : g_simulator.getMachineById(localities.zoneId())->deletingFiles ) {
filenames.insert( it );
closingStr += it + ", ";
}
TraceEvent("SimulatedMachineRebootAfterKills", randomId)
.detail("Folder0", myFolders[0])
.detail("CFolder0", coordFolders[0])
.detail("MachineIPs", toIPVectorString(ips))
.detail("Closing", closingStr)
.detailext("ZoneId", localities.zoneId())
.detailext("DataHall", localities.dataHallId());
ISimulator::MachineInfo* machine = g_simulator.getMachineById(localities.zoneId());
machine->closingFiles = filenames;
g_simulator.getMachineById(localities.zoneId())->openFiles.clear();
// During a reboot:
// The process is expected to close all files and be inactive in zero time, but not necessarily
// without delay(0)-equivalents, so delay(0) a few times waiting for it to achieve that goal.
// After an injected fault:
// The process is expected to shut down eventually, but not necessarily instantly. Wait up to 60 seconds.
state int shutdownDelayCount = 0;
state double backoff = 0;
loop {
auto& machineCache = g_simulator.getMachineById(localities.zoneId())->closingFiles;
if( !machineCache.empty() ) {
std::string openFiles;
int i = 0;
for( auto it = machineCache.begin(); it != machineCache.end() && i < 5; ++it ) {
openFiles += *it + ", ";
i++;
}
TraceEvent("MachineFilesOpen", randomId).detail("PAddr", toIPVectorString(ips)).detail("OpenFiles", openFiles);
} else
break;
if( shutdownDelayCount++ >= 50 ) { // Worker doesn't shut down instantly on reboot
TraceEvent(SevError, "SimulatedFDBDFilesCheck", randomId)
.detail("PAddrs", toIPVectorString(ips))
.detailext("ZoneId", localities.zoneId())
.detailext("DataHall", localities.dataHallId());
ASSERT( false );
}
Void _ = wait( delay( backoff ) );
backoff = std::min( backoff + 1.0, 6.0 );
}
TraceEvent("SimulatedFDBDFilesClosed", randomId)
.detail("Address", toIPVectorString(ips))
.detailext("ZoneId", localities.zoneId())
.detailext("DataHall", localities.dataHallId());
g_simulator.destroyMachine(localities.zoneId());
// SOMEDAY: when processes can be rebooted, this check will be needed
//ASSERT( this machine is rebooting );
// Since processes can end with different codes, take the highest (least severe) to detmine what to do
state ISimulator::KillType killType = processes[0].get();
for( int i = 1; i < ips.size(); i++ )
killType = std::max( processes[i].get(), killType );
TEST( true ); // Simulated machine has been rebooted
state bool swap = killType == ISimulator::Reboot && BUGGIFY_WITH_PROB(0.75) && g_simulator.canSwapToMachine( localities.zoneId() );
if( swap )
availableFolders[localities.dcId()].push_back( myFolders );
auto rebootTime = g_random->random01() * MACHINE_REBOOT_TIME;
TraceEvent("SimulatedMachineShutdown", randomId)
.detail("Swap", swap)
.detail("KillType", killType)
.detail("RebootTime", rebootTime)
.detailext("ZoneId", localities.zoneId())
.detailext("DataHall", localities.dataHallId())
.detail("MachineIPs", toIPVectorString(ips));
Void _ = wait( delay( rebootTime ) );
if( swap ) {
auto& avail = availableFolders[localities.dcId()];
int i = g_random->randomInt(0, avail.size());
if( i != avail.size() - 1 )
std::swap( avail[i], avail.back() );
auto toRebootFrom = avail.back();
avail.pop_back();
if( myFolders != toRebootFrom ) {
TEST( true ); // Simulated machine swapped data folders
TraceEvent("SimulatedMachineFolderSwap", randomId)
.detail("OldFolder0", myFolders[0]).detail("NewFolder0", toRebootFrom[0])
.detail("MachineIPs", toIPVectorString(ips));
}
myFolders = toRebootFrom;
if(!useSeedFile) {
for(auto f : toRebootFrom) {
if(!fileExists(joinPath(f, "fdb.cluster"))) {
writeFile(joinPath(f, "fdb.cluster"), connStr.toString());
}
}
}
} else if( killType == ISimulator::RebootAndDelete ) {
for( int i = 0; i < ips.size(); i++ ) {
coordFolders[i] = joinPath(baseFolder, g_random->randomUniqueID().toString());
myFolders[i] = joinPath(baseFolder, g_random->randomUniqueID().toString());
platform::createDirectory( myFolders[i] );
if(!useSeedFile) {
writeFile(joinPath(myFolders[i], "fdb.cluster"), connStr.toString());
}
}
TEST( true ); // Simulated machine rebooted with data loss
}
//this machine is rebooting = false;
}
} catch( Error &e ) {
g_simulator.getMachineById(localities.zoneId())->openFiles.clear();
throw;
}
}
#include "fdbclient/MonitorLeader.h"
ACTOR Future<Void> restartSimulatedSystem(
vector<Future<Void>> *systemActors, std::string baseFolder, int* pTesterCount,
Optional<ClusterConnectionString> *pConnString, Reference<TLSOptions> tlsOptions, int extraDB) {
CSimpleIni ini;
ini.SetUnicode();
ini.LoadFile(joinPath(baseFolder, "restartInfo.ini").c_str());
// allows multiple ipAddr entries
ini.SetMultiKey();
try {
int machineCount = atoi(ini.GetValue("META", "machineCount"));
int processesPerMachine = atoi(ini.GetValue("META", "processesPerMachine"));
int desiredCoordinators = atoi(ini.GetValue("META", "desiredCoordinators"));
int testerCount = atoi(ini.GetValue("META", "testerCount"));
bool enableExtraDB = (extraDB == 3);
ClusterConnectionString conn(ini.GetValue("META", "connectionString"));
if (enableExtraDB) {
g_simulator.extraDB = new ClusterConnectionString(ini.GetValue("META", "connectionString"));
}
*pConnString = conn;
*pTesterCount = testerCount;
bool usingSSL = conn.toString().find(":tls") != std::string::npos;
int useSeedForMachine = g_random->randomInt(0, machineCount);
for( int i = 0; i < machineCount; i++) {
Optional<Standalone<StringRef>> dcUID;
std::string zoneIdString = ini.GetValue("META", format("%d", i).c_str());
Standalone<StringRef> zoneId = StringRef(zoneIdString);
std::string dcUIDini = ini.GetValue(zoneIdString.c_str(), "dcUID");
if (!dcUIDini.empty()) dcUID = StringRef(dcUIDini);
ProcessClass processClass = ProcessClass((ProcessClass::ClassType)atoi(ini.GetValue(zoneIdString.c_str(), "mClass")), ProcessClass::CommandLineSource);
std::vector<uint32_t> ipAddrs;
int processes = atoi(ini.GetValue(zoneIdString.c_str(), "processes"));
auto ip = ini.GetValue(zoneIdString.c_str(), "ipAddr");
if( ip == NULL ) {
for (int i = 0; i < processes; i++){
ipAddrs.push_back(strtoul(ini.GetValue(zoneIdString.c_str(), format("ipAddr%d", i).c_str()), NULL, 10));
}
}
else {
// old way
ipAddrs.push_back(strtoul(ip, NULL, 10));
for (int i = 1; i < processes; i++){
ipAddrs.push_back(ipAddrs.back() + 1);
}
}
LocalityData localities(Optional<Standalone<StringRef>>(), zoneId, zoneId, dcUID);
localities.set(LiteralStringRef("data_hall"), dcUID);
// SOMEDAY: parse backup agent from test file
systemActors->push_back( reportErrors( simulatedMachine(
conn, ipAddrs, usingSSL, tlsOptions, localities, processClass, baseFolder, true, i == useSeedForMachine, enableExtraDB ),
processClass == ProcessClass::TesterClass ? "SimulatedTesterMachine" : "SimulatedMachine") );
}
g_simulator.desiredCoordinators = desiredCoordinators;
g_simulator.processesPerMachine = processesPerMachine;
}
catch (Error& e) {
TraceEvent(SevError, "restartSimulationError").error(e);
}
TraceEvent("RestartSimulatorSettings")
.detail("desiredCoordinators", g_simulator.desiredCoordinators)
.detail("processesPerMachine", g_simulator.processesPerMachine);
Void _ = wait(delay(1.0));
return Void();
}
struct SimulationConfig {
explicit SimulationConfig(int extraDB, int minimumReplication);
int extraDB;
DatabaseConfiguration db;
void set_config(std::string config);
// Simulation layout
int datacenters;
int machine_count; // Total, not per DC.
int processes_per_machine;
int coordinators;
private:
void generateNormalConfig(int minimumReplication);
};
SimulationConfig::SimulationConfig(int extraDB, int minimumReplication) : extraDB(extraDB) {
generateNormalConfig(minimumReplication);
}
void SimulationConfig::set_config(std::string config) {
// The only mechanism we have for turning "single" into what single means
// is buildConfiguration()... :/
std::map<std::string, std::string> hack_map;
ASSERT( buildConfiguration(config, hack_map) );
for(auto kv : hack_map) db.set( kv.first, kv.second );
}
StringRef StringRefOf(const char* s) {
return StringRef((uint8_t*)s, strlen(s));
}
void SimulationConfig::generateNormalConfig(int minimumReplication) {
set_config("new");
bool generateFearless = g_random->random01() < 0.5;
datacenters = generateFearless ? 4 : g_random->randomInt( 1, 4 );
if (g_random->random01() < 0.25) db.desiredTLogCount = g_random->randomInt(1,7);
if (g_random->random01() < 0.25) db.masterProxyCount = g_random->randomInt(1,7);
if (g_random->random01() < 0.25) db.resolverCount = g_random->randomInt(1,7);
if (g_random->random01() < 0.5) {
set_config("ssd");
} else {
set_config("memory");
}
int replication_type = std::max(minimumReplication, std::min(g_random->randomInt(0,6), 3));
switch (replication_type) {
case 0: {
TEST( true ); // Simulated cluster using custom redundancy mode
int storage_servers = g_random->randomInt(1, generateFearless ? 4 : 5);
int replication_factor = g_random->randomInt(1, generateFearless ? 4 : 5);
int anti_quorum = g_random->randomInt(0, replication_factor);
// Go through buildConfiguration, as it sets tLogPolicy/storagePolicy.
set_config(format("storage_replicas:=%d storage_quorum:=%d "
"log_replicas:=%d log_anti_quorum:=%1 "
"replica_datacenters:=1 min_replica_datacenters:=1",
storage_servers, storage_servers,
replication_factor, anti_quorum));
break;
}
case 1: {
TEST( true ); // Simulated cluster running in single redundancy mode
set_config("single");
break;
}
case 2: {
TEST( true ); // Simulated cluster running in double redundancy mode
set_config("double");
break;
}
case 3: {
if( datacenters <= 2 || generateFearless ) {
TEST( true ); // Simulated cluster running in triple redundancy mode
set_config("triple");
}
else if( datacenters == 3 ) {
TEST( true ); // Simulated cluster running in 3 data-hall mode
set_config("three_data_hall");
}
else {
ASSERT( false );
}
break;
}
default:
ASSERT(false); // Programmer forgot to adjust cases.
}
if(generateFearless || (datacenters == 2 && g_random->random01() < 0.5)) {
StatusObject primaryObj;
primaryObj["id"] = "0";
primaryObj["priority"] = 0;
StatusObject remoteObj;
remoteObj["id"] = "1";
remoteObj["priority"] = 1;
bool needsRemote = generateFearless;
if(generateFearless) {
StatusObject primarySatelliteObj;
primarySatelliteObj["id"] = "2";
primarySatelliteObj["priority"] = 1;
StatusArray primarySatellitesArr;
primarySatellitesArr.push_back(primarySatelliteObj);
primaryObj["satellites"] = primarySatellitesArr;
StatusObject remoteSatelliteObj;
remoteSatelliteObj["id"] = "3";
remoteSatelliteObj["priority"] = 1;
StatusArray remoteSatellitesArr;
remoteSatellitesArr.push_back(remoteSatelliteObj);
remoteObj["satellites"] = remoteSatellitesArr;
int satellite_replication_type = g_random->randomInt(0,5);
switch (satellite_replication_type) {
case 0: {
//FIXME: implement
TEST( true ); // Simulated cluster using custom satellite redundancy mode
break;
}
case 1: {
TEST( true ); // Simulated cluster using no satellite redundancy mode
break;
}
case 2: {
TEST( true ); // Simulated cluster using single satellite redundancy mode
primaryObj["satellite_redundancy_mode"] = "one_satellite_single";
remoteObj["satellite_redundancy_mode"] = "one_satellite_single";
break;
}
case 3: {
TEST( true ); // Simulated cluster using double satellite redundancy mode
primaryObj["satellite_redundancy_mode"] = "one_satellite_double";
remoteObj["satellite_redundancy_mode"] = "one_satellite_double";
break;
}
case 4: {
TEST( true ); // Simulated cluster using triple satellite redundancy mode
primaryObj["satellite_redundancy_mode"] = "one_satellite_triple";
remoteObj["satellite_redundancy_mode"] = "one_satellite_triple";
break;
}
default:
ASSERT(false); // Programmer forgot to adjust cases.
}
if (g_random->random01() < 0.25) {
int logs = g_random->randomInt(1,7);
primaryObj["satellite_logs"] = logs;
remoteObj["satellite_logs"] = logs;
}
int remote_replication_type = g_random->randomInt(0,5);
switch (remote_replication_type) {
case 0: {
//FIXME: implement
TEST( true ); // Simulated cluster using custom remote redundancy mode
break;
}
case 1: {
needsRemote = false;
TEST( true ); // Simulated cluster using no remote redundancy mode
break;
}
case 2: {
TEST( true ); // Simulated cluster using single remote redundancy mode
set_config("remote_single");
break;
}
case 3: {
TEST( true ); // Simulated cluster using double remote redundancy mode
set_config("remote_double");
break;
}
case 4: {
TEST( true ); // Simulated cluster using triple remote redundancy mode
set_config("remote_triple");
break;
}
default:
ASSERT(false); // Programmer forgot to adjust cases.
}
if (g_random->random01() < 0.25) db.remoteDesiredTLogCount = g_random->randomInt(1,7);
}
StatusArray regionArr;
regionArr.push_back(primaryObj);
if(needsRemote || g_random->random01() < 0.5) {
regionArr.push_back(remoteObj);
}
set_config("regions=" + json_spirit::write_string(json_spirit::mValue(regionArr), json_spirit::Output_options::none));
}
if(generateFearless && minimumReplication > 1) {
//low latency tests in fearless configurations need 4 machines per datacenter (3 for triple replication, 1 that is down during failures).
machine_count = 16;
} else if(generateFearless) {
machine_count = 12;
} else if(db.tLogPolicy && db.tLogPolicy->info() == "data_hall^2 x zoneid^2 x 1") {
machine_count = 9;
} else {
//datacenters+2 so that the configure database workload can configure into three_data_hall
machine_count = std::max(datacenters+2, ((db.minDatacentersRequired() > 0) ? datacenters : 1) * std::max(3, db.minMachinesRequiredPerDatacenter()));
machine_count = g_random->randomInt( machine_count, std::max(machine_count+1, extraDB ? 6 : 10) );
}
//because we protect a majority of coordinators from being killed, it is better to run with low numbers of coordinators to prevent too many processes from being protected
coordinators = BUGGIFY ? g_random->randomInt(1, machine_count+1) : 1;
if(minimumReplication > 1 && datacenters == 3) {
//low latency tests in 3 data hall mode need 2 other data centers with 2 machines each to avoid waiting for logs to recover.
machine_count = std::max( machine_count, 6);
coordinators = 3;
}
if(generateFearless) {
processes_per_machine = 1;
} else {
processes_per_machine = g_random->randomInt(1, (extraDB ? 14 : 28)/machine_count + 2 );
}
}
void setupSimulatedSystem( vector<Future<Void>> *systemActors, std::string baseFolder,
int* pTesterCount, Optional<ClusterConnectionString> *pConnString,
Standalone<StringRef> *pStartingConfiguration, int extraDB, int minimumReplication, Reference<TLSOptions> tlsOptions)
{
// SOMEDAY: this does not test multi-interface configurations
SimulationConfig simconfig(extraDB, minimumReplication);
StatusObject startingConfigJSON = simconfig.db.toJSON(true);
std::string startingConfigString = "new";
for( auto kv : startingConfigJSON) {
startingConfigString += " ";
if( kv.second.type() == json_spirit::int_type ) {
startingConfigString += kv.first + ":=" + format("%d", kv.second.get_int());
} else if( kv.second.type() == json_spirit::str_type ) {
startingConfigString += kv.second.get_str();
} else if( kv.second.type() == json_spirit::array_type ) {
startingConfigString += kv.first + "=" + json_spirit::write_string(json_spirit::mValue(kv.second.get_array()), json_spirit::Output_options::none);
} else {
ASSERT(false);
}
}
g_simulator.storagePolicy = simconfig.db.storagePolicy;
g_simulator.tLogPolicy = simconfig.db.tLogPolicy;
g_simulator.tLogWriteAntiQuorum = simconfig.db.tLogWriteAntiQuorum;
g_simulator.hasRemoteReplication = simconfig.db.remoteTLogReplicationFactor > 0;
g_simulator.remoteTLogPolicy = simconfig.db.remoteTLogPolicy;
if(simconfig.db.regions.size() == 2) {
g_simulator.primaryDcId = simconfig.db.regions[0].dcId;
g_simulator.remoteDcId = simconfig.db.regions[1].dcId;
g_simulator.hasSatelliteReplication = simconfig.db.regions[0].satelliteTLogReplicationFactor > 0 && simconfig.db.regions[0].satelliteTLogPolicy == simconfig.db.regions[1].satelliteTLogPolicy;
g_simulator.satelliteTLogPolicy = simconfig.db.regions[0].satelliteTLogPolicy;
g_simulator.satelliteTLogWriteAntiQuorum = simconfig.db.regions[0].satelliteTLogWriteAntiQuorum;
for(auto s : simconfig.db.regions[0].satellites) {
g_simulator.primarySatelliteDcIds.push_back(s.dcId);
}
for(auto s : simconfig.db.regions[1].satellites) {
g_simulator.remoteSatelliteDcIds.push_back(s.dcId);
}
} else if(simconfig.db.regions.size() == 1) {
g_simulator.primaryDcId = simconfig.db.regions[0].dcId;
g_simulator.hasSatelliteReplication = simconfig.db.regions[0].satelliteTLogReplicationFactor > 0;
g_simulator.satelliteTLogPolicy = simconfig.db.regions[0].satelliteTLogPolicy;
g_simulator.satelliteTLogWriteAntiQuorum = simconfig.db.regions[0].satelliteTLogWriteAntiQuorum;
for(auto s : simconfig.db.regions[0].satellites) {
g_simulator.primarySatelliteDcIds.push_back(s.dcId);
}
} else {
g_simulator.hasSatelliteReplication = false;
g_simulator.satelliteTLogWriteAntiQuorum = 0;
}
ASSERT(g_simulator.storagePolicy && g_simulator.tLogPolicy);
ASSERT(!g_simulator.hasRemoteReplication || g_simulator.remoteTLogPolicy);
ASSERT(!g_simulator.hasSatelliteReplication || g_simulator.satelliteTLogPolicy);
TraceEvent("simulatorConfig").detail("ConfigString", printable(StringRef(startingConfigString)));
const int dataCenters = simconfig.datacenters;
const int machineCount = simconfig.machine_count;
const int coordinatorCount = simconfig.coordinators;
const int processesPerMachine = simconfig.processes_per_machine;
// half the time, when we have more than 4 machines that are not the first in their dataCenter, assign classes
bool assignClasses = machineCount - dataCenters > 4 && g_random->random01() < 0.5;
// Use SSL 5% of the time
bool sslEnabled = g_random->random01() < 0.05 && tlsOptions->enabled();
TEST( sslEnabled ); // SSL enabled
TEST( !sslEnabled ); // SSL disabled
vector<NetworkAddress> coordinatorAddresses;
for( int dc = 0; dc < dataCenters; dc++ ) {
int machines = machineCount / dataCenters + (dc < machineCount % dataCenters); // add remainder of machines to first datacenter
int dcCoordinators = coordinatorCount / dataCenters + (dc < coordinatorCount%dataCenters);
for(int m = 0; m < dcCoordinators; m++) {
uint32_t ip = 2<<24 | dc<<16 | 1<<8 | m;
coordinatorAddresses.push_back(NetworkAddress(ip, 1, true, sslEnabled));
TraceEvent("SelectedCoordinator").detail("Address", coordinatorAddresses.back());
}
}
g_random->randomShuffle(coordinatorAddresses);
for(int i = 0; i < (coordinatorAddresses.size()/2)+1; i++) {
TraceEvent("ProtectCoordinator").detail("Address", coordinatorAddresses[i]).detail("Coordinators", describe(coordinatorAddresses)).backtrace();
g_simulator.protectedAddresses.insert(NetworkAddress(coordinatorAddresses[i].ip,coordinatorAddresses[i].port,true,false));
}
g_random->randomShuffle(coordinatorAddresses);
ASSERT( coordinatorAddresses.size() == coordinatorCount );
ClusterConnectionString conn(coordinatorAddresses, LiteralStringRef("TestCluster:0"));
// If extraDB==0, leave g_simulator.extraDB as null because the test does not use DR.
if(extraDB==1) {
// The DR database can be either a new database or itself
g_simulator.extraDB = new ClusterConnectionString(coordinatorAddresses, BUGGIFY ? LiteralStringRef("TestCluster:0") : LiteralStringRef("ExtraCluster:0"));
} else if(extraDB==2) {
// The DR database is a new database
g_simulator.extraDB = new ClusterConnectionString(coordinatorAddresses, LiteralStringRef("ExtraCluster:0"));
} else if(extraDB==3) {
// The DR database is the same database
g_simulator.extraDB = new ClusterConnectionString(coordinatorAddresses, LiteralStringRef("TestCluster:0"));
}
*pConnString = conn;
TraceEvent("SimulatedConnectionString").detail("String", conn.toString()).detail("ConfigString", printable(StringRef(startingConfigString)));
int assignedMachines = 0, nonVersatileMachines = 0;
for( int dc = 0; dc < dataCenters; dc++ ) {
//FIXME: test unset dcID
Optional<Standalone<StringRef>> dcUID = StringRef(format("%d", dc));
std::vector<UID> machineIdentities;
int machines = machineCount / dataCenters + (dc < machineCount % dataCenters); // add remainder of machines to first datacenter
int dcCoordinators = coordinatorCount / dataCenters + (dc < coordinatorCount%dataCenters);
printf("Datacenter %d: %d/%d machines, %d/%d coordinators\n", dc, machines, machineCount, dcCoordinators, coordinatorCount);
ASSERT( dcCoordinators <= machines );
int useSeedForMachine = g_random->randomInt(0, machines);
for( int machine = 0; machine < machines; machine++ ) {
Standalone<StringRef> zoneId(g_random->randomUniqueID().toString());
//Choose a machine class
ProcessClass processClass = ProcessClass(ProcessClass::UnsetClass, ProcessClass::CommandLineSource);
if(assignClasses) {
if(assignedMachines < 4)
processClass = ProcessClass((ProcessClass::ClassType) g_random->randomInt(0, 2), ProcessClass::CommandLineSource); //Unset or Storage
else if(assignedMachines == 4 && !simconfig.db.regions.size())
processClass = ProcessClass((ProcessClass::ClassType) (g_random->randomInt(0, 2) * ProcessClass::ResolutionClass), ProcessClass::CommandLineSource); //Unset or Resolution
else
processClass = ProcessClass((ProcessClass::ClassType) g_random->randomInt(0, 3), ProcessClass::CommandLineSource); //Unset, Storage, or Transaction
if (processClass == ProcessClass::ResolutionClass) // *can't* be assigned to other roles, even in an emergency
nonVersatileMachines++;
}
std::vector<uint32_t> ips;
for (int i = 0; i < processesPerMachine; i++){
ips.push_back(2 << 24 | dc << 16 | g_random->randomInt(1, i+2) << 8 | machine);
}
// check the sslEnablementMap using only one ip(
LocalityData localities(Optional<Standalone<StringRef>>(), zoneId, zoneId, dcUID);
localities.set(LiteralStringRef("data_hall"), dcUID);
systemActors->push_back(reportErrors(simulatedMachine(conn, ips, sslEnabled, tlsOptions,
localities, processClass, baseFolder, false, machine == useSeedForMachine, true ), "SimulatedMachine"));
if (extraDB && g_simulator.extraDB->toString() != conn.toString()) {
std::vector<uint32_t> extraIps;
for (int i = 0; i < processesPerMachine; i++){
extraIps.push_back(4 << 24 | dc << 16 | g_random->randomInt(1, i + 2) << 8 | machine);
}
Standalone<StringRef> newZoneId = Standalone<StringRef>(g_random->randomUniqueID().toString());
LocalityData localities(Optional<Standalone<StringRef>>(), newZoneId, newZoneId, dcUID);
localities.set(LiteralStringRef("data_hall"), dcUID);
systemActors->push_back(reportErrors(simulatedMachine(*g_simulator.extraDB, extraIps, sslEnabled, tlsOptions,
localities,
processClass, baseFolder, false, machine == useSeedForMachine, false ), "SimulatedMachine"));
}
assignedMachines++;
}
}
g_simulator.desiredCoordinators = coordinatorCount;
g_simulator.physicalDatacenters = dataCenters;
g_simulator.processesPerMachine = processesPerMachine;
TraceEvent("SetupSimulatorSettings")
.detail("desiredCoordinators", g_simulator.desiredCoordinators)
.detail("physicalDatacenters", g_simulator.physicalDatacenters)
.detail("processesPerMachine", g_simulator.processesPerMachine);
// SOMEDAY: add locality for testers to simulate network topology
// FIXME: Start workers with tester class instead, at least sometimes run tests with the testers-only flag
int testerCount = *pTesterCount = g_random->randomInt(4, 9);
int useSeedForMachine = g_random->randomInt(0, testerCount);
for(int i=0; i<testerCount; i++) {
std::vector<uint32_t> ips;
ips.push_back(0x03040301 + i);
Standalone<StringRef> newZoneId = Standalone<StringRef>(g_random->randomUniqueID().toString());
LocalityData localities(Optional<Standalone<StringRef>>(), newZoneId, newZoneId, Optional<Standalone<StringRef>>());
systemActors->push_back( reportErrors( simulatedMachine(
conn, ips, sslEnabled, tlsOptions,
localities, ProcessClass(ProcessClass::TesterClass, ProcessClass::CommandLineSource),
baseFolder, false, i == useSeedForMachine, false ),
"SimulatedTesterMachine") );
}
/*int testerCount = g_random->randomInt(4, 9);
for(int i=0; i<testerCount; i++)
g_simulator.asNewProcess("TestWorker", 0x03040301 + i, LocalityData(g_random->randomUniqueID().toString(), Optional<Standalone<StringRef>>()), [&] {
vector<Future<Void>> v;
Reference<AsyncVar<ClusterControllerFullInterface>> cc( new AsyncVar<ClusterControllerFullInterface> );
Reference<AsyncVar<ClusterInterface>> ci( new AsyncVar<ClusterInterface> );
v.push_back( monitorLeader( coordinators, cc ) );
v.push_back( extractClusterInterface(cc,ci) );
v.push_back( failureMonitorClient( ci ) );
v.push_back( testerServer( cc ) );
systemActors->push_back( waitForAll(v) );
});*/
*pStartingConfiguration = startingConfigString;
// save some state that we only need when restarting the simulator.
g_simulator.connectionString = conn.toString();
g_simulator.testerCount = testerCount;
TraceEvent("SimulatedClusterStarted")
.detail("DataCenters", dataCenters)
.detail("ServerMachineCount", machineCount)
.detail("ProcessesPerServer", processesPerMachine)
.detail("SSLEnabled", sslEnabled)
.detail("ClassesAssigned", assignClasses)
.detail("StartingConfiguration", pStartingConfiguration->toString());
}
void checkExtraDB(const char *testFile, int &extraDB, int &minimumReplication) {
std::ifstream ifs;
ifs.open(testFile, std::ifstream::in);
if (!ifs.good())
return;
std::string cline;
while (ifs.good()) {
getline(ifs, cline);
std::string line = removeWhitespace(std::string(cline));
if (!line.size() || line.find(';') == 0)
continue;
size_t found = line.find('=');
if (found == std::string::npos)
// hmmm, not good
continue;
std::string attrib = removeWhitespace(line.substr(0, found));
std::string value = removeWhitespace(line.substr(found + 1));
if (attrib == "extraDB") {
sscanf( value.c_str(), "%d", &extraDB );
}
if (attrib == "minimumReplication") {
sscanf( value.c_str(), "%d", &minimumReplication );
}
}
ifs.close();
}
ACTOR void setupAndRun(std::string dataFolder, const char *testFile, bool rebooting, Reference<TLSOptions> tlsOptions ) {
state vector<Future<Void>> systemActors;
state Optional<ClusterConnectionString> connFile;
state Standalone<StringRef> startingConfiguration;
state int testerCount = 1;
state int extraDB = 0;
state int minimumReplication = 0;
checkExtraDB(testFile, extraDB, minimumReplication);
Void _ = wait( g_simulator.onProcess( g_simulator.newProcess(
"TestSystem", 0x01010101, 1, LocalityData(Optional<Standalone<StringRef>>(), Standalone<StringRef>(g_random->randomUniqueID().toString()), Optional<Standalone<StringRef>>(), Optional<Standalone<StringRef>>()), ProcessClass(ProcessClass::TesterClass, ProcessClass::CommandLineSource), "", "" ), TaskDefaultYield ) );
Sim2FileSystem::newFileSystem();
FlowTransport::createInstance(1);
if (tlsOptions->enabled()) {
simInitTLS(tlsOptions);
}
TEST(true); // Simulation start
try {
//systemActors.push_back( startSystemMonitor(dataFolder) );
if (rebooting) {
Void _ = wait( timeoutError( restartSimulatedSystem( &systemActors, dataFolder, &testerCount, &connFile, tlsOptions, extraDB), 100.0 ) );
}
else {
g_expect_full_pointermap = 1;
setupSimulatedSystem( &systemActors, dataFolder, &testerCount, &connFile, &startingConfiguration, extraDB, minimumReplication, tlsOptions );
Void _ = wait( delay(1.0) ); // FIXME: WHY!!! //wait for machines to boot
}
std::string clusterFileDir = joinPath( dataFolder, g_random->randomUniqueID().toString() );
platform::createDirectory( clusterFileDir );
writeFile(joinPath(clusterFileDir, "fdb.cluster"), connFile.get().toString());
Void _ = wait(timeoutError(runTests(Reference<ClusterConnectionFile>(new ClusterConnectionFile(joinPath(clusterFileDir, "fdb.cluster"))), TEST_TYPE_FROM_FILE, TEST_ON_TESTERS, testerCount, testFile, startingConfiguration), buggifyActivated ? 36000.0 : 5400.0));
} catch (Error& e) {
TraceEvent(SevError, "setupAndRunError").error(e);
}
TraceEvent("SimulatedSystemDestruct");
destructed = true;
systemActors.clear();
g_simulator.stop();
}