2076 lines
74 KiB
C++
2076 lines
74 KiB
C++
/*
|
|
* ReadYourWrites.actor.cpp
|
|
*
|
|
* This source file is part of the FoundationDB open source project
|
|
*
|
|
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "fdbclient/ReadYourWrites.h"
|
|
#include "fdbclient/Atomic.h"
|
|
#include "fdbclient/DatabaseContext.h"
|
|
#include "fdbclient/StatusClient.h"
|
|
#include "fdbclient/MonitorLeader.h"
|
|
#include "flow/Util.h"
|
|
#include "flow/actorcompiler.h" // This must be the last #include.
|
|
|
|
class RYWImpl {
|
|
public:
|
|
template<class Iter> static void dump( Iter it ) {
|
|
it.skip(allKeys.begin);
|
|
Arena arena;
|
|
while( true ) {
|
|
Optional<StringRef> key = StringRef();
|
|
if (it.is_kv()) {
|
|
auto kv = it.kv(arena);
|
|
if (kv) key = kv->key;
|
|
}
|
|
TraceEvent("RYWDump")
|
|
.detail("Begin", it.beginKey())
|
|
.detail("End", it.endKey())
|
|
.detail("Unknown", it.is_unknown_range())
|
|
.detail("Empty", it.is_empty_range())
|
|
.detail("KV", it.is_kv())
|
|
.detail("Key", key.get());
|
|
if( it.endKey() == allKeys.end )
|
|
break;
|
|
++it;
|
|
}
|
|
}
|
|
|
|
struct GetValueReq {
|
|
explicit GetValueReq( Key key ) : key(key) {}
|
|
Key key;
|
|
typedef Optional<Value> Result;
|
|
};
|
|
|
|
struct GetKeyReq {
|
|
explicit GetKeyReq( KeySelector key ) : key(key) {}
|
|
KeySelector key;
|
|
typedef Key Result;
|
|
};
|
|
|
|
template <bool Reverse>
|
|
struct GetRangeReq {
|
|
GetRangeReq( KeySelector begin, KeySelector end, GetRangeLimits limits ) : begin(begin), end(end), limits(limits) {}
|
|
KeySelector begin, end;
|
|
GetRangeLimits limits;
|
|
typedef Standalone<RangeResultRef> Result;
|
|
};
|
|
|
|
// read() Performs a read (get, getKey, getRange, etc), in the context of the given transaction. Snapshot or RYW reads are distingushed by the type Iter being SnapshotCache::iterator or RYWIterator.
|
|
// Fills in the snapshot cache as a side effect but does not affect conflict ranges.
|
|
// Some (indicated) overloads of read are required to update the given *it to point to the key that was read, so that the corresponding overload of addConflictRange() can make use of it.
|
|
|
|
ACTOR template<class Iter> static Future< Optional<Value> > read( ReadYourWritesTransaction *ryw, GetValueReq read, Iter* it ) {
|
|
// This overload is required to provide postcondition: it->extractWriteMapIterator().segmentContains(read.key)
|
|
|
|
it->skip(read.key);
|
|
state bool dependent = it->is_dependent();
|
|
if( it->is_kv() ) {
|
|
const KeyValueRef* result = it->kv(ryw->arena);
|
|
if (result != nullptr) {
|
|
return result->value;
|
|
} else {
|
|
return Optional<Value>();
|
|
}
|
|
} else if( it->is_empty_range() ) {
|
|
return Optional<Value>();
|
|
} else {
|
|
Optional<Value> res = wait( ryw->tr.get( read.key, true ) );
|
|
KeyRef k( ryw->arena, read.key );
|
|
|
|
if( res.present() ) {
|
|
if( ryw->cache.insert( k, res.get() ) )
|
|
ryw->arena.dependsOn(res.get().arena());
|
|
if( !dependent )
|
|
return res;
|
|
} else {
|
|
ryw->cache.insert( k, Optional<ValueRef>() );
|
|
if( !dependent )
|
|
return Optional<Value>();
|
|
}
|
|
|
|
//There was a dependent write at the key, so we need to lookup the iterator again
|
|
it->skip(k);
|
|
|
|
ASSERT( it->is_kv() );
|
|
const KeyValueRef* result = it->kv(ryw->arena);
|
|
if (result != nullptr) {
|
|
return result->value;
|
|
} else {
|
|
return Optional<Value>();
|
|
}
|
|
}
|
|
}
|
|
|
|
ACTOR template<class Iter> static Future< Key > read( ReadYourWritesTransaction* ryw, GetKeyReq read, Iter* it ) {
|
|
if( read.key.offset > 0 ) {
|
|
Standalone<RangeResultRef> result = wait( getRangeValue( ryw, read.key, firstGreaterOrEqual(ryw->getMaxReadKey()), GetRangeLimits(1), it ) );
|
|
if( result.readToBegin )
|
|
return allKeys.begin;
|
|
if( result.readThroughEnd || !result.size() )
|
|
return ryw->getMaxReadKey();
|
|
return result[0].key;
|
|
} else {
|
|
read.key.offset++;
|
|
Standalone<RangeResultRef> result = wait( getRangeValueBack( ryw, firstGreaterOrEqual(allKeys.begin), read.key, GetRangeLimits(1), it ) );
|
|
if( result.readThroughEnd )
|
|
return ryw->getMaxReadKey();
|
|
if( result.readToBegin || !result.size() )
|
|
return allKeys.begin;
|
|
return result[0].key;
|
|
}
|
|
};
|
|
|
|
template <class Iter> static Future< Standalone<RangeResultRef> > read( ReadYourWritesTransaction* ryw, GetRangeReq<false> read, Iter* it ) {
|
|
return getRangeValue( ryw, read.begin, read.end, read.limits, it );
|
|
};
|
|
|
|
template <class Iter> static Future< Standalone<RangeResultRef> > read( ReadYourWritesTransaction* ryw, GetRangeReq<true> read, Iter* it ) {
|
|
return getRangeValueBack( ryw, read.begin, read.end, read.limits, it );
|
|
};
|
|
|
|
// readThrough() performs a read in the RYW disabled case, passing it on relatively directly to the underlying transaction.
|
|
// Responsible for clipping results to the non-system keyspace when appropriate, since NativeAPI doesn't do that.
|
|
|
|
static Future<Optional<Value>> readThrough( ReadYourWritesTransaction *ryw, GetValueReq read, bool snapshot ) {
|
|
return ryw->tr.get( read.key, snapshot );
|
|
}
|
|
|
|
ACTOR static Future<Key> readThrough( ReadYourWritesTransaction *ryw, GetKeyReq read, bool snapshot ) {
|
|
Key key = wait( ryw->tr.getKey( read.key, snapshot ) );
|
|
if (ryw->getMaxReadKey() < key) return ryw->getMaxReadKey(); // Filter out results in the system keys if they are not accessible
|
|
return key;
|
|
}
|
|
|
|
ACTOR template <bool Reverse> static Future<Standalone<RangeResultRef>> readThrough( ReadYourWritesTransaction *ryw, GetRangeReq<Reverse> read, bool snapshot ) {
|
|
if(Reverse && read.end.offset > 1) {
|
|
// FIXME: Optimistically assume that this will not run into the system keys, and only reissue if the result actually does.
|
|
Key key = wait( ryw->tr.getKey(read.end, snapshot) );
|
|
if(key > ryw->getMaxReadKey())
|
|
read.end = firstGreaterOrEqual(ryw->getMaxReadKey());
|
|
else
|
|
read.end = KeySelector(firstGreaterOrEqual(key), key.arena());
|
|
}
|
|
|
|
Standalone<RangeResultRef> v = wait( ryw->tr.getRange(read.begin, read.end, read.limits, snapshot, Reverse) );
|
|
KeyRef maxKey = ryw->getMaxReadKey();
|
|
if(v.size() > 0) {
|
|
if(!Reverse && v[v.size()-1].key >= maxKey) {
|
|
state Standalone<RangeResultRef> _v = v;
|
|
int i = _v.size() - 2;
|
|
for(; i >= 0 && _v[i].key >= maxKey; --i) { }
|
|
return Standalone<RangeResultRef>(RangeResultRef( VectorRef<KeyValueRef>(&_v[0], i+1), false ), _v.arena());
|
|
}
|
|
}
|
|
|
|
return v;
|
|
}
|
|
|
|
// addConflictRange(ryw,read,result) is called after a serializable read and is responsible for adding the relevant conflict range
|
|
|
|
static void addConflictRange( ReadYourWritesTransaction* ryw, GetValueReq read, WriteMap::iterator& it, Optional<Value> result ) {
|
|
// it will already point to the right segment (see the calling code in read()), so we don't need to skip
|
|
// read.key will be copied into ryw->arena inside of updateConflictMap if it is being added
|
|
ryw->updateConflictMap(read.key, it);
|
|
}
|
|
|
|
static void addConflictRange( ReadYourWritesTransaction* ryw, GetKeyReq read, WriteMap::iterator& it, Key result ) {
|
|
KeyRangeRef readRange;
|
|
if( read.key.offset <= 0 )
|
|
readRange = KeyRangeRef( KeyRef( ryw->arena, result ), read.key.orEqual ? keyAfter( read.key.getKey(), ryw->arena ) : KeyRef( ryw->arena, read.key.getKey() ) );
|
|
else
|
|
readRange = KeyRangeRef( read.key.orEqual ? keyAfter( read.key.getKey(), ryw->arena ) : KeyRef( ryw->arena, read.key.getKey() ), keyAfter( result, ryw->arena ) );
|
|
|
|
it.skip( readRange.begin );
|
|
ryw->updateConflictMap(readRange, it);
|
|
}
|
|
|
|
static void addConflictRange( ReadYourWritesTransaction* ryw, GetRangeReq<false> read, WriteMap::iterator &it, Standalone<RangeResultRef> const& result ) {
|
|
KeyRef rangeBegin, rangeEnd;
|
|
bool endInArena = false;
|
|
|
|
if( read.begin.getKey() < read.end.getKey() ) {
|
|
rangeBegin = read.begin.getKey();
|
|
rangeEnd = read.end.offset > 0 && result.more ? read.begin.getKey() : read.end.getKey();
|
|
}
|
|
else {
|
|
rangeBegin = read.end.getKey();
|
|
rangeEnd = read.begin.getKey();
|
|
}
|
|
|
|
if( result.readToBegin && read.begin.offset <= 0 ) rangeBegin = allKeys.begin;
|
|
if( result.readThroughEnd && read.end.offset > 0 ) rangeEnd = ryw->getMaxReadKey();
|
|
|
|
if ( result.size() ) {
|
|
if( read.begin.offset <= 0 ) rangeBegin = std::min( rangeBegin, result[0].key );
|
|
if( rangeEnd <= result.end()[-1].key ) {
|
|
rangeEnd = keyAfter( result.end()[-1].key, ryw->arena );
|
|
endInArena = true;
|
|
}
|
|
}
|
|
|
|
KeyRangeRef readRange = KeyRangeRef( KeyRef( ryw->arena, rangeBegin ), endInArena ? rangeEnd : KeyRef( ryw->arena, rangeEnd ) );
|
|
it.skip( readRange.begin );
|
|
ryw->updateConflictMap(readRange, it);
|
|
}
|
|
|
|
static void addConflictRange( ReadYourWritesTransaction* ryw, GetRangeReq<true> read, WriteMap::iterator& it, Standalone<RangeResultRef> const& result ) {
|
|
KeyRef rangeBegin, rangeEnd;
|
|
bool endInArena = false;
|
|
|
|
if( read.begin.getKey() < read.end.getKey() ) {
|
|
rangeBegin = read.begin.offset <= 0 && result.more ? read.end.getKey() : read.begin.getKey();
|
|
rangeEnd = read.end.getKey();
|
|
}
|
|
else {
|
|
rangeBegin = read.end.getKey();
|
|
rangeEnd = read.begin.getKey();
|
|
}
|
|
|
|
if( result.readToBegin && read.begin.offset <= 0 ) rangeBegin = allKeys.begin;
|
|
if( result.readThroughEnd && read.end.offset > 0 ) rangeEnd = ryw->getMaxReadKey();
|
|
|
|
if ( result.size() ) {
|
|
rangeBegin = std::min( rangeBegin, result.end()[-1].key );
|
|
if( read.end.offset > 0 && rangeEnd <= result[0].key ) {
|
|
rangeEnd = keyAfter( result[0].key, ryw->arena );
|
|
endInArena = true;
|
|
}
|
|
}
|
|
|
|
KeyRangeRef readRange = KeyRangeRef( KeyRef( ryw->arena, rangeBegin ), endInArena ? rangeEnd : KeyRef( ryw->arena, rangeEnd ) );
|
|
it.skip( readRange.begin );
|
|
ryw->updateConflictMap(readRange, it);
|
|
}
|
|
|
|
ACTOR template <class Req> static Future<typename Req::Result> readWithConflictRangeThrough( ReadYourWritesTransaction* ryw, Req req, bool snapshot ) {
|
|
choose {
|
|
when (typename Req::Result result = wait( readThrough( ryw, req, snapshot ) )) {
|
|
return result;
|
|
}
|
|
when (wait(ryw->resetPromise.getFuture())) { throw internal_error(); }
|
|
}
|
|
}
|
|
ACTOR template <class Req> static Future<typename Req::Result> readWithConflictRangeSnapshot( ReadYourWritesTransaction* ryw, Req req ) {
|
|
state SnapshotCache::iterator it(&ryw->cache, &ryw->writes);
|
|
choose {
|
|
when (typename Req::Result result = wait( read( ryw, req, &it ) )) {
|
|
return result;
|
|
}
|
|
when (wait(ryw->resetPromise.getFuture())) { throw internal_error(); }
|
|
}
|
|
}
|
|
ACTOR template <class Req> static Future<typename Req::Result> readWithConflictRangeRYW( ReadYourWritesTransaction* ryw, Req req, bool snapshot ) {
|
|
state RYWIterator it( &ryw->cache, &ryw->writes );
|
|
choose {
|
|
when (typename Req::Result result = wait( read( ryw, req, &it ) )) {
|
|
// Some overloads of addConflictRange() require it to point to the "right" key and others don't. The corresponding overloads of read() have to provide that guarantee!
|
|
if(!snapshot)
|
|
addConflictRange( ryw, req, it.extractWriteMapIterator(), result );
|
|
return result;
|
|
}
|
|
when (wait(ryw->resetPromise.getFuture())) { throw internal_error(); }
|
|
}
|
|
}
|
|
template <class Req> static inline Future<typename Req::Result> readWithConflictRange( ReadYourWritesTransaction* ryw, Req const& req, bool snapshot ) {
|
|
if (ryw->options.readYourWritesDisabled) {
|
|
return readWithConflictRangeThrough(ryw, req, snapshot);
|
|
} else if (snapshot && ryw->options.snapshotRywEnabled <= 0) {
|
|
return readWithConflictRangeSnapshot(ryw, req);
|
|
}
|
|
return readWithConflictRangeRYW(ryw, req, snapshot);
|
|
}
|
|
|
|
template<class Iter> static void resolveKeySelectorFromCache( KeySelector& key, Iter& it, KeyRef const& maxKey, bool* readToBegin, bool* readThroughEnd, int* actualOffset ) {
|
|
// If the key indicated by `key` can be determined without reading unknown data from the snapshot, then it.kv().key is the resolved key.
|
|
// If the indicated key is determined to be "off the beginning or end" of the database, it points to the first or last segment in the DB,
|
|
// and key is an equivalent key selector relative to the beginning or end of the database.
|
|
// Otherwise it points to an unknown segment, and key is an equivalent key selector whose base key is in or adjoining the segment.
|
|
|
|
key.removeOrEqual(key.arena());
|
|
|
|
bool alreadyExhausted = key.offset == 1;
|
|
|
|
it.skip( key.getKey() ); // TODO: or precondition?
|
|
|
|
if ( key.offset <= 0 && it.beginKey() == key.getKey() && key.getKey() != allKeys.begin )
|
|
--it;
|
|
|
|
ExtStringRef keykey = key.getKey();
|
|
bool keyNeedsCopy = false;
|
|
|
|
// Invariant: it.beginKey() <= keykey && keykey <= it.endKey() && (key.isBackward() ? it.beginKey() != keykey : it.endKey() != keykey)
|
|
// Maintaining this invariant, we transform the key selector toward firstGreaterOrEqual form until we reach an unknown range or the result
|
|
while (key.offset > 1 && !it.is_unreadable() && !it.is_unknown_range() && it.endKey() < maxKey ) {
|
|
if (it.is_kv())
|
|
--key.offset;
|
|
++it;
|
|
keykey = it.beginKey();
|
|
keyNeedsCopy = true;
|
|
}
|
|
while (key.offset < 1 && !it.is_unreadable() && !it.is_unknown_range() && it.beginKey() != allKeys.begin) {
|
|
if (it.is_kv()) {
|
|
++key.offset;
|
|
if (key.offset == 1) {
|
|
keykey = it.beginKey();
|
|
keyNeedsCopy = true;
|
|
break;
|
|
}
|
|
}
|
|
--it;
|
|
keykey = it.endKey();
|
|
keyNeedsCopy = true;
|
|
}
|
|
|
|
if(!alreadyExhausted) {
|
|
*actualOffset = key.offset;
|
|
}
|
|
|
|
if (!it.is_unreadable() && !it.is_unknown_range() && key.offset < 1) {
|
|
*readToBegin = true;
|
|
key.setKey(allKeys.begin);
|
|
key.offset = 1;
|
|
return;
|
|
}
|
|
|
|
if (!it.is_unreadable() && !it.is_unknown_range() && key.offset > 1) {
|
|
*readThroughEnd = true;
|
|
key.setKey(maxKey); // maxKey is a KeyRef, but points to a LiteralStringRef. TODO: how can we ASSERT this?
|
|
key.offset = 1;
|
|
return;
|
|
}
|
|
|
|
while (!it.is_unreadable() && it.is_empty_range() && it.endKey() < maxKey) {
|
|
++it;
|
|
keykey = it.beginKey();
|
|
keyNeedsCopy = true;
|
|
}
|
|
|
|
if(keyNeedsCopy) {
|
|
key.setKey(keykey.toArena(key.arena()));
|
|
}
|
|
}
|
|
|
|
static KeyRangeRef getKnownKeyRange( RangeResultRef data, KeySelector begin, KeySelector end, Arena& arena ) {
|
|
StringRef beginKey = begin.offset<=1 ? begin.getKey() : allKeys.end;
|
|
ExtStringRef endKey = !data.more && end.offset>=1 ? end.getKey() : allKeys.begin;
|
|
|
|
if (data.readToBegin) beginKey = allKeys.begin;
|
|
if (data.readThroughEnd) endKey = allKeys.end;
|
|
|
|
if( data.size() ) {
|
|
beginKey = std::min( beginKey, data[0].key );
|
|
if( data.readThrough.present() ) {
|
|
endKey = std::max<ExtStringRef>( endKey, data.readThrough.get() );
|
|
}
|
|
else {
|
|
endKey = !data.more && data.end()[-1].key < endKey ? endKey : ExtStringRef( data.end()[-1].key, 1 );
|
|
}
|
|
}
|
|
if (beginKey >= endKey) return KeyRangeRef();
|
|
|
|
|
|
return KeyRangeRef( StringRef(arena, beginKey), endKey.toArena(arena));
|
|
}
|
|
|
|
// Pre: it points to an unknown range
|
|
// Increments it to point to the unknown range just before the next nontrivial known range (skips over trivial known ranges), but not more than iterationLimit ranges away
|
|
template<class Iter> static int skipUncached( Iter& it, Iter const& end, int iterationLimit ) {
|
|
ExtStringRef b = it.beginKey();
|
|
ExtStringRef e = it.endKey();
|
|
int singleEmpty = 0;
|
|
|
|
ASSERT( !it.is_unreadable() && it.is_unknown_range() );
|
|
|
|
// b is the beginning of the most recent contiguous *empty* range
|
|
// e is it.endKey()
|
|
while( it != end && --iterationLimit>=0 ) {
|
|
if (it.is_unreadable() || it.is_empty_range()) {
|
|
if (it.is_unreadable() || !e.isKeyAfter(b)) { //Assumes no degenerate ranges
|
|
while (it.is_unreadable() || !it.is_unknown_range())
|
|
--it;
|
|
return singleEmpty;
|
|
}
|
|
singleEmpty++;
|
|
} else
|
|
b = e;
|
|
++it;
|
|
e = it.endKey();
|
|
}
|
|
while (it.is_unreadable() || !it.is_unknown_range())
|
|
--it;
|
|
return singleEmpty;
|
|
}
|
|
|
|
// Pre: it points to an unknown range
|
|
// Returns the number of following empty single-key known ranges between it and the next nontrivial known range, but no more than maxClears
|
|
// Leaves `it` in an indeterminate state
|
|
template<class Iter> static int countUncached( Iter&& it, KeyRef maxKey, int maxClears ) {
|
|
if (maxClears<=0) return 0;
|
|
|
|
ExtStringRef b = it.beginKey();
|
|
ExtStringRef e = it.endKey();
|
|
int singleEmpty = 0;
|
|
|
|
while( e < maxKey ) {
|
|
if (it.is_unreadable() || it.is_empty_range()) {
|
|
if (it.is_unreadable() || !e.isKeyAfter(b)) { //Assumes no degenerate ranges
|
|
return singleEmpty;
|
|
}
|
|
singleEmpty++;
|
|
if( singleEmpty >= maxClears )
|
|
return maxClears;
|
|
} else
|
|
b = e;
|
|
++it;
|
|
e = it.endKey();
|
|
}
|
|
return singleEmpty;
|
|
}
|
|
|
|
static void setRequestLimits(GetRangeLimits &requestLimit, int64_t additionalRows, int offset, int requestCount) {
|
|
requestLimit.minRows = (int)std::min(std::max(1 + additionalRows, (int64_t)offset), (int64_t)std::numeric_limits<int>::max());
|
|
if(requestLimit.hasRowLimit()) {
|
|
requestLimit.rows = (int)std::min(std::max(std::max(1,requestLimit.rows) + additionalRows, (int64_t)offset), (int64_t)std::numeric_limits<int>::max());
|
|
}
|
|
|
|
// Calculating request byte limit
|
|
if(requestLimit.bytes==0) {
|
|
requestLimit.bytes = CLIENT_KNOBS->BYTE_LIMIT_UNLIMITED;
|
|
if(!requestLimit.hasRowLimit()) {
|
|
requestLimit.rows = (int)std::min(std::max(std::max(1,requestLimit.rows) + additionalRows, (int64_t)offset), (int64_t)std::numeric_limits<int>::max());
|
|
}
|
|
}
|
|
else if(requestLimit.hasByteLimit()) {
|
|
requestLimit.bytes = std::min(int64_t(requestLimit.bytes)<<std::min(requestCount, 20), (int64_t)CLIENT_KNOBS->REPLY_BYTE_LIMIT);
|
|
}
|
|
}
|
|
|
|
//TODO: read to begin, read through end flags for result
|
|
ACTOR template<class Iter> static Future< Standalone<RangeResultRef> > getRangeValue( ReadYourWritesTransaction *ryw, KeySelector begin, KeySelector end, GetRangeLimits limits, Iter* pit ) {
|
|
state Iter& it(*pit);
|
|
state Iter itEnd(*pit);
|
|
state Standalone<RangeResultRef> result;
|
|
state int64_t additionalRows = 0;
|
|
state int itemsPastEnd = 0;
|
|
state int requestCount = 0;
|
|
state bool readToBegin = false;
|
|
state bool readThroughEnd = false;
|
|
state int actualBeginOffset = begin.offset;
|
|
state int actualEndOffset = end.offset;
|
|
//state UID randomID = nondeterministicRandom()->randomUniqueID();
|
|
|
|
resolveKeySelectorFromCache( begin, it, ryw->getMaxReadKey(), &readToBegin, &readThroughEnd, &actualBeginOffset );
|
|
resolveKeySelectorFromCache( end, itEnd, ryw->getMaxReadKey(), &readToBegin, &readThroughEnd, &actualEndOffset );
|
|
|
|
if( actualBeginOffset >= actualEndOffset && begin.getKey() >= end.getKey() ) {
|
|
return RangeResultRef(false, false);
|
|
}
|
|
else if( ( begin.isFirstGreaterOrEqual() && begin.getKey() == ryw->getMaxReadKey() )
|
|
|| ( end.isFirstGreaterOrEqual() && end.getKey() == allKeys.begin ) )
|
|
{
|
|
return RangeResultRef(readToBegin, readThroughEnd);
|
|
}
|
|
|
|
if( !end.isFirstGreaterOrEqual() && begin.getKey() > end.getKey() ) {
|
|
Key resolvedEnd = wait( read( ryw, GetKeyReq(end), pit ) );
|
|
if( resolvedEnd == allKeys.begin )
|
|
readToBegin = true;
|
|
if( resolvedEnd == ryw->getMaxReadKey() )
|
|
readThroughEnd = true;
|
|
|
|
if( begin.getKey() >= resolvedEnd && !begin.isBackward() ) {
|
|
return RangeResultRef(false, false);
|
|
}
|
|
else if( resolvedEnd == allKeys.begin ) {
|
|
return RangeResultRef(readToBegin, readThroughEnd);
|
|
}
|
|
|
|
resolveKeySelectorFromCache( begin, it, ryw->getMaxReadKey(), &readToBegin, &readThroughEnd, &actualBeginOffset );
|
|
resolveKeySelectorFromCache( end, itEnd, ryw->getMaxReadKey(), &readToBegin, &readThroughEnd, &actualEndOffset );
|
|
}
|
|
|
|
//TraceEvent("RYWSelectorsStartForward", randomID).detail("ByteLimit", limits.bytes).detail("RowLimit", limits.rows);
|
|
|
|
loop {
|
|
/*TraceEvent("RYWSelectors", randomID).detail("Begin", begin.toString())
|
|
.detail("End", end.toString())
|
|
.detail("Reached", limits.isReached())
|
|
.detail("ItemsPastEnd", itemsPastEnd)
|
|
.detail("EndOffset", -end.offset)
|
|
.detail("ItBegin", it.beginKey())
|
|
.detail("ItEnd", itEnd.beginKey())
|
|
.detail("Unknown", it.is_unknown_range())
|
|
.detail("Requests", requestCount);*/
|
|
|
|
if( !result.size() && actualBeginOffset >= actualEndOffset && begin.getKey() >= end.getKey() ) {
|
|
return RangeResultRef(false, false);
|
|
}
|
|
|
|
if( end.offset <= 1 && end.getKey() == allKeys.begin ) {
|
|
return RangeResultRef(readToBegin, readThroughEnd);
|
|
}
|
|
|
|
if( ( begin.offset >= end.offset && begin.getKey() >= end.getKey() ) ||
|
|
( begin.offset >= 1 && begin.getKey() >= ryw->getMaxReadKey() ) ) {
|
|
if( end.isFirstGreaterOrEqual() ) break;
|
|
if( !result.size() ) break;
|
|
Key resolvedEnd = wait( read( ryw, GetKeyReq(end), pit ) ); //do not worry about iterator invalidation, because we are breaking for the loop
|
|
if( resolvedEnd == allKeys.begin )
|
|
readToBegin = true;
|
|
if( resolvedEnd == ryw->getMaxReadKey() )
|
|
readThroughEnd = true;
|
|
end = firstGreaterOrEqual( resolvedEnd );
|
|
break;
|
|
}
|
|
|
|
if( !it.is_unreadable() && !it.is_unknown_range() && it.beginKey() > itEnd.beginKey() ) {
|
|
if( end.isFirstGreaterOrEqual() ) break;
|
|
return RangeResultRef(readToBegin, readThroughEnd);
|
|
}
|
|
|
|
if( limits.isReached() && itemsPastEnd >= 1-end.offset ) break;
|
|
|
|
if (it == itEnd && ((!it.is_unreadable() && !it.is_unknown_range()) || (begin.offset > 0 && end.isFirstGreaterOrEqual() && end.getKey() == it.beginKey()))) break;
|
|
|
|
if (it.is_unknown_range()) {
|
|
if( limits.hasByteLimit() && result.size() && itemsPastEnd >= 1-end.offset ) {
|
|
result.more = true;
|
|
break;
|
|
}
|
|
|
|
Iter ucEnd(it);
|
|
int singleClears = 0;
|
|
int clearLimit = requestCount ? 1 << std::min(requestCount, 20) : 0;
|
|
if( it.beginKey() < itEnd.beginKey() )
|
|
singleClears = std::min(skipUncached(ucEnd, itEnd, BUGGIFY ? 0 : clearLimit + 100), clearLimit);
|
|
|
|
state KeySelector read_end;
|
|
if ( ucEnd!=itEnd ) {
|
|
Key k = ucEnd.endKey().toStandaloneStringRef();
|
|
read_end = KeySelector(firstGreaterOrEqual(k), k.arena());
|
|
if( end.offset < 1 ) additionalRows += 1 - end.offset; // extra for items past end
|
|
} else if( end.offset < 1 ) {
|
|
read_end = KeySelector(firstGreaterOrEqual(end.getKey()), end.arena());
|
|
additionalRows += 1 - end.offset;
|
|
} else {
|
|
read_end = end;
|
|
if( end.offset > 1 ) {
|
|
singleClears += countUncached( std::move(ucEnd), ryw->getMaxReadKey(), clearLimit-singleClears);
|
|
read_end.offset += singleClears;
|
|
}
|
|
}
|
|
|
|
additionalRows += singleClears;
|
|
|
|
state KeySelector read_begin;
|
|
if (begin.isFirstGreaterOrEqual()) {
|
|
Key k = it.beginKey() > begin.getKey() ? it.beginKey().toStandaloneStringRef() : Key(begin.getKey(), begin.arena());
|
|
begin = KeySelector(firstGreaterOrEqual(k), k.arena());
|
|
read_begin = begin;
|
|
} else if( begin.offset > 1 ) {
|
|
read_begin = KeySelector(firstGreaterOrEqual(begin.getKey()), begin.arena());
|
|
additionalRows += begin.offset - 1;
|
|
} else {
|
|
read_begin = begin;
|
|
ucEnd = it;
|
|
|
|
singleClears = countUncachedBack(std::move(ucEnd), clearLimit);
|
|
read_begin.offset -= singleClears;
|
|
additionalRows += singleClears;
|
|
}
|
|
|
|
if(read_end.getKey() < read_begin.getKey()) {
|
|
read_end.setKey(read_begin.getKey());
|
|
read_end.arena().dependsOn(read_begin.arena());
|
|
}
|
|
|
|
state GetRangeLimits requestLimit = limits;
|
|
setRequestLimits(requestLimit, additionalRows, 2-read_begin.offset, requestCount);
|
|
requestCount++;
|
|
|
|
ASSERT( !requestLimit.hasRowLimit() || requestLimit.rows > 0 );
|
|
ASSERT( requestLimit.hasRowLimit() || requestLimit.hasByteLimit() );
|
|
|
|
//TraceEvent("RYWIssuing", randomID).detail("Begin", read_begin.toString()).detail("End", read_end.toString()).detail("Bytes", requestLimit.bytes).detail("Rows", requestLimit.rows).detail("Limits", limits.bytes).detail("Reached", limits.isReached()).detail("RequestCount", requestCount).detail("SingleClears", singleClears).detail("UcEnd", ucEnd.beginKey()).detail("MinRows", requestLimit.minRows);
|
|
|
|
additionalRows = 0;
|
|
Standalone<RangeResultRef> snapshot_read = wait( ryw->tr.getRange( read_begin, read_end, requestLimit, true, false ) );
|
|
KeyRangeRef range = getKnownKeyRange( snapshot_read, read_begin, read_end, ryw->arena );
|
|
|
|
//TraceEvent("RYWCacheInsert", randomID).detail("Range", range).detail("ExpectedSize", snapshot_read.expectedSize()).detail("Rows", snapshot_read.size()).detail("Results", snapshot_read).detail("More", snapshot_read.more).detail("ReadToBegin", snapshot_read.readToBegin).detail("ReadThroughEnd", snapshot_read.readThroughEnd).detail("ReadThrough", snapshot_read.readThrough);
|
|
|
|
if( ryw->cache.insert( range, snapshot_read ) )
|
|
ryw->arena.dependsOn(snapshot_read.arena());
|
|
|
|
// TODO: Is there a more efficient way to deal with invalidation?
|
|
resolveKeySelectorFromCache( begin, it, ryw->getMaxReadKey(), &readToBegin, &readThroughEnd, &actualBeginOffset );
|
|
resolveKeySelectorFromCache( end, itEnd, ryw->getMaxReadKey(), &readToBegin, &readThroughEnd, &actualEndOffset );
|
|
} else if (it.is_kv()) {
|
|
KeyValueRef const* start = it.kv(ryw->arena);
|
|
if (start == nullptr) {
|
|
++it;
|
|
continue;
|
|
}
|
|
it.skipContiguous( end.isFirstGreaterOrEqual() ? end.getKey() : ryw->getMaxReadKey() ); //not technically correct since this would add end.getKey(), but that is protected above
|
|
|
|
int maxCount = it.kv(ryw->arena) - start + 1;
|
|
int count = 0;
|
|
for(; count < maxCount && !limits.isReached(); count++ ) {
|
|
limits.decrement(start[count]);
|
|
}
|
|
|
|
itemsPastEnd += maxCount - count;
|
|
|
|
//TraceEvent("RYWaddKV", randomID).detail("Key", it.beginKey()).detail("Count", count).detail("MaxCount", maxCount).detail("ItemsPastEnd", itemsPastEnd);
|
|
if( count ) result.append( result.arena(), start, count );
|
|
++it;
|
|
} else
|
|
++it;
|
|
}
|
|
|
|
result.more = result.more || limits.isReached();
|
|
|
|
if( end.isFirstGreaterOrEqual() ) {
|
|
int keepItems = std::lower_bound( result.begin(), result.end(), end.getKey(), KeyValueRef::OrderByKey() ) - result.begin();
|
|
if( keepItems < result.size() )
|
|
result.more = false;
|
|
result.resize( result.arena(), keepItems );
|
|
}
|
|
|
|
result.readToBegin = readToBegin;
|
|
result.readThroughEnd = !result.more && readThroughEnd;
|
|
result.arena().dependsOn( ryw->arena );
|
|
|
|
return result;
|
|
}
|
|
|
|
static KeyRangeRef getKnownKeyRangeBack( RangeResultRef data, KeySelector begin, KeySelector end, Arena& arena ) {
|
|
StringRef beginKey = !data.more && begin.offset<=1 ? begin.getKey() : allKeys.end;
|
|
ExtStringRef endKey = end.offset>=1 ? end.getKey() : allKeys.begin;
|
|
|
|
if (data.readToBegin) beginKey = allKeys.begin;
|
|
if (data.readThroughEnd) endKey = allKeys.end;
|
|
|
|
if( data.size() ) {
|
|
if( data.readThrough.present() ) {
|
|
beginKey = std::min( data.readThrough.get(), beginKey );
|
|
}
|
|
else {
|
|
beginKey = !data.more && data.end()[-1].key > beginKey ? beginKey : data.end()[-1].key;
|
|
}
|
|
|
|
endKey = data[0].key < endKey ? endKey : ExtStringRef( data[0].key, 1 );
|
|
}
|
|
if (beginKey >= endKey) return KeyRangeRef();
|
|
|
|
return KeyRangeRef( StringRef(arena, beginKey), endKey.toArena(arena));
|
|
}
|
|
|
|
// Pre: it points to an unknown range
|
|
// Decrements it to point to the unknown range just before the last nontrivial known range (skips over trivial known ranges), but not more than iterationLimit ranges away
|
|
// Returns the number of single-key empty ranges skipped
|
|
template<class Iter> static int skipUncachedBack( Iter& it, Iter const& end, int iterationLimit ) {
|
|
ExtStringRef b = it.beginKey();
|
|
ExtStringRef e = it.endKey();
|
|
int singleEmpty = 0;
|
|
ASSERT(!it.is_unreadable() && it.is_unknown_range());
|
|
|
|
// b == it.beginKey()
|
|
// e is the end of the contiguous empty range containing it
|
|
while( it != end && --iterationLimit>=0) {
|
|
if (it.is_unreadable() || it.is_empty_range()) {
|
|
if (it.is_unreadable() || !e.isKeyAfter(b)) { //Assumes no degenerate ranges
|
|
while (it.is_unreadable() || !it.is_unknown_range())
|
|
++it;
|
|
return singleEmpty;
|
|
}
|
|
singleEmpty++;
|
|
} else
|
|
e = b;
|
|
--it;
|
|
b = it.beginKey();
|
|
}
|
|
while (it.is_unreadable() || !it.is_unknown_range())
|
|
++it;
|
|
return singleEmpty;
|
|
}
|
|
|
|
// Pre: it points to an unknown range
|
|
// Returns the number of preceding empty single-key known ranges between it and the previous nontrivial known range, but no more than maxClears
|
|
// Leaves it in an indeterminate state
|
|
template<class Iter> static int countUncachedBack( Iter&& it, int maxClears ) {
|
|
if (maxClears <= 0) return 0;
|
|
ExtStringRef b = it.beginKey();
|
|
ExtStringRef e = it.endKey();
|
|
int singleEmpty = 0;
|
|
while( b > allKeys.begin ) {
|
|
if (it.is_unreadable() || it.is_empty_range()) {
|
|
if (it.is_unreadable() || !e.isKeyAfter(b)) { //Assumes no degenerate ranges
|
|
return singleEmpty;
|
|
}
|
|
singleEmpty++;
|
|
if( singleEmpty >= maxClears )
|
|
return maxClears;
|
|
} else
|
|
e = b;
|
|
--it;
|
|
b = it.beginKey();
|
|
}
|
|
return singleEmpty;
|
|
}
|
|
|
|
ACTOR template<class Iter> static Future< Standalone<RangeResultRef> > getRangeValueBack( ReadYourWritesTransaction *ryw, KeySelector begin, KeySelector end, GetRangeLimits limits, Iter* pit ) {
|
|
state Iter& it(*pit);
|
|
state Iter itEnd(*pit);
|
|
state Standalone<RangeResultRef> result;
|
|
state int64_t additionalRows = 0;
|
|
state int itemsPastBegin = 0;
|
|
state int requestCount = 0;
|
|
state bool readToBegin = false;
|
|
state bool readThroughEnd = false;
|
|
state int actualBeginOffset = begin.offset;
|
|
state int actualEndOffset = end.offset;
|
|
//state UID randomID = nondeterministicRandom()->randomUniqueID();
|
|
|
|
resolveKeySelectorFromCache( end, it, ryw->getMaxReadKey(), &readToBegin, &readThroughEnd, &actualEndOffset );
|
|
resolveKeySelectorFromCache( begin, itEnd, ryw->getMaxReadKey(), &readToBegin, &readThroughEnd, &actualBeginOffset );
|
|
|
|
if( actualBeginOffset >= actualEndOffset && begin.getKey() >= end.getKey() ) {
|
|
return RangeResultRef(false, false);
|
|
}
|
|
else if( ( begin.isFirstGreaterOrEqual() && begin.getKey() == ryw->getMaxReadKey() )
|
|
|| ( end.isFirstGreaterOrEqual() && end.getKey() == allKeys.begin ) )
|
|
{
|
|
return RangeResultRef(readToBegin, readThroughEnd);
|
|
}
|
|
|
|
if( !begin.isFirstGreaterOrEqual() && begin.getKey() > end.getKey() ) {
|
|
Key resolvedBegin = wait( read( ryw, GetKeyReq(begin), pit ) );
|
|
if( resolvedBegin == allKeys.begin )
|
|
readToBegin = true;
|
|
if( resolvedBegin == ryw->getMaxReadKey() )
|
|
readThroughEnd = true;
|
|
|
|
if( resolvedBegin >= end.getKey() && end.offset <= 1 ) {
|
|
return RangeResultRef(false, false);
|
|
}
|
|
else if( resolvedBegin == ryw->getMaxReadKey() ) {
|
|
return RangeResultRef(readToBegin, readThroughEnd);
|
|
}
|
|
|
|
resolveKeySelectorFromCache( end, it, ryw->getMaxReadKey(), &readToBegin, &readThroughEnd, &actualEndOffset );
|
|
resolveKeySelectorFromCache( begin, itEnd, ryw->getMaxReadKey(), &readToBegin, &readThroughEnd, &actualBeginOffset );
|
|
}
|
|
|
|
//TraceEvent("RYWSelectorsStartReverse", randomID).detail("ByteLimit", limits.bytes).detail("RowLimit", limits.rows);
|
|
|
|
loop {
|
|
/*TraceEvent("RYWSelectors", randomID).detail("Begin", begin.toString())
|
|
.detail("End", end.toString())
|
|
.detail("Reached", limits.isReached())
|
|
.detail("ItemsPastBegin", itemsPastBegin)
|
|
.detail("EndOffset", end.offset)
|
|
.detail("ItBegin", it.beginKey())
|
|
.detail("ItEnd", itEnd.beginKey())
|
|
.detail("Unknown", it.is_unknown_range())
|
|
.detail("Kv", it.is_kv())
|
|
.detail("Requests", requestCount);*/
|
|
|
|
if(!result.size() && actualBeginOffset >= actualEndOffset && begin.getKey() >= end.getKey()) {
|
|
return RangeResultRef(false, false);
|
|
}
|
|
|
|
if( !begin.isBackward() && begin.getKey() >= ryw->getMaxReadKey() ) {
|
|
return RangeResultRef(readToBegin, readThroughEnd);
|
|
}
|
|
|
|
if( ( begin.offset >= end.offset && begin.getKey() >= end.getKey() ) ||
|
|
( end.offset <= 1 && end.getKey() == allKeys.begin ) ) {
|
|
if( begin.isFirstGreaterOrEqual() ) break;
|
|
if( !result.size() ) break;
|
|
Key resolvedBegin = wait( read( ryw, GetKeyReq(begin), pit ) ); //do not worry about iterator invalidation, because we are breaking for the loop
|
|
if( resolvedBegin == allKeys.begin )
|
|
readToBegin = true;
|
|
if( resolvedBegin == ryw->getMaxReadKey() )
|
|
readThroughEnd = true;
|
|
begin = firstGreaterOrEqual( resolvedBegin );
|
|
break;
|
|
}
|
|
|
|
if (itemsPastBegin >= begin.offset - 1 && !it.is_unreadable() && !it.is_unknown_range() && it.beginKey() < itEnd.beginKey()) {
|
|
if( begin.isFirstGreaterOrEqual() ) break;
|
|
return RangeResultRef(readToBegin, readThroughEnd);
|
|
}
|
|
|
|
if( limits.isReached() && itemsPastBegin >= begin.offset-1 ) break;
|
|
|
|
if( end.isFirstGreaterOrEqual() && end.getKey() == it.beginKey() ) {
|
|
if( itemsPastBegin >= begin.offset-1 && it == itEnd) break;
|
|
--it;
|
|
}
|
|
|
|
if (it.is_unknown_range()) {
|
|
if( limits.hasByteLimit() && result.size() && itemsPastBegin >= begin.offset-1 ) {
|
|
result.more = true;
|
|
break;
|
|
}
|
|
|
|
Iter ucEnd(it);
|
|
int singleClears = 0;
|
|
int clearLimit = requestCount ? 1 << std::min(requestCount, 20) : 0;
|
|
if( it.beginKey() > itEnd.beginKey() )
|
|
singleClears = std::min(skipUncachedBack(ucEnd, itEnd, BUGGIFY ? 0 : clearLimit+100), clearLimit);
|
|
|
|
state KeySelector read_begin;
|
|
if ( ucEnd!=itEnd ) {
|
|
Key k = ucEnd.beginKey().toStandaloneStringRef();
|
|
read_begin = KeySelector(firstGreaterOrEqual(k), k.arena());
|
|
if( begin.offset > 1 ) additionalRows += begin.offset - 1; // extra for items past end
|
|
} else if( begin.offset > 1 ) {
|
|
read_begin = KeySelector(firstGreaterOrEqual( begin.getKey() ), begin.arena());
|
|
additionalRows += begin.offset - 1;
|
|
} else {
|
|
read_begin = begin;
|
|
if( begin.offset < 1 ) {
|
|
singleClears += countUncachedBack(std::move(ucEnd), clearLimit-singleClears);
|
|
read_begin.offset -= singleClears;
|
|
}
|
|
}
|
|
|
|
additionalRows += singleClears;
|
|
|
|
state KeySelector read_end;
|
|
if (end.isFirstGreaterOrEqual()) {
|
|
Key k = it.endKey() < end.getKey() ? it.endKey().toStandaloneStringRef() : end.getKey();
|
|
end = KeySelector(firstGreaterOrEqual(k), k.arena());
|
|
read_end = end;
|
|
} else if (end.offset < 1) {
|
|
read_end = KeySelector(firstGreaterOrEqual(end.getKey()), end.arena());
|
|
additionalRows += 1 - end.offset;
|
|
} else {
|
|
read_end = end;
|
|
ucEnd = it;
|
|
|
|
singleClears = countUncached(std::move(ucEnd), ryw->getMaxReadKey(), clearLimit);
|
|
read_end.offset += singleClears;
|
|
additionalRows += singleClears;
|
|
}
|
|
|
|
if(read_begin.getKey() > read_end.getKey()) {
|
|
read_begin.setKey(read_end.getKey());
|
|
read_begin.arena().dependsOn(read_end.arena());
|
|
}
|
|
|
|
state GetRangeLimits requestLimit = limits;
|
|
setRequestLimits(requestLimit, additionalRows, read_end.offset, requestCount);
|
|
requestCount++;
|
|
|
|
ASSERT( !requestLimit.hasRowLimit() || requestLimit.rows > 0 );
|
|
ASSERT( requestLimit.hasRowLimit() || requestLimit.hasByteLimit() );
|
|
|
|
//TraceEvent("RYWIssuing", randomID).detail("Begin", read_begin.toString()).detail("End", read_end.toString()).detail("Bytes", requestLimit.bytes).detail("Rows", requestLimit.rows).detail("Limits", limits.bytes).detail("Reached", limits.isReached()).detail("RequestCount", requestCount).detail("SingleClears", singleClears).detail("UcEnd", ucEnd.beginKey()).detail("MinRows", requestLimit.minRows);
|
|
|
|
additionalRows = 0;
|
|
Standalone<RangeResultRef> snapshot_read = wait( ryw->tr.getRange( read_begin, read_end, requestLimit, true, true ) );
|
|
KeyRangeRef range = getKnownKeyRangeBack( snapshot_read, read_begin, read_end, ryw->arena );
|
|
|
|
//TraceEvent("RYWCacheInsert", randomID).detail("Range", range).detail("ExpectedSize", snapshot_read.expectedSize()).detail("Rows", snapshot_read.size()).detail("Results", snapshot_read).detail("More", snapshot_read.more).detail("ReadToBegin", snapshot_read.readToBegin).detail("ReadThroughEnd", snapshot_read.readThroughEnd).detail("ReadThrough", snapshot_read.readThrough);
|
|
|
|
RangeResultRef reversed;
|
|
reversed.resize(ryw->arena, snapshot_read.size());
|
|
for( int i = 0; i < snapshot_read.size(); i++ ) {
|
|
reversed[snapshot_read.size()-i-1] = snapshot_read[i];
|
|
}
|
|
|
|
if( ryw->cache.insert( range, reversed ) )
|
|
ryw->arena.dependsOn(snapshot_read.arena());
|
|
|
|
// TODO: Is there a more efficient way to deal with invalidation?
|
|
resolveKeySelectorFromCache( end, it, ryw->getMaxReadKey(), &readToBegin, &readThroughEnd, &actualEndOffset );
|
|
resolveKeySelectorFromCache( begin, itEnd, ryw->getMaxReadKey(), &readToBegin, &readThroughEnd, &actualBeginOffset );
|
|
} else {
|
|
KeyValueRef const* end = it.is_kv() ? it.kv(ryw->arena) : nullptr;
|
|
if (end != nullptr) {
|
|
it.skipContiguousBack( begin.isFirstGreaterOrEqual() ? begin.getKey() : allKeys.begin );
|
|
KeyValueRef const* start = it.kv(ryw->arena);
|
|
ASSERT(start != nullptr);
|
|
|
|
int maxCount = end - start + 1;
|
|
int count = 0;
|
|
for(; count < maxCount && !limits.isReached(); count++ ) {
|
|
limits.decrement(start[maxCount-count-1]);
|
|
}
|
|
|
|
itemsPastBegin += maxCount - count;
|
|
//TraceEvent("RYWaddKV", randomID).detail("Key", it.beginKey()).detail("Count", count).detail("MaxCount", maxCount).detail("ItemsPastBegin", itemsPastBegin);
|
|
if( count ) {
|
|
int size = result.size();
|
|
result.resize(result.arena(),size+count);
|
|
for( int i = 0; i < count; i++ ) {
|
|
result[size + i] = start[maxCount-i-1];
|
|
}
|
|
}
|
|
}
|
|
if (it == itEnd) break;
|
|
--it;
|
|
}
|
|
}
|
|
|
|
result.more = result.more || limits.isReached();
|
|
|
|
if( begin.isFirstGreaterOrEqual() ) {
|
|
int keepItems = result.rend() - std::lower_bound( result.rbegin(), result.rend(), begin.getKey(), KeyValueRef::OrderByKey());
|
|
if( keepItems < result.size() )
|
|
result.more = false;
|
|
|
|
result.resize( result.arena(), keepItems );
|
|
}
|
|
|
|
result.readToBegin = !result.more && readToBegin;
|
|
result.readThroughEnd = readThroughEnd;
|
|
result.arena().dependsOn( ryw->arena );
|
|
|
|
return result;
|
|
}
|
|
|
|
static void triggerWatches(ReadYourWritesTransaction *ryw, KeyRangeRef range, Optional<ValueRef> val, bool valueKnown = true) {
|
|
for(auto it = ryw->watchMap.lower_bound(range.begin); it != ryw->watchMap.end() && it->key < range.end; ) {
|
|
auto itCopy = it;
|
|
++it;
|
|
|
|
ASSERT( itCopy->value.size() );
|
|
TEST( itCopy->value.size() > 1 ); //Multiple watches on the same key triggered by RYOW
|
|
|
|
for( int i = 0; i < itCopy->value.size(); i++ ) {
|
|
if(itCopy->value[i]->onChangeTrigger.isSet()) {
|
|
swapAndPop(&itCopy->value, i--);
|
|
} else if( !valueKnown ||
|
|
(itCopy->value[i]->setPresent && (itCopy->value[i]->setValue.present() != val.present() || (val.present() && itCopy->value[i]->setValue.get() != val.get()))) ||
|
|
(itCopy->value[i]->valuePresent && (itCopy->value[i]->value.present() != val.present() || (val.present() && itCopy->value[i]->value.get() != val.get()))) ) {
|
|
itCopy->value[i]->onChangeTrigger.send(Void());
|
|
swapAndPop(&itCopy->value, i--);
|
|
} else {
|
|
itCopy->value[i]->setPresent = true;
|
|
itCopy->value[i]->setValue = val.castTo<Value>();
|
|
}
|
|
}
|
|
|
|
if( itCopy->value.size() == 0 )
|
|
ryw->watchMap.erase(itCopy);
|
|
}
|
|
}
|
|
|
|
static void triggerWatches(ReadYourWritesTransaction *ryw, KeyRef key, Optional<ValueRef> val, bool valueKnown = true) {
|
|
triggerWatches(ryw, singleKeyRange(key), val, valueKnown);
|
|
}
|
|
|
|
ACTOR static Future<Void> watch( ReadYourWritesTransaction *ryw, Key key ) {
|
|
state Future<Optional<Value>> val;
|
|
state Future<Void> watchFuture;
|
|
state Reference<Watch> watch(new Watch(key));
|
|
state Promise<Void> done;
|
|
|
|
ryw->reading.add( done.getFuture() );
|
|
|
|
if(!ryw->options.readYourWritesDisabled) {
|
|
ryw->watchMap[key].push_back(watch);
|
|
val = readWithConflictRange( ryw, GetValueReq(key), false );
|
|
} else {
|
|
ryw->approximateSize += 2 * key.expectedSize() + 1;
|
|
val = ryw->tr.get(key);
|
|
}
|
|
|
|
try {
|
|
wait(ryw->resetPromise.getFuture() || success(val) || watch->onChangeTrigger.getFuture());
|
|
} catch( Error &e ) {
|
|
done.send(Void());
|
|
throw;
|
|
}
|
|
|
|
if( watch->onChangeTrigger.getFuture().isReady() ) {
|
|
done.send(Void());
|
|
if( watch->onChangeTrigger.getFuture().isError() )
|
|
throw watch->onChangeTrigger.getFuture().getError();
|
|
return Void();
|
|
}
|
|
|
|
watch->valuePresent = true;
|
|
watch->value = val.get();
|
|
|
|
if( watch->setPresent && ( watch->setValue.present() != watch->value.present() || (watch->value.present() && watch->setValue.get() != watch->value.get()) ) ) {
|
|
watch->onChangeTrigger.send(Void());
|
|
done.send(Void());
|
|
return Void();
|
|
}
|
|
|
|
watchFuture = ryw->tr.watch(watch); // throws if there are too many outstanding watches
|
|
done.send(Void());
|
|
|
|
wait(watchFuture);
|
|
|
|
return Void();
|
|
}
|
|
|
|
ACTOR static Future<Void> commit( ReadYourWritesTransaction *ryw ) {
|
|
try {
|
|
ryw->commitStarted = true;
|
|
|
|
Future<Void> ready = ryw->reading;
|
|
wait( ryw->resetPromise.getFuture() || ready );
|
|
|
|
if( ryw->options.readYourWritesDisabled ) {
|
|
if (ryw->resetPromise.isSet())
|
|
throw ryw->resetPromise.getFuture().getError();
|
|
wait( ryw->resetPromise.getFuture() || ryw->tr.commit() );
|
|
|
|
ryw->debugLogRetries();
|
|
|
|
if(!ryw->tr.apiVersionAtLeast(410)) {
|
|
ryw->reset();
|
|
}
|
|
|
|
return Void();
|
|
}
|
|
|
|
ryw->writeRangeToNativeTransaction(KeyRangeRef(StringRef(), allKeys.end));
|
|
|
|
auto conflictRanges = ryw->readConflicts.ranges();
|
|
for( auto iter = conflictRanges.begin(); iter != conflictRanges.end(); ++iter ) {
|
|
if( iter->value() ) {
|
|
ryw->tr.addReadConflictRange( iter->range() );
|
|
}
|
|
}
|
|
|
|
wait( ryw->resetPromise.getFuture() || ryw->tr.commit() );
|
|
|
|
ryw->debugLogRetries();
|
|
if(!ryw->tr.apiVersionAtLeast(410)) {
|
|
ryw->reset();
|
|
}
|
|
|
|
return Void();
|
|
} catch( Error &e ) {
|
|
if(!ryw->tr.apiVersionAtLeast(410)) {
|
|
ryw->commitStarted = false;
|
|
if( !ryw->resetPromise.isSet() ) {
|
|
ryw->tr.reset();
|
|
ryw->resetRyow();
|
|
}
|
|
}
|
|
|
|
throw;
|
|
}
|
|
}
|
|
|
|
ACTOR static Future<Void> onError( ReadYourWritesTransaction *ryw, Error e ) {
|
|
try {
|
|
if ( ryw->resetPromise.isSet() ) {
|
|
throw ryw->resetPromise.getFuture().getError();
|
|
}
|
|
|
|
bool retry_limit_hit = ryw->options.maxRetries != -1 && ryw->retries >= ryw->options.maxRetries;
|
|
if (ryw->retries < std::numeric_limits<int>::max())
|
|
ryw->retries++;
|
|
if(retry_limit_hit) {
|
|
throw e;
|
|
}
|
|
|
|
wait( ryw->resetPromise.getFuture() || ryw->tr.onError(e) );
|
|
|
|
ryw->debugLogRetries(e);
|
|
|
|
ryw->resetRyow();
|
|
return Void();
|
|
} catch( Error &e ) {
|
|
if ( !ryw->resetPromise.isSet() ) {
|
|
if(ryw->tr.apiVersionAtLeast(610)) {
|
|
ryw->resetPromise.sendError(transaction_cancelled());
|
|
}
|
|
else {
|
|
ryw->resetRyow();
|
|
}
|
|
}
|
|
if( e.code() == error_code_broken_promise )
|
|
throw transaction_cancelled();
|
|
throw;
|
|
}
|
|
}
|
|
|
|
ACTOR static Future<Version> getReadVersion(ReadYourWritesTransaction* ryw) {
|
|
choose{
|
|
when(Version v = wait(ryw->tr.getReadVersion())) {
|
|
return v;
|
|
}
|
|
|
|
when(wait(ryw->resetPromise.getFuture())) {
|
|
throw internal_error();
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
ReadYourWritesTransaction::ReadYourWritesTransaction(Database const& cx)
|
|
: cache(&arena), writes(&arena), tr(cx), retries(0), approximateSize(0), creationTime(now()), commitStarted(false),
|
|
options(tr), deferredError(cx->deferredError) {
|
|
std::copy(cx.getTransactionDefaults().begin(), cx.getTransactionDefaults().end(),
|
|
std::back_inserter(persistentOptions));
|
|
applyPersistentOptions();
|
|
}
|
|
|
|
ACTOR Future<Void> timebomb(double endTime, Promise<Void> resetPromise) {
|
|
while(now() < endTime) {
|
|
wait( delayUntil( std::min(endTime + 0.0001, now() + CLIENT_KNOBS->TRANSACTION_TIMEOUT_DELAY_INTERVAL) ) );
|
|
}
|
|
if( !resetPromise.isSet() )
|
|
resetPromise.sendError(transaction_timed_out());
|
|
throw transaction_timed_out();
|
|
}
|
|
|
|
void ReadYourWritesTransaction::resetTimeout() {
|
|
timeoutActor = options.timeoutInSeconds == 0.0 ? Void() : timebomb(options.timeoutInSeconds + creationTime, resetPromise);
|
|
}
|
|
|
|
Future<Version> ReadYourWritesTransaction::getReadVersion() {
|
|
if (tr.apiVersionAtLeast(101)) {
|
|
if (resetPromise.isSet())
|
|
return resetPromise.getFuture().getError();
|
|
return RYWImpl::getReadVersion(this);
|
|
}
|
|
return tr.getReadVersion();
|
|
}
|
|
|
|
Optional<Value> getValueFromJSON(StatusObject statusObj) {
|
|
try {
|
|
Value output = StringRef(json_spirit::write_string(json_spirit::mValue(statusObj), json_spirit::Output_options::none));
|
|
return output;
|
|
}
|
|
catch (std::exception& e){
|
|
TraceEvent(SevError, "UnableToUnparseStatusJSON").detail("What", e.what());
|
|
throw internal_error();
|
|
}
|
|
}
|
|
|
|
ACTOR Future<Optional<Value>> getJSON(Database db) {
|
|
StatusObject statusObj = wait(StatusClient::statusFetcher(db));
|
|
return getValueFromJSON(statusObj);
|
|
}
|
|
|
|
ACTOR Future<Standalone<RangeResultRef>> getWorkerInterfaces (Reference<ClusterConnectionFile> clusterFile){
|
|
state Reference<AsyncVar<Optional<ClusterInterface>>> clusterInterface(new AsyncVar<Optional<ClusterInterface>>);
|
|
state Future<Void> leaderMon = monitorLeader<ClusterInterface>(clusterFile, clusterInterface);
|
|
|
|
loop{
|
|
choose {
|
|
when( vector<ClientWorkerInterface> workers = wait( clusterInterface->get().present() ? brokenPromiseToNever( clusterInterface->get().get().getClientWorkers.getReply( GetClientWorkersRequest() ) ) : Never() ) ) {
|
|
Standalone<RangeResultRef> result;
|
|
for(auto& it : workers) {
|
|
result.push_back_deep(result.arena(), KeyValueRef(it.address().toString(), BinaryWriter::toValue(it, IncludeVersion())));
|
|
}
|
|
|
|
return result;
|
|
}
|
|
when( wait(clusterInterface->onChange()) ) {}
|
|
}
|
|
}
|
|
}
|
|
|
|
Future< Optional<Value> > ReadYourWritesTransaction::get( const Key& key, bool snapshot ) {
|
|
TEST(true);
|
|
|
|
if (key == LiteralStringRef("\xff\xff/status/json")){
|
|
if (tr.getDatabase().getPtr() && tr.getDatabase()->getConnectionFile()) {
|
|
return getJSON(tr.getDatabase());
|
|
}
|
|
else {
|
|
return Optional<Value>();
|
|
}
|
|
}
|
|
|
|
if (key == LiteralStringRef("\xff\xff/cluster_file_path")) {
|
|
try {
|
|
if (tr.getDatabase().getPtr() && tr.getDatabase()->getConnectionFile()) {
|
|
Optional<Value> output = StringRef(tr.getDatabase()->getConnectionFile()->getFilename());
|
|
return output;
|
|
}
|
|
}
|
|
catch (Error &e){
|
|
return e;
|
|
}
|
|
return Optional<Value>();
|
|
}
|
|
|
|
if (key == LiteralStringRef("\xff\xff/connection_string")){
|
|
try {
|
|
if (tr.getDatabase().getPtr() && tr.getDatabase()->getConnectionFile()) {
|
|
Reference<ClusterConnectionFile> f = tr.getDatabase()->getConnectionFile();
|
|
Optional<Value> output = StringRef(f->getConnectionString().toString());
|
|
return output;
|
|
}
|
|
}
|
|
catch (Error &e){
|
|
return e;
|
|
}
|
|
return Optional<Value>();
|
|
}
|
|
|
|
if(checkUsedDuringCommit()) {
|
|
return used_during_commit();
|
|
}
|
|
|
|
if( resetPromise.isSet() )
|
|
return resetPromise.getFuture().getError();
|
|
|
|
if(key >= getMaxReadKey() && key != metadataVersionKey)
|
|
return key_outside_legal_range();
|
|
|
|
//There are no keys in the database with size greater than KEY_SIZE_LIMIT
|
|
if(key.size() > (key.startsWith(systemKeys.begin) ? CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT : CLIENT_KNOBS->KEY_SIZE_LIMIT))
|
|
return Optional<Value>();
|
|
|
|
Future< Optional<Value> > result = RYWImpl::readWithConflictRange( this, RYWImpl::GetValueReq(key), snapshot );
|
|
reading.add( success( result ) );
|
|
return result;
|
|
}
|
|
|
|
Future< Key > ReadYourWritesTransaction::getKey( const KeySelector& key, bool snapshot ) {
|
|
if(checkUsedDuringCommit()) {
|
|
return used_during_commit();
|
|
}
|
|
|
|
if( resetPromise.isSet() )
|
|
return resetPromise.getFuture().getError();
|
|
|
|
if(key.getKey() > getMaxReadKey())
|
|
return key_outside_legal_range();
|
|
|
|
Future< Key > result = RYWImpl::readWithConflictRange(this, RYWImpl::GetKeyReq(key), snapshot);
|
|
reading.add( success( result ) );
|
|
return result;
|
|
}
|
|
|
|
Future< Standalone<RangeResultRef> > ReadYourWritesTransaction::getRange(
|
|
KeySelector begin,
|
|
KeySelector end,
|
|
GetRangeLimits limits,
|
|
bool snapshot,
|
|
bool reverse )
|
|
{
|
|
if (begin.getKey() == LiteralStringRef("\xff\xff/worker_interfaces")){
|
|
if (tr.getDatabase().getPtr() && tr.getDatabase()->getConnectionFile()) {
|
|
return getWorkerInterfaces(tr.getDatabase()->getConnectionFile());
|
|
}
|
|
else {
|
|
return Standalone<RangeResultRef>();
|
|
}
|
|
}
|
|
|
|
// Use special key prefix "\xff\xff/transaction/conflicting_keys/<some_key>",
|
|
// to retrieve keys which caused latest not_committed(conflicting with another transaction) error.
|
|
// The returned key value pairs are interpretted as :
|
|
// prefix/<key1> : '1' - any keys equal or larger than this key are (probably) conflicting keys
|
|
// prefix/<key2> : '0' - any keys equal or larger than this key are (definitely) not conflicting keys
|
|
// Currently, the conflicting keyranges returned are original read_conflict_ranges or union of them.
|
|
// TODO : This interface needs to be integrated into the framework that handles special keys' calls in the future
|
|
if (begin.getKey().startsWith(conflictingKeysAbsolutePrefix) &&
|
|
end.getKey().startsWith(conflictingKeysAbsolutePrefix)) {
|
|
// Remove the special key prefix "\xff\xff"
|
|
KeyRef beginConflictingKey = begin.getKey().removePrefix(specialKeys.begin);
|
|
KeyRef endConflictingKey = end.getKey().removePrefix(specialKeys.begin);
|
|
// Check if the conflicting key range to be read is valid
|
|
KeyRef maxKey = getMaxReadKey();
|
|
if (beginConflictingKey > maxKey || endConflictingKey > maxKey) return key_outside_legal_range();
|
|
begin.setKey(beginConflictingKey);
|
|
end.setKey(endConflictingKey);
|
|
if (tr.info.conflictingKeysRYW) {
|
|
Future<Standalone<RangeResultRef>> resultWithoutPrefixFuture =
|
|
tr.info.conflictingKeysRYW->getRange(begin, end, limits, snapshot, reverse);
|
|
// Make sure it happens locally
|
|
ASSERT(resultWithoutPrefixFuture.isReady());
|
|
Standalone<RangeResultRef> resultWithoutPrefix = resultWithoutPrefixFuture.get();
|
|
// Add prefix to results, making keys consistent with the getRange query
|
|
Standalone<RangeResultRef> resultWithPrefix;
|
|
resultWithPrefix.reserve(resultWithPrefix.arena(), resultWithoutPrefix.size());
|
|
for (auto const& kv : resultWithoutPrefix) {
|
|
KeyValueRef kvWithPrefix(kv.key.withPrefix(specialKeys.begin, resultWithPrefix.arena()), kv.value);
|
|
resultWithPrefix.push_back(resultWithPrefix.arena(), kvWithPrefix);
|
|
}
|
|
return resultWithPrefix;
|
|
} else {
|
|
return Standalone<RangeResultRef>();
|
|
}
|
|
}
|
|
|
|
if(checkUsedDuringCommit()) {
|
|
return used_during_commit();
|
|
}
|
|
|
|
if( resetPromise.isSet() )
|
|
return resetPromise.getFuture().getError();
|
|
|
|
KeyRef maxKey = getMaxReadKey();
|
|
if(begin.getKey() > maxKey || end.getKey() > maxKey)
|
|
return key_outside_legal_range();
|
|
|
|
//This optimization prevents NULL operations from being added to the conflict range
|
|
if( limits.isReached() ) {
|
|
TEST(true); // RYW range read limit 0
|
|
return Standalone<RangeResultRef>();
|
|
}
|
|
|
|
if( !limits.isValid() )
|
|
return range_limits_invalid();
|
|
|
|
if( begin.orEqual )
|
|
begin.removeOrEqual(begin.arena());
|
|
|
|
if( end.orEqual )
|
|
end.removeOrEqual(end.arena());
|
|
|
|
if( begin.offset >= end.offset && begin.getKey() >= end.getKey() ) {
|
|
TEST(true); // RYW range inverted
|
|
return Standalone<RangeResultRef>();
|
|
}
|
|
|
|
Future< Standalone<RangeResultRef> > result = reverse
|
|
? RYWImpl::readWithConflictRange( this, RYWImpl::GetRangeReq<true>(begin, end, limits), snapshot )
|
|
: RYWImpl::readWithConflictRange( this, RYWImpl::GetRangeReq<false>(begin, end, limits), snapshot );
|
|
|
|
reading.add( success( result ) );
|
|
return result;
|
|
}
|
|
|
|
Future< Standalone<RangeResultRef> > ReadYourWritesTransaction::getRange(
|
|
const KeySelector& begin,
|
|
const KeySelector& end,
|
|
int limit,
|
|
bool snapshot,
|
|
bool reverse )
|
|
{
|
|
return getRange( begin, end, GetRangeLimits( limit ), snapshot, reverse );
|
|
}
|
|
|
|
Future< Standalone<VectorRef<const char*> >> ReadYourWritesTransaction::getAddressesForKey( const Key& key ) {
|
|
if(checkUsedDuringCommit()) {
|
|
return used_during_commit();
|
|
}
|
|
|
|
if( resetPromise.isSet() )
|
|
return resetPromise.getFuture().getError();
|
|
|
|
// If key >= allKeys.end, then our resulting address vector will be empty.
|
|
|
|
Future< Standalone<VectorRef<const char*> >> result = waitOrError(tr.getAddressesForKey(key), resetPromise.getFuture());
|
|
reading.add( success( result ) );
|
|
return result;
|
|
}
|
|
|
|
Future<int64_t> ReadYourWritesTransaction::getEstimatedRangeSizeBytes(const KeyRangeRef& keys) {
|
|
if(checkUsedDuringCommit()) {
|
|
throw used_during_commit();
|
|
}
|
|
if( resetPromise.isSet() )
|
|
return resetPromise.getFuture().getError();
|
|
|
|
return map(waitOrError(tr.getStorageMetrics(keys, -1), resetPromise.getFuture()), [](const StorageMetrics& m) { return m.bytes; });
|
|
}
|
|
|
|
void ReadYourWritesTransaction::addReadConflictRange( KeyRangeRef const& keys ) {
|
|
if(checkUsedDuringCommit()) {
|
|
throw used_during_commit();
|
|
}
|
|
|
|
if (tr.apiVersionAtLeast(300)) {
|
|
if ((keys.begin > getMaxReadKey() || keys.end > getMaxReadKey()) && (keys.begin != metadataVersionKey || keys.end != metadataVersionKeyEnd)) {
|
|
throw key_outside_legal_range();
|
|
}
|
|
}
|
|
|
|
//There aren't any keys in the database with size larger than KEY_SIZE_LIMIT, so if range contains large keys
|
|
//we can translate it to an equivalent one with smaller keys
|
|
KeyRef begin = keys.begin;
|
|
KeyRef end = keys.end;
|
|
|
|
if(begin.size() > (begin.startsWith(systemKeys.begin) ? CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT : CLIENT_KNOBS->KEY_SIZE_LIMIT))
|
|
begin = begin.substr(0, (begin.startsWith(systemKeys.begin) ? CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT : CLIENT_KNOBS->KEY_SIZE_LIMIT)+1);
|
|
if(end.size() > (end.startsWith(systemKeys.begin) ? CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT : CLIENT_KNOBS->KEY_SIZE_LIMIT))
|
|
end = end.substr(0, (end.startsWith(systemKeys.begin) ? CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT : CLIENT_KNOBS->KEY_SIZE_LIMIT)+1);
|
|
|
|
KeyRangeRef r = KeyRangeRef(begin, end);
|
|
|
|
if(r.empty()) {
|
|
return;
|
|
}
|
|
|
|
if(options.readYourWritesDisabled) {
|
|
approximateSize += r.expectedSize() + sizeof(KeyRangeRef);
|
|
tr.addReadConflictRange(r);
|
|
return;
|
|
}
|
|
|
|
WriteMap::iterator it( &writes );
|
|
KeyRangeRef readRange( arena, r );
|
|
it.skip( readRange.begin );
|
|
updateConflictMap(readRange, it);
|
|
}
|
|
|
|
void ReadYourWritesTransaction::updateConflictMap( KeyRef const& key, WriteMap::iterator& it ) {
|
|
//it.skip( key );
|
|
//ASSERT( it.beginKey() <= key && key < it.endKey() );
|
|
if( it.is_unmodified_range() || ( it.is_operation() && !it.is_independent() ) ) {
|
|
approximateSize += 2 * key.expectedSize() + 1 + sizeof(KeyRangeRef);
|
|
readConflicts.insert( singleKeyRange( key, arena ), true );
|
|
}
|
|
}
|
|
|
|
void ReadYourWritesTransaction::updateConflictMap( KeyRangeRef const& keys, WriteMap::iterator& it ) {
|
|
//it.skip( keys.begin );
|
|
//ASSERT( it.beginKey() <= keys.begin && keys.begin < it.endKey() );
|
|
for(; it.beginKey() < keys.end; ++it ) {
|
|
if( it.is_unmodified_range() || ( it.is_operation() && !it.is_independent() ) ) {
|
|
KeyRangeRef insert_range = KeyRangeRef( std::max( keys.begin, it.beginKey().toArenaOrRef( arena ) ), std::min( keys.end, it.endKey().toArenaOrRef( arena ) ) );
|
|
if (!insert_range.empty()) {
|
|
approximateSize += keys.expectedSize() + sizeof(KeyRangeRef);
|
|
readConflicts.insert( insert_range, true );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ReadYourWritesTransaction::writeRangeToNativeTransaction(KeyRangeRef const& keys) {
|
|
WriteMap::iterator it( &writes );
|
|
it.skip(keys.begin);
|
|
|
|
bool inClearRange = false;
|
|
ExtStringRef clearBegin;
|
|
|
|
//Clear ranges must be done first because of keys that are both cleared and set to a new value
|
|
for(; it.beginKey() < keys.end; ++it) {
|
|
if( it.is_cleared_range() && !inClearRange ) {
|
|
clearBegin = std::max(ExtStringRef(keys.begin), it.beginKey());
|
|
inClearRange = true;
|
|
} else if( !it.is_cleared_range() && inClearRange ) {
|
|
tr.clear(KeyRangeRef(clearBegin.toArenaOrRef(arena), it.beginKey().toArenaOrRef(arena)), false);
|
|
inClearRange = false;
|
|
}
|
|
}
|
|
|
|
if (inClearRange) {
|
|
tr.clear(KeyRangeRef(clearBegin.toArenaOrRef(arena), keys.end), false);
|
|
}
|
|
|
|
it.skip(keys.begin);
|
|
|
|
bool inConflictRange = false;
|
|
ExtStringRef conflictBegin;
|
|
|
|
for(; it.beginKey() < keys.end; ++it) {
|
|
if( it.is_conflict_range() && !inConflictRange ) {
|
|
conflictBegin = std::max(ExtStringRef(keys.begin), it.beginKey());
|
|
inConflictRange = true;
|
|
} else if( !it.is_conflict_range() && inConflictRange ) {
|
|
tr.addWriteConflictRange(KeyRangeRef(conflictBegin.toArenaOrRef(arena), it.beginKey().toArenaOrRef(arena)));
|
|
inConflictRange = false;
|
|
}
|
|
|
|
//SOMEDAY: make atomicOp take set to avoid switch
|
|
if( it.is_operation() ) {
|
|
auto op = it.op();
|
|
for( int i = 0; i < op.size(); ++i) {
|
|
switch(op[i].type) {
|
|
case MutationRef::SetValue:
|
|
if (op[i].value.present()) {
|
|
tr.set(it.beginKey().assertRef(), op[i].value.get(), false);
|
|
} else {
|
|
tr.clear(it.beginKey().assertRef(), false);
|
|
}
|
|
break;
|
|
case MutationRef::AddValue:
|
|
case MutationRef::AppendIfFits:
|
|
case MutationRef::And:
|
|
case MutationRef::Or:
|
|
case MutationRef::Xor:
|
|
case MutationRef::Max:
|
|
case MutationRef::Min:
|
|
case MutationRef::SetVersionstampedKey:
|
|
case MutationRef::SetVersionstampedValue:
|
|
case MutationRef::ByteMin:
|
|
case MutationRef::ByteMax:
|
|
case MutationRef::MinV2:
|
|
case MutationRef::AndV2:
|
|
case MutationRef::CompareAndClear:
|
|
tr.atomicOp(it.beginKey().assertRef(), op[i].value.get(), op[i].type, false);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if( inConflictRange ) {
|
|
tr.addWriteConflictRange(KeyRangeRef(conflictBegin.toArenaOrRef(arena), keys.end));
|
|
}
|
|
}
|
|
|
|
ReadYourWritesTransactionOptions::ReadYourWritesTransactionOptions(Transaction const& tr) {
|
|
reset(tr);
|
|
}
|
|
|
|
void ReadYourWritesTransactionOptions::reset(Transaction const& tr) {
|
|
memset(this, 0, sizeof(*this));
|
|
timeoutInSeconds = 0.0;
|
|
maxRetries = -1;
|
|
snapshotRywEnabled = tr.getDatabase()->snapshotRywEnabled;
|
|
}
|
|
|
|
bool ReadYourWritesTransactionOptions::getAndResetWriteConflictDisabled() {
|
|
bool disabled = nextWriteDisableConflictRange;
|
|
nextWriteDisableConflictRange = false;
|
|
return disabled;
|
|
}
|
|
|
|
void ReadYourWritesTransaction::getWriteConflicts( KeyRangeMap<bool> *result ) {
|
|
WriteMap::iterator it( &writes );
|
|
it.skip(allKeys.begin);
|
|
|
|
bool inConflictRange = false;
|
|
ExtStringRef conflictBegin;
|
|
|
|
for(; it.beginKey() < getMaxWriteKey(); ++it) {
|
|
if( it.is_conflict_range() && !inConflictRange ) {
|
|
conflictBegin = it.beginKey();
|
|
inConflictRange = true;
|
|
} else if( !it.is_conflict_range() && inConflictRange ) {
|
|
result->insert( KeyRangeRef( conflictBegin.toArenaOrRef(arena), it.beginKey().toArenaOrRef(arena) ), true );
|
|
inConflictRange = false;
|
|
}
|
|
}
|
|
|
|
if( inConflictRange ) {
|
|
result->insert( KeyRangeRef( conflictBegin.toArenaOrRef(arena), getMaxWriteKey() ), true );
|
|
}
|
|
}
|
|
|
|
void ReadYourWritesTransaction::atomicOp( const KeyRef& key, const ValueRef& operand, uint32_t operationType ) {
|
|
bool addWriteConflict = !options.getAndResetWriteConflictDisabled();
|
|
|
|
if(checkUsedDuringCommit()) {
|
|
throw used_during_commit();
|
|
}
|
|
|
|
if (key == metadataVersionKey) {
|
|
if(operationType != MutationRef::SetVersionstampedValue || operand != metadataVersionRequiredValue) {
|
|
throw client_invalid_operation();
|
|
}
|
|
}
|
|
else if(key >= getMaxWriteKey()) {
|
|
throw key_outside_legal_range();
|
|
}
|
|
|
|
if(!isValidMutationType(operationType) || !isAtomicOp((MutationRef::Type) operationType))
|
|
throw invalid_mutation_type();
|
|
|
|
if(key.size() > (key.startsWith(systemKeys.begin) ? CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT : CLIENT_KNOBS->KEY_SIZE_LIMIT))
|
|
throw key_too_large();
|
|
if(operand.size() > CLIENT_KNOBS->VALUE_SIZE_LIMIT)
|
|
throw value_too_large();
|
|
|
|
if (tr.apiVersionAtLeast(510)) {
|
|
if (operationType == MutationRef::Min)
|
|
operationType = MutationRef::MinV2;
|
|
else if (operationType == MutationRef::And)
|
|
operationType = MutationRef::AndV2;
|
|
}
|
|
|
|
KeyRef k;
|
|
if(!tr.apiVersionAtLeast(520) && operationType == MutationRef::SetVersionstampedKey) {
|
|
k = key.withSuffix( LiteralStringRef("\x00\x00"), arena );
|
|
} else {
|
|
k = KeyRef( arena, key );
|
|
}
|
|
ValueRef v;
|
|
if(!tr.apiVersionAtLeast(520) && operationType == MutationRef::SetVersionstampedValue) {
|
|
v = operand.withSuffix( LiteralStringRef("\x00\x00\x00\x00"), arena );
|
|
} else {
|
|
v = ValueRef( arena, operand );
|
|
}
|
|
|
|
if(operationType == MutationRef::SetVersionstampedKey) {
|
|
// this does validation of the key and needs to be performed before the readYourWritesDisabled path
|
|
KeyRangeRef range = getVersionstampKeyRange(arena, k, tr.getCachedReadVersion().orDefault(0), getMaxReadKey());
|
|
if(!options.readYourWritesDisabled) {
|
|
writeRangeToNativeTransaction(range);
|
|
writes.addUnmodifiedAndUnreadableRange(range);
|
|
}
|
|
// k is the unversionstamped key provided by the user. If we've filled in a minimum bound
|
|
// for the versionstamp, we need to make sure that's reflected when we insert it into the
|
|
// WriteMap below.
|
|
transformVersionstampKey( k, tr.getCachedReadVersion().orDefault(0), 0 );
|
|
}
|
|
|
|
if(operationType == MutationRef::SetVersionstampedValue) {
|
|
if(v.size() < 4)
|
|
throw client_invalid_operation();
|
|
int32_t pos;
|
|
memcpy(&pos, v.end() - sizeof(int32_t), sizeof(int32_t));
|
|
pos = littleEndian32(pos);
|
|
if (pos < 0 || pos + 10 > v.size() - 4)
|
|
throw client_invalid_operation();
|
|
}
|
|
|
|
approximateSize += k.expectedSize() + v.expectedSize() + sizeof(MutationRef) +
|
|
(addWriteConflict ? sizeof(KeyRangeRef) + 2 * key.expectedSize() + 1 : 0);
|
|
if (options.readYourWritesDisabled) {
|
|
return tr.atomicOp(k, v, (MutationRef::Type) operationType, addWriteConflict);
|
|
}
|
|
|
|
writes.mutate(k, (MutationRef::Type) operationType, v, addWriteConflict);
|
|
RYWImpl::triggerWatches(this, k, Optional<ValueRef>(), false);
|
|
}
|
|
|
|
void ReadYourWritesTransaction::set( const KeyRef& key, const ValueRef& value ) {
|
|
if (key == LiteralStringRef("\xff\xff/reboot_worker")){
|
|
BinaryReader::fromStringRef<ClientWorkerInterface>(value, IncludeVersion()).reboot.send( RebootRequest() );
|
|
return;
|
|
}
|
|
if (key == LiteralStringRef("\xff\xff/reboot_and_check_worker")){
|
|
BinaryReader::fromStringRef<ClientWorkerInterface>(value, IncludeVersion()).reboot.send( RebootRequest(false, true) );
|
|
return;
|
|
}
|
|
if (key == metadataVersionKey) {
|
|
throw client_invalid_operation();
|
|
}
|
|
|
|
bool addWriteConflict = !options.getAndResetWriteConflictDisabled();
|
|
|
|
if(checkUsedDuringCommit()) {
|
|
throw used_during_commit();
|
|
}
|
|
|
|
if(key >= getMaxWriteKey())
|
|
throw key_outside_legal_range();
|
|
|
|
approximateSize += key.expectedSize() + value.expectedSize() + sizeof(MutationRef) +
|
|
(addWriteConflict ? sizeof(KeyRangeRef) + 2 * key.expectedSize() + 1 : 0);
|
|
if (options.readYourWritesDisabled) {
|
|
return tr.set(key, value, addWriteConflict);
|
|
}
|
|
|
|
//TODO: check transaction size here
|
|
if(key.size() > (key.startsWith(systemKeys.begin) ? CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT : CLIENT_KNOBS->KEY_SIZE_LIMIT))
|
|
throw key_too_large();
|
|
if(value.size() > CLIENT_KNOBS->VALUE_SIZE_LIMIT)
|
|
throw value_too_large();
|
|
|
|
KeyRef k = KeyRef( arena, key );
|
|
ValueRef v = ValueRef( arena, value );
|
|
|
|
writes.mutate(k, MutationRef::SetValue, v, addWriteConflict);
|
|
RYWImpl::triggerWatches(this, key, value);
|
|
}
|
|
|
|
void ReadYourWritesTransaction::clear( const KeyRangeRef& range ) {
|
|
bool addWriteConflict = !options.getAndResetWriteConflictDisabled();
|
|
|
|
if(checkUsedDuringCommit()) {
|
|
throw used_during_commit();
|
|
}
|
|
|
|
KeyRef maxKey = getMaxWriteKey();
|
|
if(range.begin > maxKey || range.end > maxKey)
|
|
throw key_outside_legal_range();
|
|
|
|
approximateSize += range.expectedSize() + sizeof(MutationRef) +
|
|
(addWriteConflict ? sizeof(KeyRangeRef) + range.expectedSize() : 0);
|
|
if (options.readYourWritesDisabled) {
|
|
return tr.clear(range, addWriteConflict);
|
|
}
|
|
|
|
//There aren't any keys in the database with size larger than KEY_SIZE_LIMIT, so if range contains large keys
|
|
//we can translate it to an equivalent one with smaller keys
|
|
KeyRef begin = range.begin;
|
|
KeyRef end = range.end;
|
|
|
|
if(begin.size() > (begin.startsWith(systemKeys.begin) ? CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT : CLIENT_KNOBS->KEY_SIZE_LIMIT))
|
|
begin = begin.substr(0, (begin.startsWith(systemKeys.begin) ? CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT : CLIENT_KNOBS->KEY_SIZE_LIMIT)+1);
|
|
if(end.size() > (end.startsWith(systemKeys.begin) ? CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT : CLIENT_KNOBS->KEY_SIZE_LIMIT))
|
|
end = end.substr(0, (end.startsWith(systemKeys.begin) ? CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT : CLIENT_KNOBS->KEY_SIZE_LIMIT)+1);
|
|
|
|
KeyRangeRef r = KeyRangeRef(begin, end);
|
|
|
|
if(r.empty()) {
|
|
return;
|
|
}
|
|
|
|
r = KeyRangeRef( arena, r );
|
|
|
|
writes.clear(r, addWriteConflict);
|
|
RYWImpl::triggerWatches(this, r, Optional<ValueRef>());
|
|
}
|
|
|
|
void ReadYourWritesTransaction::clear( const KeyRef& key ) {
|
|
bool addWriteConflict = !options.getAndResetWriteConflictDisabled();
|
|
|
|
if(checkUsedDuringCommit()) {
|
|
throw used_during_commit();
|
|
}
|
|
|
|
if(key >= getMaxWriteKey())
|
|
throw key_outside_legal_range();
|
|
|
|
if(key.size() > (key.startsWith(systemKeys.begin) ? CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT : CLIENT_KNOBS->KEY_SIZE_LIMIT))
|
|
return;
|
|
|
|
if( options.readYourWritesDisabled ) {
|
|
return tr.clear(key, addWriteConflict);
|
|
}
|
|
|
|
KeyRangeRef r = singleKeyRange( key, arena );
|
|
approximateSize += r.expectedSize() + sizeof(KeyRangeRef) +
|
|
(addWriteConflict ? sizeof(KeyRangeRef) + r.expectedSize() : 0);
|
|
|
|
//SOMEDAY: add an optimized single key clear to write map
|
|
writes.clear(r, addWriteConflict);
|
|
|
|
RYWImpl::triggerWatches(this, r, Optional<ValueRef>());
|
|
}
|
|
|
|
Future<Void> ReadYourWritesTransaction::watch(const Key& key) {
|
|
if(checkUsedDuringCommit()) {
|
|
return used_during_commit();
|
|
}
|
|
|
|
if( resetPromise.isSet() )
|
|
return resetPromise.getFuture().getError();
|
|
|
|
if( options.readYourWritesDisabled )
|
|
return watches_disabled();
|
|
|
|
if(key >= allKeys.end || (key >= getMaxReadKey() && key != metadataVersionKey && tr.apiVersionAtLeast(300)))
|
|
return key_outside_legal_range();
|
|
|
|
if (key.size() > (key.startsWith(systemKeys.begin) ? CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT : CLIENT_KNOBS->KEY_SIZE_LIMIT))
|
|
return key_too_large();
|
|
|
|
return RYWImpl::watch(this, key);
|
|
}
|
|
|
|
void ReadYourWritesTransaction::addWriteConflictRange(KeyRangeRef const& keys) {
|
|
if(checkUsedDuringCommit()) {
|
|
throw used_during_commit();
|
|
}
|
|
|
|
if (tr.apiVersionAtLeast(300)) {
|
|
if (keys.begin > getMaxWriteKey() || keys.end > getMaxWriteKey()) {
|
|
throw key_outside_legal_range();
|
|
}
|
|
}
|
|
|
|
//There aren't any keys in the database with size larger than KEY_SIZE_LIMIT, so if range contains large keys
|
|
//we can translate it to an equivalent one with smaller keys
|
|
KeyRef begin = keys.begin;
|
|
KeyRef end = keys.end;
|
|
|
|
if(begin.size() > (begin.startsWith(systemKeys.begin) ? CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT : CLIENT_KNOBS->KEY_SIZE_LIMIT))
|
|
begin = begin.substr(0, (begin.startsWith(systemKeys.begin) ? CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT : CLIENT_KNOBS->KEY_SIZE_LIMIT)+1);
|
|
if(end.size() > (end.startsWith(systemKeys.begin) ? CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT : CLIENT_KNOBS->KEY_SIZE_LIMIT))
|
|
end = end.substr(0, (end.startsWith(systemKeys.begin) ? CLIENT_KNOBS->SYSTEM_KEY_SIZE_LIMIT : CLIENT_KNOBS->KEY_SIZE_LIMIT)+1);
|
|
|
|
KeyRangeRef r = KeyRangeRef(begin, end);
|
|
|
|
if(r.empty()) {
|
|
return;
|
|
}
|
|
|
|
approximateSize += r.expectedSize() + sizeof(KeyRangeRef);
|
|
if(options.readYourWritesDisabled) {
|
|
tr.addWriteConflictRange(r);
|
|
return;
|
|
}
|
|
|
|
r = KeyRangeRef( arena, r );
|
|
writes.addConflictRange(r);
|
|
}
|
|
|
|
Future<Void> ReadYourWritesTransaction::commit() {
|
|
if(checkUsedDuringCommit()) {
|
|
return used_during_commit();
|
|
}
|
|
|
|
if( resetPromise.isSet() )
|
|
return resetPromise.getFuture().getError();
|
|
|
|
return RYWImpl::commit( this );
|
|
}
|
|
|
|
Future<Standalone<StringRef>> ReadYourWritesTransaction::getVersionstamp() {
|
|
if(checkUsedDuringCommit()) {
|
|
return used_during_commit();
|
|
}
|
|
|
|
return waitOrError(tr.getVersionstamp(), resetPromise.getFuture());
|
|
}
|
|
|
|
void ReadYourWritesTransaction::setOption( FDBTransactionOptions::Option option, Optional<StringRef> value ) {
|
|
setOptionImpl(option, value);
|
|
|
|
if (FDBTransactionOptions::optionInfo.getMustExist(option).persistent) {
|
|
persistentOptions.emplace_back(option, value.castTo<Standalone<StringRef>>());
|
|
}
|
|
}
|
|
|
|
void ReadYourWritesTransaction::setOptionImpl( FDBTransactionOptions::Option option, Optional<StringRef> value ) {
|
|
switch(option) {
|
|
case FDBTransactionOptions::READ_YOUR_WRITES_DISABLE:
|
|
validateOptionValue(value, false);
|
|
|
|
if (!reading.isReady() || !cache.empty() || !writes.empty())
|
|
throw client_invalid_operation();
|
|
|
|
options.readYourWritesDisabled = true;
|
|
break;
|
|
|
|
case FDBTransactionOptions::READ_AHEAD_DISABLE:
|
|
validateOptionValue(value, false);
|
|
|
|
options.readAheadDisabled = true;
|
|
break;
|
|
|
|
case FDBTransactionOptions::NEXT_WRITE_NO_WRITE_CONFLICT_RANGE:
|
|
validateOptionValue(value, false);
|
|
|
|
options.nextWriteDisableConflictRange = true;
|
|
break;
|
|
|
|
case FDBTransactionOptions::ACCESS_SYSTEM_KEYS:
|
|
validateOptionValue(value, false);
|
|
|
|
options.readSystemKeys = true;
|
|
options.writeSystemKeys = true;
|
|
break;
|
|
|
|
case FDBTransactionOptions::READ_SYSTEM_KEYS:
|
|
validateOptionValue(value, false);
|
|
|
|
options.readSystemKeys = true;
|
|
break;
|
|
|
|
case FDBTransactionOptions::TIMEOUT:
|
|
options.timeoutInSeconds = extractIntOption(value, 0, std::numeric_limits<int>::max())/1000.0;
|
|
resetTimeout();
|
|
break;
|
|
|
|
case FDBTransactionOptions::RETRY_LIMIT:
|
|
options.maxRetries = (int)extractIntOption(value, -1, std::numeric_limits<int>::max());
|
|
break;
|
|
|
|
case FDBTransactionOptions::DEBUG_RETRY_LOGGING:
|
|
options.debugRetryLogging = true;
|
|
if(!transactionDebugInfo) {
|
|
transactionDebugInfo = Reference<TransactionDebugInfo>::addRef(new TransactionDebugInfo());
|
|
transactionDebugInfo->lastRetryLogTime = creationTime;
|
|
}
|
|
|
|
transactionDebugInfo->transactionName = value.present() ? value.get().toString() : "";
|
|
break;
|
|
case FDBTransactionOptions::SNAPSHOT_RYW_ENABLE:
|
|
validateOptionValue(value, false);
|
|
|
|
options.snapshotRywEnabled++;
|
|
break;
|
|
case FDBTransactionOptions::SNAPSHOT_RYW_DISABLE:
|
|
validateOptionValue(value, false);
|
|
|
|
options.snapshotRywEnabled--;
|
|
break;
|
|
case FDBTransactionOptions::USED_DURING_COMMIT_PROTECTION_DISABLE:
|
|
validateOptionValue(value, false);
|
|
|
|
options.disableUsedDuringCommitProtection = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
tr.setOption( option, value );
|
|
}
|
|
|
|
void ReadYourWritesTransaction::operator=(ReadYourWritesTransaction&& r) BOOST_NOEXCEPT {
|
|
cache = std::move( r.cache );
|
|
writes = std::move( r.writes );
|
|
arena = std::move( r.arena );
|
|
tr = std::move( r.tr );
|
|
readConflicts = std::move( r.readConflicts );
|
|
watchMap = std::move( r.watchMap );
|
|
reading = std::move( r.reading );
|
|
resetPromise = std::move( r.resetPromise );
|
|
r.resetPromise = Promise<Void>();
|
|
deferredError = std::move( r.deferredError );
|
|
retries = r.retries;
|
|
approximateSize = r.approximateSize;
|
|
timeoutActor = r.timeoutActor;
|
|
creationTime = r.creationTime;
|
|
commitStarted = r.commitStarted;
|
|
options = r.options;
|
|
transactionDebugInfo = r.transactionDebugInfo;
|
|
cache.arena = &arena;
|
|
writes.arena = &arena;
|
|
persistentOptions = std::move(r.persistentOptions);
|
|
}
|
|
|
|
ReadYourWritesTransaction::ReadYourWritesTransaction(ReadYourWritesTransaction&& r) BOOST_NOEXCEPT :
|
|
cache( std::move(r.cache) ),
|
|
writes( std::move(r.writes) ),
|
|
arena( std::move(r.arena) ),
|
|
reading( std::move(r.reading) ),
|
|
retries( r.retries ),
|
|
approximateSize(r.approximateSize),
|
|
creationTime( r.creationTime ),
|
|
deferredError( std::move(r.deferredError) ),
|
|
timeoutActor( std::move(r.timeoutActor) ),
|
|
resetPromise( std::move(r.resetPromise) ),
|
|
commitStarted( r.commitStarted ),
|
|
options( r.options ),
|
|
transactionDebugInfo( r.transactionDebugInfo )
|
|
{
|
|
cache.arena = &arena;
|
|
writes.arena = &arena;
|
|
tr = std::move( r.tr );
|
|
readConflicts = std::move(r.readConflicts);
|
|
watchMap = std::move( r.watchMap );
|
|
r.resetPromise = Promise<Void>();
|
|
persistentOptions = std::move(r.persistentOptions);
|
|
}
|
|
|
|
Future<Void> ReadYourWritesTransaction::onError(Error const& e) {
|
|
return RYWImpl::onError( this, e );
|
|
}
|
|
|
|
void ReadYourWritesTransaction::applyPersistentOptions() {
|
|
Optional<StringRef> timeout;
|
|
for (auto option : persistentOptions) {
|
|
if(option.first == FDBTransactionOptions::TIMEOUT) {
|
|
timeout = option.second.castTo<StringRef>();
|
|
}
|
|
else {
|
|
setOptionImpl(option.first, option.second.castTo<StringRef>());
|
|
}
|
|
}
|
|
|
|
// Setting a timeout can immediately cause a transaction to fail. The only timeout
|
|
// that matters is the one most recently set, so we ignore any earlier set timeouts
|
|
// that might inadvertently fail the transaction.
|
|
if(timeout.present()) {
|
|
setOptionImpl(FDBTransactionOptions::TIMEOUT, timeout);
|
|
}
|
|
}
|
|
|
|
void ReadYourWritesTransaction::resetRyow() {
|
|
Promise<Void> oldReset = resetPromise;
|
|
resetPromise = Promise<Void>();
|
|
|
|
timeoutActor.cancel();
|
|
arena = Arena();
|
|
cache = SnapshotCache(&arena);
|
|
writes = WriteMap(&arena);
|
|
readConflicts = CoalescedKeyRefRangeMap<bool>();
|
|
watchMap.clear();
|
|
reading = AndFuture();
|
|
approximateSize = 0;
|
|
commitStarted = false;
|
|
|
|
deferredError = Error();
|
|
|
|
if(tr.apiVersionAtLeast(16)) {
|
|
options.reset(tr);
|
|
applyPersistentOptions();
|
|
}
|
|
|
|
if ( !oldReset.isSet() )
|
|
oldReset.sendError(transaction_cancelled());
|
|
}
|
|
|
|
void ReadYourWritesTransaction::cancel() {
|
|
if(!resetPromise.isSet() )
|
|
resetPromise.sendError(transaction_cancelled());
|
|
}
|
|
|
|
void ReadYourWritesTransaction::reset() {
|
|
retries = 0;
|
|
approximateSize = 0;
|
|
creationTime = now();
|
|
timeoutActor.cancel();
|
|
persistentOptions.clear();
|
|
options.reset(tr);
|
|
transactionDebugInfo.clear();
|
|
tr.fullReset();
|
|
std::copy(tr.getDatabase().getTransactionDefaults().begin(), tr.getDatabase().getTransactionDefaults().end(), std::back_inserter(persistentOptions));
|
|
resetRyow();
|
|
}
|
|
|
|
KeyRef ReadYourWritesTransaction::getMaxReadKey() {
|
|
if(options.readSystemKeys)
|
|
return systemKeys.end;
|
|
else
|
|
return normalKeys.end;
|
|
}
|
|
|
|
KeyRef ReadYourWritesTransaction::getMaxWriteKey() {
|
|
if(options.writeSystemKeys)
|
|
return systemKeys.end;
|
|
else
|
|
return normalKeys.end;
|
|
}
|
|
|
|
ReadYourWritesTransaction::~ReadYourWritesTransaction() {
|
|
if( !resetPromise.isSet() )
|
|
resetPromise.sendError(transaction_cancelled());
|
|
}
|
|
|
|
bool ReadYourWritesTransaction::checkUsedDuringCommit() {
|
|
if(commitStarted && !resetPromise.isSet() && !options.disableUsedDuringCommitProtection) {
|
|
resetPromise.sendError(used_during_commit());
|
|
}
|
|
|
|
return commitStarted;
|
|
}
|
|
|
|
void ReadYourWritesTransaction::debugLogRetries(Optional<Error> error) {
|
|
bool committed = !error.present();
|
|
if(options.debugRetryLogging) {
|
|
double timeSinceLastLog = now() - transactionDebugInfo->lastRetryLogTime;
|
|
double elapsed = now() - creationTime;
|
|
if(timeSinceLastLog >= 1 || (committed && elapsed > 1)) {
|
|
std::string transactionNameStr = "";
|
|
if(!transactionDebugInfo->transactionName.empty())
|
|
transactionNameStr = format(" in transaction '%s'", printable(StringRef(transactionDebugInfo->transactionName)).c_str());
|
|
if(!g_network->isSimulated()) //Fuzz workload turns this on, but we do not want stderr output in simulation
|
|
fprintf(stderr, "fdb WARNING: long transaction (%.2fs elapsed%s, %d retries, %s)\n", elapsed, transactionNameStr.c_str(), retries, committed ? "committed" : error.get().what());
|
|
{
|
|
TraceEvent trace = TraceEvent("LongTransaction");
|
|
if(error.present())
|
|
trace.error(error.get(), true);
|
|
if(!transactionDebugInfo->transactionName.empty())
|
|
trace.detail("TransactionName", transactionDebugInfo->transactionName);
|
|
trace.detail("Elapsed", elapsed).detail("Retries", retries).detail("Committed", committed);
|
|
}
|
|
transactionDebugInfo->lastRetryLogTime = now();
|
|
}
|
|
}
|
|
}
|