154 lines
5.6 KiB
C++
154 lines
5.6 KiB
C++
/*
|
|
* StreamingRead.actor.cpp
|
|
*
|
|
* This source file is part of the FoundationDB open source project
|
|
*
|
|
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "fdbrpc/ContinuousSample.h"
|
|
#include "fdbclient/NativeAPI.actor.h"
|
|
#include "fdbserver/TesterInterface.actor.h"
|
|
#include "fdbserver/workloads/workloads.actor.h"
|
|
#include "fdbserver/workloads/BulkSetup.actor.h"
|
|
#include "flow/actorcompiler.h" // This must be the last #include.
|
|
|
|
struct StreamingReadWorkload : TestWorkload {
|
|
int actorCount, keyBytes, valueBytes, readsPerTransaction, nodeCount;
|
|
int rangesPerTransaction;
|
|
bool readSequentially;
|
|
double testDuration, warmingDelay;
|
|
Value constantValue;
|
|
|
|
std::vector<Future<Void>> clients;
|
|
PerfIntCounter transactions, readKeys;
|
|
PerfIntCounter readValueBytes;
|
|
ContinuousSample<double> latencies;
|
|
|
|
StreamingReadWorkload(WorkloadContext const& wcx)
|
|
: TestWorkload(wcx), transactions("Transactions"), readKeys("Keys Read"), readValueBytes("Value Bytes Read"),
|
|
latencies(2000) {
|
|
testDuration = getOption(options, "testDuration"_sr, 10.0);
|
|
actorCount = getOption(options, "actorCount"_sr, 20);
|
|
readsPerTransaction = getOption(options, "readsPerTransaction"_sr, 10);
|
|
rangesPerTransaction = getOption(options, "rangesPerTransaction"_sr, 1);
|
|
nodeCount = getOption(options, "nodeCount"_sr, 100000);
|
|
keyBytes = std::max(getOption(options, "keyBytes"_sr, 16), 16);
|
|
valueBytes = std::max(getOption(options, "valueBytes"_sr, 96), 16);
|
|
std::string valueFormat = "%016llx" + std::string(valueBytes - 16, '.');
|
|
warmingDelay = getOption(options, "warmingDelay"_sr, 0.0);
|
|
constantValue = Value(format(valueFormat.c_str(), 42));
|
|
readSequentially = getOption(options, "readSequentially"_sr, false);
|
|
}
|
|
|
|
std::string description() const override { return "StreamingRead"; }
|
|
|
|
Future<Void> setup(Database const& cx) override {
|
|
return bulkSetup(cx, this, nodeCount, Promise<double>(), true, warmingDelay);
|
|
}
|
|
|
|
Future<Void> start(Database const& cx) override {
|
|
for (int c = clientId; c < actorCount; c += clientCount)
|
|
clients.push_back(timeout(streamingReadClient(cx, this, clientId, c), testDuration, Void()));
|
|
return waitForAll(clients);
|
|
}
|
|
|
|
Future<bool> check(Database const& cx) override {
|
|
clients.clear();
|
|
return true;
|
|
}
|
|
|
|
void getMetrics(std::vector<PerfMetric>& m) override {
|
|
m.push_back(transactions.getMetric());
|
|
m.push_back(readKeys.getMetric());
|
|
m.emplace_back("Bytes read/sec",
|
|
(readKeys.getValue() * keyBytes + readValueBytes.getValue()) / testDuration,
|
|
Averaged::False);
|
|
|
|
m.emplace_back("Mean Latency (ms)", 1000 * latencies.mean(), Averaged::True);
|
|
m.emplace_back("Median Latency (ms, averaged)", 1000 * latencies.median(), Averaged::True);
|
|
m.emplace_back("90% Latency (ms, averaged)", 1000 * latencies.percentile(0.90), Averaged::True);
|
|
m.emplace_back("98% Latency (ms, averaged)", 1000 * latencies.percentile(0.98), Averaged::True);
|
|
}
|
|
|
|
Key keyForIndex(uint64_t index) {
|
|
Key result = makeString(keyBytes);
|
|
uint8_t* data = mutateString(result);
|
|
memset(data, '.', keyBytes);
|
|
|
|
double d = double(index) / nodeCount;
|
|
emplaceIndex(data, 0, *(int64_t*)&d);
|
|
|
|
return result;
|
|
}
|
|
|
|
Standalone<KeyValueRef> operator()(int n) { return KeyValueRef(keyForIndex(n), constantValue); }
|
|
|
|
ACTOR Future<Void> streamingReadClient(Database cx, StreamingReadWorkload* self, int clientId, int actorId) {
|
|
state int minIndex = actorId * self->nodeCount / self->actorCount;
|
|
state int maxIndex = std::min((actorId + 1) * self->nodeCount / self->actorCount, self->nodeCount);
|
|
state int currentIndex = minIndex;
|
|
|
|
loop {
|
|
state double tstart = now();
|
|
state Transaction tr(cx);
|
|
state int rangeSize = (double)self->readsPerTransaction / self->rangesPerTransaction + 0.5;
|
|
state int range = 0;
|
|
loop {
|
|
state int thisRangeSize =
|
|
(range < self->rangesPerTransaction - 1)
|
|
? rangeSize
|
|
: self->readsPerTransaction - (self->rangesPerTransaction - 1) * rangeSize;
|
|
if (self->readSequentially && thisRangeSize > maxIndex - minIndex)
|
|
thisRangeSize = maxIndex - minIndex;
|
|
loop {
|
|
try {
|
|
if (!self->readSequentially)
|
|
currentIndex = deterministicRandom()->randomInt(0, self->nodeCount - thisRangeSize);
|
|
else if (currentIndex > maxIndex - thisRangeSize)
|
|
currentIndex = minIndex;
|
|
|
|
RangeResult values =
|
|
wait(tr.getRange(firstGreaterOrEqual(self->keyForIndex(currentIndex)),
|
|
firstGreaterOrEqual(self->keyForIndex(currentIndex + thisRangeSize)),
|
|
thisRangeSize));
|
|
|
|
for (int i = 0; i < values.size(); i++)
|
|
self->readValueBytes += values[i].value.size();
|
|
|
|
if (self->readSequentially)
|
|
currentIndex += values.size();
|
|
|
|
self->readKeys += values.size();
|
|
break;
|
|
} catch (Error& e) {
|
|
wait(tr.onError(e));
|
|
}
|
|
}
|
|
|
|
if (now() - tstart > 3)
|
|
break;
|
|
|
|
if (++range == self->rangesPerTransaction)
|
|
break;
|
|
}
|
|
self->latencies.addSample(now() - tstart);
|
|
++self->transactions;
|
|
}
|
|
}
|
|
};
|
|
|
|
WorkloadFactory<StreamingReadWorkload> StreamingReadWorkloadFactory("StreamingRead");
|