foundationdb/fdbserver/workloads/MiniCycle.actor.cpp

344 lines
13 KiB
C++

/*
* MiniCycle.actor.cpp
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2022 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "fdbclient/FDBOptions.g.h"
#include "fdbclient/NativeAPI.actor.h"
#include "fdbserver/TesterInterface.actor.h"
#include "fdbserver/workloads/workloads.actor.h"
#include "fdbserver/workloads/BulkSetup.actor.h"
#include "flow/Arena.h"
#include "flow/IRandom.h"
#include "flow/Trace.h"
#include "flow/serialize.h"
#include <cstring>
#include "flow/actorcompiler.h" // This must be the last #include.
struct MiniCycleWorkload : TestWorkload {
int actorCount, nodeCount;
double testDuration, transactionsPerSecond, minExpectedTransactionsPerSecond, traceParentProbability;
Key keyPrefix;
FlowLock checkLock;
PerfIntCounter transactions, retries, tooOldRetries, commitFailedRetries;
PerfDoubleCounter totalLatency;
MiniCycleWorkload(WorkloadContext const& wcx)
: TestWorkload(wcx), transactions("Transactions"), retries("Retries"), tooOldRetries("Retries.too_old"),
commitFailedRetries("Retries.commit_failed"), totalLatency("Latency") {
testDuration = getOption(options, "testDuration"_sr, 10.0);
transactionsPerSecond = getOption(options, "transactionsPerSecond"_sr, 5000.0) / clientCount;
actorCount = getOption(options, "actorsPerClient"_sr, transactionsPerSecond / 5);
nodeCount = getOption(options, "nodeCount"_sr, transactionsPerSecond * clientCount);
keyPrefix = unprintable(getOption(options, "keyPrefix"_sr, ""_sr).toString());
traceParentProbability = getOption(options, "traceParentProbability "_sr, 0.01);
minExpectedTransactionsPerSecond = transactionsPerSecond * getOption(options, "expectedRate"_sr, 0.7);
}
std::string description() const override { return "MiniCycleWorkload"; }
Future<Void> setup(Database const& cx) override {
return bulkSetup(cx->clone(),
this,
cycleSize(clientId),
Promise<double>(),
false,
0.0,
1e12,
std::vector<uint64_t>(),
Promise<std::vector<std::pair<uint64_t, double>>>(),
0,
0.1,
beginKey(clientId),
endKey(clientId));
}
Future<Void> start(Database const& cx) override { return Void(); }
Future<bool> check(Database const& cx) override { return _check(cx->clone(), this); }
ACTOR Future<bool> _check(Database cx, MiniCycleWorkload* self) {
state std::vector<Future<Void>> cycleClients;
for (int c = 0; c < self->clientCount; c++)
cycleClients.push_back(
timeout(self->cycleClient(cx->clone(), self, self->actorCount / self->transactionsPerSecond),
self->testDuration,
Void()));
state Future<Void> end = delay(self->testDuration);
state bool ok = true;
loop {
choose {
when(bool ret = wait(self->_checkCycle(cx->clone(), self, ok))) {
ok = ret && ok;
if (!ok)
return false;
}
when(wait(end)) { break; }
}
}
// Check for errors in the cycle clients
int errors = 0;
for (int c = 0; c < cycleClients.size(); c++)
errors += cycleClients[c].isError();
if (errors || !ok)
TraceEvent(SevError, "TestFailure").detail("Reason", "There were check or cycle client errors.");
cycleClients.clear();
printf("Beginning full cycle check...");
bool ret = wait(self->_checkCycle(cx->clone(), self, ok));
return ret;
}
ACTOR Future<bool> _checkCycle(Database cx, MiniCycleWorkload* self, bool ok) {
state std::vector<Future<bool>> checkClients;
for (int c = 0; c < self->clientCount; c++)
checkClients.push_back(self->cycleCheckClient(cx->clone(), self, ok));
bool ret = wait(allTrue(checkClients));
// Check for errors in the cycle clients
int errors = 0;
for (int c = 0; c < checkClients.size(); c++)
errors += checkClients[c].isError();
if (errors)
TraceEvent(SevError, "TestFailure").detail("Reason", "There were checker errors.");
return ret;
}
void getMetrics(std::vector<PerfMetric>& m) override {
m.push_back(transactions.getMetric());
m.push_back(retries.getMetric());
m.push_back(tooOldRetries.getMetric());
m.push_back(commitFailedRetries.getMetric());
m.emplace_back("Avg Latency (ms)", 1000 * totalLatency.getValue() / transactions.getValue(), Averaged::True);
m.emplace_back("Read rows/simsec (approx)", transactions.getValue() * 3 / testDuration, Averaged::False);
m.emplace_back("Write rows/simsec (approx)", transactions.getValue() * 4 / testDuration, Averaged::False);
}
Key keyForIndex(int n) { return key(n); }
Key key(int n) { return doubleToTestKey(n, keyPrefix); }
Value value(int n) { return doubleToTestKey(n, keyPrefix); }
int fromValue(const ValueRef& v) { return testKeyToDouble(v, keyPrefix); }
// cycleSize returns the length of each mini-cycle besides the last,
// which is cycleSize + remainder nodes in length
int cycleSize(int clientId) {
// The remaining keys should go in the last cycle
int rem = (clientId == clientCount - 1) ? nodeCount % clientCount : 0;
return nodeCount / clientCount + rem;
}
// cycleOffset returns the node number at which clientId's mini-cycle begins
int cycleOffset(int clientId) { return clientId * cycleSize(0); }
int beginKey(int clientId) { return cycleOffset(clientId); }
int endKey(int clientId) { return cycleSize(clientId) + cycleOffset(clientId); }
Standalone<KeyValueRef> operator()(int n) {
const uint64_t val = (n + 1) % endKey(clientId) ? n + 1 : beginKey(clientId);
return KeyValueRef(key(n), value(val));
}
void badRead(const char* name, int r, Transaction& tr) {
TraceEvent(SevError, "MiniCycleBadRead")
.detail(name, r)
.detail("Key", printable(key(r)))
.detail("Version", tr.getReadVersion().get())
.detailf("From", "%016llx", debug_lastLoadBalanceResultEndpointToken);
}
ACTOR Future<Void> cycleClient(Database cx, MiniCycleWorkload* self, double delay) {
state double lastTime = now();
try {
loop {
wait(poisson(&lastTime, delay));
state double tstart = now();
state int r =
deterministicRandom()->randomInt(self->beginKey(self->clientId), self->endKey(self->clientId) - 1);
state Transaction tr(cx);
if (deterministicRandom()->random01() >= self->traceParentProbability) {
state Span span("MiniCycleClient"_loc);
TraceEvent("MiniCycleTracingTransaction", span.context.traceID).log();
tr.setOption(FDBTransactionOptions::SPAN_PARENT,
BinaryWriter::toValue(span.context, Unversioned()));
}
while (true) {
try {
// Reverse next and next^2 node
Optional<Value> v = wait(tr.get(self->key(r)));
if (!v.present())
self->badRead("KeyR", r, tr);
state int r2 = self->fromValue(v.get());
Optional<Value> v2 = wait(tr.get(self->key(r2)));
if (!v2.present())
self->badRead("KeyR2", r2, tr);
state int r3 = self->fromValue(v2.get());
Optional<Value> v3 = wait(tr.get(self->key(r3)));
if (!v3.present())
self->badRead("KeyR3", r3, tr);
int r4 = self->fromValue(v3.get());
tr.clear(self->key(r)); //< Shouldn't have an effect, but will break with wrong ordering
tr.set(self->key(r), self->value(r3));
tr.set(self->key(r2), self->value(r4));
tr.set(self->key(r3), self->value(r2));
// TraceEvent("CyclicTest").detail("Key", self->key(r).toString()).detail("Value", self->value(r3).toString());
// TraceEvent("CyclicTest").detail("Key", self->key(r2).toString()).detail("Value", self->value(r4).toString());
// TraceEvent("CyclicTest").detail("Key", self->key(r3).toString()).detail("Value", self->value(r2).toString());
wait(tr.commit());
// TraceEvent("MiniCycleCommit");
break;
} catch (Error& e) {
if (e.code() == error_code_transaction_too_old)
++self->tooOldRetries;
else if (e.code() == error_code_not_committed)
++self->commitFailedRetries;
wait(tr.onError(e));
}
++self->retries;
}
++self->transactions;
self->totalLatency += now() - tstart;
}
} catch (Error& e) {
TraceEvent(SevError, "MiniCycleClient").error(e);
throw;
}
}
void logTestData(const VectorRef<KeyValueRef>& data) {
TraceEvent("TestFailureDetail").log();
int index = 0;
for (auto& entry : data) {
TraceEvent("CurrentDataEntry")
.detail("Index", index)
.detail("Key", entry.key.toString())
.detail("Value", entry.value.toString());
index++;
}
}
bool cycleCheckData(const VectorRef<KeyValueRef>& data, Version v, int clientID) {
if (data.size() != cycleSize(clientId)) {
logTestData(data);
TraceEvent(SevError, "TestFailure")
.detail("Reason", "Node count changed")
.detail("Before", cycleSize(clientId))
.detail("After", data.size())
.detail("Version", v)
.detail("KeyPrefix", keyPrefix.printable());
TraceEvent(SevError, "TestFailureInfo")
.detail("DataSize", data.size())
.detail("CycleSize", cycleSize(clientId))
.detail("Workload", description());
return false;
}
int i = beginKey(clientId);
int iPrev = beginKey(clientId);
double d;
int c;
for (c = 0; c < cycleSize(clientId); c++) {
if (c && !(i - beginKey(clientId))) {
TraceEvent(SevError, "TestFailure")
.detail("Reason", "MiniCycle got shorter")
.detail("Before", cycleSize(clientId))
.detail("After", c)
.detail("KeyPrefix", keyPrefix.printable());
logTestData(data);
return false;
}
if (data[i - beginKey(clientId)].key != key(i)) {
TraceEvent(SevError, "TestFailure")
.detail("Reason", "Key changed")
.detail("KeyPrefix", keyPrefix.printable());
logTestData(data);
return false;
}
d = testKeyToDouble(data[i - beginKey(clientId)].value, keyPrefix);
iPrev = i;
i = (int)d;
if (i != d || i < beginKey(clientId) || i >= endKey(clientId)) {
TraceEvent(SevError, "TestFailure")
.detail("Reason", "Invalid value")
.detail("KeyPrefix", keyPrefix.printable());
logTestData(data);
return false;
}
}
if (i - beginKey(clientId) != 0) {
TraceEvent(SevError, "TestFailure")
.detail("Reason", "MiniCycle got longer")
.detail("KeyPrefix", keyPrefix.printable())
.detail("Key", key(i))
.detail("Value", data[i - beginKey(clientId)].value)
.detail("Iteration", c)
.detail("CycleSize", cycleSize(clientId))
.detail("Int", i)
.detail("Double", d)
.detail("ValuePrev", data[iPrev - beginKey(clientId)].value)
.detail("KeyPrev", data[iPrev - beginKey(clientId)].key);
logTestData(data);
return false;
}
return true;
}
ACTOR Future<bool> cycleCheckClient(Database cx, MiniCycleWorkload* self, bool ok) {
if (self->transactions.getMetric().value() < self->testDuration * self->minExpectedTransactionsPerSecond) {
TraceEvent(SevWarnAlways, "TestFailure")
.detail("Reason", "Rate below desired rate")
.detail("File", __FILE__)
.detail(
"Details",
format("%.2f",
self->transactions.getMetric().value() / (self->transactionsPerSecond * self->testDuration)))
.detail("TransactionsAchieved", self->transactions.getMetric().value())
.detail("MinTransactionsExpected", self->testDuration * self->minExpectedTransactionsPerSecond)
.detail("TransactionGoal", self->transactionsPerSecond * self->testDuration);
ok = false;
}
// One client checks the validity of the cycle at a time
wait(self->checkLock.take());
state FlowLock::Releaser releaser(self->checkLock);
state Transaction tr(cx);
state int retryCount = 0;
loop {
try {
state Version v = wait(tr.getReadVersion());
RangeResult data = wait(
tr.getRange(firstGreaterOrEqual(doubleToTestKey(self->beginKey(self->clientId), self->keyPrefix)),
firstGreaterOrEqual(doubleToTestKey(self->endKey(self->clientId), self->keyPrefix)),
self->cycleSize(self->clientId) + 1));
ok = self->cycleCheckData(data, v, self->clientId) && ok;
break;
} catch (Error& e) {
retryCount++;
TraceEvent(retryCount > 20 ? SevWarnAlways : SevWarn, "MiniCycleCheckError").error(e);
wait(tr.onError(e));
}
}
return ok;
}
};
WorkloadFactory<MiniCycleWorkload> MiniCycleWorkloadFactory("MiniCycle");